高压电容补偿容量计算法

合集下载

110420,变电站集中补偿电容器的设计容量

110420,变电站集中补偿电容器的设计容量

图1 系统接线示意图变电站无功补偿电容器容量计算合理进行无功补偿是保证电压质量和电网稳定运行的必要手段,对提高输送能力和降低电网损耗具有重要意义,2007年8月24日国家电网公司下发的《国家电网公司电力系统无功补偿配置技术原则》要求220kV 变电站“补偿容量按照主变压器容量的10%-25%配置”,35kV~110kV 变电站“按主变压器容量的10%~30%配置”,具体计算方法没有明确指出。

现以我公司220kV 单城变电站扩建增设无功补偿电容器为例进行探讨。

1、变电站基本情况(以山东一变电为例)220kV 单城站在系统中的位置如图1,220kV 鱼台站接入济宁电网与山东省电网相联。

该站1999年建成投运,一期一台主变容量150MVA ,未装设无功补偿设备,作为“提高输送能力”的一项措施,2005年加装无功补偿电容器。

2、计算补偿容量的不同方法依据《电力系统电压和无功电力技术导则》、《国家电网公司电力系统无功补偿配置技术原则》要求,由不同角度计算可得出不同的容量要求。

(1)按最高负荷时变压器高压侧功率因数不低于0.95计算。

220kV 单城站#1主变压器高压侧最高负荷Smax=P+jQ=108.5+j67.2P=主变损耗P2+负荷电缆损耗P3+最大负荷P4 Q=主变损耗Q2+负荷电缆损耗Q3+最大负荷Q4------主变损耗P2==P0(Fe )+Pk*(S 30/Sn )^2主变损耗Q2==Sn[Io%/100+Uk%(S 30/Sn )^2/100] 负荷电缆损耗P3==3*I 30^2*R l 负荷电缆损耗Q3==3*I 30^2*X l电力系统阻抗:Xs==Uc^2/Soc Soc=1.732*Ioc*UnUk%=(1.732*In*X T /Uc)*100=(Sn*X T )/Uc^2*100 X T = Uk%*Uc^2/(100*Sn) Pk==3*I n ^2*R T=(Sn/Uc)^2*R T R T == Pk(Uc/Sn)^2---------------Uc:短路点短路计算电压;Soc :系统出口断路器的断流容量; Ioc :开断电流; I30:计算电流功率因数85.02.675.1085.108cos φ2222=+=+=QPP补偿容量MVar57.3195)tgarccos0.-85tgarccos0.(5.10895)tgarccos0.-P(tg Q QC=⨯==∆=ϕ (1)(2)按补偿主变压器无功损耗计算MVarSISN36.01015024.010%Q22=⨯⨯=⨯=≈--额定负载漏磁功率MVar S U Q Nk k 505.201015067.1310%2221212=⨯⨯=⨯=-- MVarSUQNk k 1225.17107583.2210%2231313=⨯⨯=⨯=-- MVarSUQNk k 6025.5107547.710%2232323=⨯⨯=⨯=--MVarQQQQ k k k k 0125.1626025.51225.17505.2022313121=-+=-+=MVarS QQQSQNk k k Nk 985.821225.176025.5505.202)(21132312222=-+=-+=MVarS Q Q Q S Q Nk k k N k 0275.08505.226025.51225.172)(21122313233=-+=-+=5.19MVar1509.495.102985.8222222222=+⨯=⨯=∆Nk k SS QQ MVarS S Q Q Nk k 0001238.0755.19.40275.0222232333=+⨯=⨯=∆ MVarS Q Q Q Q P P Q S Q Q Q Q P P P P Q S S Q Q Nk k k Nk k k k k Nk k 488.10150)0001238.05.119.59.49()9.45.102(0125.16)()()()(222212332223212123322233221212111=+++++⨯=∆++∆+++⨯≈∆++∆++∆++∆+⨯=⨯=∆变压器无功损耗 MVarQ Q Q Q Q k k k T 04.160001238.019.5488.1036.03210=+++=∆+∆+∆+=∆(5)补偿容量QC=ΔQT=16.04 MVar(3)按各种运行方式下电压合格计算无功负荷变化引起母线电压的变化量与变电站在电网中所处的位置有关,计算较为复杂,最好使用某种软件进行计算分析。

10Kⅴ无功电容补偿标准

10Kⅴ无功电容补偿标准

10Kⅴ无功电容补偿标准有关10kV线路无功补偿系统设计的方法,包括补偿点及补偿容量的确定、补偿位置确定、无功补偿技术要求,以及10kV线路无功补偿实例等,一起来了解下。

10kV线路无功补偿系统设计一、补偿点及补偿容量的确定为求出在满足运行约束条件下的最优无功补偿容量及位置,本文以年支出费用最小为目标函数,以潮流方程约束为等式约束,以负荷电压、补偿容量等运行限量为不等式约束。

年支出费用包括补偿设备的年运行维护费、投资的回收、补偿电容的有功损耗和补偿后10kV网线损而支付的能损费用。

总的有功损耗由两部分组成:(1)因有功电流的流动产生,(2)由无功电流的流动产生。

通过在线路上安装补偿电,能够减小无功电流,从而减小无功电流的流动引起的有功损耗。

对网络中除电源节点外的所有节点实施此算法,按照每个节点补偿最佳容量后降低的有功线损,由大到小排列,即可得候选的补偿节点。

此系统利用遗传算法对得到候选的补偿节点来求解补偿节点及补偿容量,补偿点只能选在节点处。

而这些节点有可能不是最佳补偿点,为此系统提出基于非节点的补偿算法,即利用遗传算法并行寻优的特点,在每个补偿节点的上接和下接支路中,按电线杆的位置,增加相应节点(称为非节点),以节点与非节点的电气距离作为控制变量集,再利用遗传算法求出最佳补偿位置及补偿容量。

通过算例分析显示在不增加无功补偿设备费用的前提下,这种“非节点”补偿方式能进一步提高电压水平及降低线损。

二、补偿位置确定无功补偿装置安装地点的选择应符合无功就地平衡的原则,尽可能减少主干线上的无功电流为目标。

不同电组最佳装设位置的计算公式如下:Li=(2i/2n+1)L式中,L为线路长度,n为电组数,Li为第i组电的安装位置,i=1……n通过测算,根据实践中经验,一条线一台无功补偿柜一般安装在线路负荷三分之二处。

通过合理配置无功补偿容量,选择电最佳装设地点,能改善电压质量,还能降低线路损耗。

一般来讲,配电线路上电力电安装组数越多,降损效果越明显,但相应地增加了运行维护的工作量,同时也增加了补偿设备的投资成本上升。

高压无功就地补偿装置容量计算公式

高压无功就地补偿装置容量计算公式

系统电压U L /kV
10电容器额定线电压Uc/kV 11电抗率K
0.06电动机额定功率P N /Kw 280电动机负载率β1电动机效率η
0.928Kf----补偿系数,推荐为0.90.9补偿前电机功率因数COS φ10.79补偿后目标功率因数COS φ20.9电动机额定电流I n /A 22.05069775电动机空载电流I O /A
9.2612930570.9倍电动机空载电流I O1/A 8.335163751功率因数--计算容量Qo 1/kvar 88.03179048空载电流--计算容量Qo 2/kvar 144.3692711功率因数--安装容量Qc 1/kvar 100.1273585空载电流--安装容量Qc 2/kvar 164.2056089
成套装置实际选择安装容量Qc 120
成套装置实际输出无功容量Qo 105.5037806成套装置额定工作电流I N (A) 6.298366573电机原无功功率Q 1
234.16346补偿后实际功率因数cos φ'0.919861729补偿后实际功率因数cos φ'
0.919861729
参数值
计算值
实际值。

220kV变电站无功补偿容量的合理配置

220kV变电站无功补偿容量的合理配置

220kV变电站无功补偿容量的合理配置摘要:电力系统中,无功合理分布是保证电压质量和经济运行的重要条件。

220kV变电站作为城市电网的重要节点,合理的无功配置对于提高负荷功率因数、减少电力输送损耗、改善电能质量有着十分重要的意义。

在变电站设计中,应根据地区特点对220kV变电站的无功补偿容量进行合理配置和选择。

本文主要分析探讨了220kV变电站无功补偿容量的合理配置情况,以供参阅。

关键词:220kV变电站;无功补偿;容量;配置引言随着社会的不断发展,国民对用电量的需求越来越大,对于无功需求也相应增长,所以我国的配电系统呈现超负荷现状。

基于此,相关工作人员如何针对配电网进行合理、高效的无功补偿是当下保证配电网进行安全运行的前提条件,这与国民能否获得高效、安全的用电有极大的关系。

1 220kV变电站常用无功补偿设备(1)同步调相机。

同步调相机相当于一台不带负荷的同步电动机,是使用最早的无功补偿装置,造价昂贵,操作复杂,因此在并联电容器补偿方式出现后,使用较少,但是在某些要求较高的场合,具有一定的优势:①能够提供平滑无极的无功输出,可以根据系统中无功负荷的变化灵活得对电压进行调整;②既可以做无功负荷,也可以做无功电源;③可以与强励装置配合,在系统高电压剧烈波动时进行调整。

(2)并联电容器。

电容器作为无功补偿装置,具有显著的优势。

首先,它造价低廉,运行和维护简单,损耗少,效率高,并且几乎没有噪音。

但是它只能作为无功电源使用,输出的无功是阶跃变化的,并且在系统电压急剧变化时失去调节作用。

(3)并联电抗器。

并联电抗器大多作为无功负荷使用,将电网电压限制在一定水平内,还可以与中性点小电抗配合,消除潜供电流。

目前,大多采用损耗小、造价高的高压电抗器。

(4)静止补偿器。

静止补偿器(SVC)是近年来由于电子技术的进步而兴起的一种电力电子补偿装置。

与以上三类补偿设备相比,可以对动态冲击无功负荷进行补偿。

SVC最大的优点是可以快速进行调节。

10kv电容补偿

10kv电容补偿

10kv电容补偿附件⼀1、使⽤环境条件:海拔⾼度4400(5100)m 最⼤风速30m/s最⾼温度+35℃最低温度-20℃最⼤⽇温差80K最⼤相对湿度40%⽇照0.1W/cm风速0.5m/S地震烈度8污秽等级Ⅱ级3、使⽤环境3.1 环境温度:30℃3.2 最⼤⽇温差:80k3.3 最⾼⽇平均温度:25℃3.4 海拔⾼度:4200(5100)m3.5 环境相对湿度:40%3.6 运输、贮存最低湿度:80%3.7 安装⽅式:户内4、技术参数4.1 系统标准电压:10.5KV4.2 最⾼⼯作电压:12KV4.3 额定频率:50Hz4.4 电抗率:6%4.5 相数:34.6 功率因数:0.95以上5、装置设计结构⾼压动态⽆功功率补偿装置由可控硅阀控制系统、⾼压并联电容器组、⼲式铁芯电抗器、电压互感器、避雷器和附属设备组成,电容器组由可控硅阀控制系统来投切。

成套装置采⽤柜式结构,能够⾃动补偿系统⽆功功率,有显著的节能、稳压和增容效果。

⾼压SVG-10/1200kvar动态⽆功补偿装置两套。

单套设备由五⾯柜组成。

其中控制柜⼀台,阀组投切柜⼀台、电容柜三台,分成3组:容量为150、450、600kvar;投切由可控硅阀控制系统根据负载变化⾃动投切,保证补偿精度,改善系统电能质量。

6、⾼压⽆功功率补偿装置技术条件6.1 能够根据电⽹系统⽆功功率⼤⼩和电压控制要求⾃动投切与调节,不需要⼈⼯⼲预,快速动态补偿⽆功功率,提⾼系统功率因数,保证系统功率因数在0.95以上。

6.2 采⽤全数字化智能控制系统,由微机监测、智能调节。

6.3 能够快速响应,⾃动投切与调节,不需要⼈⼯⼲预。

6.4应该采⽤电容器专⽤⾼压喷逐式熔断器作为短路保护、确保设备安全运⾏。

6.5 采⽤串联电抗器,减⼩合闸涌流,保护电容器组可靠运⾏。

6.6 抑制系统谐波,保证设备正常运⾏。

6.7 结构要求设计合理,使⽤⽅便,可⼿动操作,也可与负荷同步投切,免维护运⾏。

浅谈接地电容电流及其补偿容量计算

浅谈接地电容电流及其补偿容量计算
2)造成接地点热破坏及接地网电压升高
单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入接地网后由于接地电阻的原因,使整个接地电网电压升高,危害人身安全。
3)交流杂散电流危害
电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃可燃气体、煤尘爆炸等,可能造成雷管先期放炮,并且腐蚀水管,气管等金属设施。
浅谈接地电容电流及其补偿容量计算
梁金明,李国明
河北省沧州市沧炼工程设计有限公司
摘要:介绍了10KV中性点不接地系统中电容电流过大的危害及补偿原则,阐述了智能型自动补偿装置的组成及特点,给出了电容电流及补偿容量的计算方法。
关键词:电容电流 消弧线圈
1 前言
众所周知10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员可在2小时内选择和排除接地故障,保证连续不间断供电。
kV侧采用的是三角形接线,10 kV系统是没有中性点的,解决的办法是将消弧线圈接在星形接线的10
kV站用接地变压器中性点上。这样,系统零序网络等效于由对地电容和消弧线圈构成的LC串联电路。
脱谐度决定了一是弧道中的残余电流;二是恢复电压上升到最大值的时间;三是恢复电压的上升速度,它是影响灭弧的主要因素。工程上用脱谐度V来描述调谐程度
(6)接地变压器容量选择
接地变除可带消弧圈外,兼作所用变。
(5-4)
式中:Q — 消弧线圈容量,kVA
S — 所变容量,kVA
Ф — 功率因素角

无功补偿节电效果简要计算分析

无功补偿节电效果简要计算分析

无功补偿节电效果简要计算分析与无功补偿节电效果有关的参数为:1,导线横载面积及线路长短;2,实际的补偿电容量;3,补偿电容器运行时间;4, 电容器安装地点;5,电压高低对补偿容量的影响;6,有功功率大小。

每条线路的无功补偿量的计算举例高压线路无功补偿的电量和节约电量的计算方法很多,实际线路需要计算的参数也很多,为便于计算,在此简要举例,仅供参考。

计算步骤:1,首先了解每条线路的功率因数cosj是多少;2, 要掌握每条线路的负荷是多少,(最低负荷、最大负荷、平均负荷);3, 补偿后需要达到的功率因数是多少。

例如:一条10KV线路长12公里,主要负荷大部分在10公里以后,导线70mm2(LGJ型),最低负荷800KW,平均负荷2000KW,目前功率因数cosj为0.75左右。

要补偿到0.95,需补偿电容器多少千乏?根据该线路情况,每千瓦的无功补偿量不低于平均负荷2000KW。

(查附表3,另见:《电容补偿表》。

补偿前0.75,要补偿到0.95,每千瓦要补偿电容量0.55千乏)。

即:2000×0.55=1100千乏(总补偿量)最低负荷为800KW即:800×0.55=440千乏,约450千乏根据该线路负荷,一组采用固定补偿450千乏左右,另一组采用自动投切补偿650千乏左右,总无功补偿量1100千乏左右,这样可使功率因数平均保持在0.95左右。

有关功率因数大小的当前数值未知时,可按月供有功电量和无功电量计算,查附表4所得,平均负荷量多少千瓦,按月有功电量除以运行时间,就可以得出平均负荷。

1.1.2 安装地点及节约电量降低损耗的计算方法。

安装地点:上述线路负荷大部分在10公里以后,固定的450千乏电容器组可安装在负荷集中处,自动补偿的650千乏安装在负荷集中的上侧,补偿原则可达到就地就近平衡。

节约电量:该线路为70mm2导线,查附表2,每公里电阻0.46Ω,按10公里总电阻为 4.6Ω。

并联电容器补偿装置基础知识

并联电容器补偿装置基础知识

并联电容器补偿装置基本知识无功补偿容量计算的基本公式: Q = Ptg φ1——tg φ2=P1cos 11cos 12212---ϕϕ tg φ1、tg φ2——补偿前、后的计算功率因数角的正切值 P ——有功负荷Q ——需要补偿的无功容量 并联电容器组的组成1.组架式并联电容器组:并联电容器、隔离开关接地开关或隔离带接地、放电线圈、串联电抗器、氧化锌避雷器、并联电容器专用熔断器、组架等;2.集合式并联电容器组无容量抽头:并联电容器、隔离开关接地开关或隔离带接地、放电线圈、串联电抗器、氧化锌避雷器、组架等; 并联电容器支路内串接串联电抗器的原因:变电所中只装一组电容器时,一般合闸涌流不大,当母线短路容量不大于80倍电容器组容量时,涌流将不会超过10倍电容器组额定电流;可以不装限制涌流的串联电抗器;由于现在系统中母线的短路容量普遍较大,且变电所内同时装设两组以上的并联电容器组的情况较多,并联电容器组投入运行时,所受到的合闸涌流值较大,因而,并联电容器组需串接串联电抗器;串联电抗器的另一个主要作用是当系统中含有高次谐波时,装设并联电容器装置后,电容器回路的容性阻抗会将原有高次谐波含量放大,使其超过允许值,这时应在电容器回路中串接串联电抗器,以改变电容器回路的阻抗参数,限制谐波的过分放大; 串联电抗器电抗率的选择对于纯粹用于限制涌流的目的,串联电抗器的电抗率可选择为0.1~1%即可;对于用于限制高次谐波放大的串联电抗器;其感抗值的选择应使在可能产生的任何谐波下,均使电容器回路的总电抗为感性而不是容性,从而消除了谐振的可能;电抗器的感抗值按下列计算:XL=K错误!式中XL——串联电抗器的感抗,Ω;XC——补偿电容器的工频容抗, Ω;K——可靠系数,一般取1.2~1.5;对于5次谐波而言,则X L =1.2~1.5×错误!=0.048 ~0.06XC一般定为0.045 ~0.06XC = 4.5 %~ 6 % XC对于3次谐波而言,则X L =12%~13% XC电抗器的端电压和容量的选择电抗器的端电压=电容器的相电压×电抗率每相电抗器的容量=每相电容器容量×电抗率电抗器的额定电压为并联电容器组的额定电压电抗器的种类:油浸铁心式:CKS或CKD, 可用于户内、户外;干式空心电抗器CKGKL,可用于户内、户外;干式铁心电抗器CKGSC,干式产品中体积最小,且三相同体,但目前无35kV级产品,只能用于户内;干式半心电抗器:直径比空心产品小,可用于户内、户外;并联电容器额定电压的选择由于串联电抗器的接入,引起电容器上的基波电压升高,其值为——电容器的额定电压相电压,kV;式中 UC——系统额定相电压, kV;UφA——串联电抗率对于并联电容器组接线方式为星形接线或双星形接线,电容器额定电压如下10kV: 6%串联电抗率,电容器额定相电压11/√3 kV12~13%串联电抗率,电容器额定相电压12/√3 kV35kV: 6%串联电抗率,电容器额定相电压38.5/√3 kV12~13%串联电抗率,电容器额定相电压42/√3 kV上述选择是在系统额定电压分别为10kV和35kV的情况下,如系统额定电压有所上升,则并联电容器的额定电压也相应升高;氧化锌避雷器的选择和使用氧化锌避雷器的接线方式Ⅰ型接线Ⅲ型接线特点:1. Ⅰ型接线方式:优点:比较简单,但对避雷器的特性要求高,当发生一相接地时,要求非接地的两只避雷器能通过三相电容器积蓄的能量;缺点:相间过电压保护水平较高,因为是由两只避雷器对地残压之和决定的;2. Ⅲ型接线避雷器直接并接在电容器极间,保护配合直接,不受其他因数的影响,但这种方式要求避雷器的通流容量比较大;选用原则:10kV:通流容量35kV:通流容量隔离开关、接地开关及隔离带接地开关的选择用途:隔离开关做隔离之用10kV:户内:GN19-10/400, 630,1250户外:GW4-10/400, 630,1250 或GW4-10W/630爬电比距≥2.5cm/kV GW1-10/400尽量少采用35 kV:户内:GN2-35/400, 630,1250户外:GW4-35/630,1250或GW4-35W/630爬电比距≥2.5cm/kV隔离开关做接地之用10kV:户内:GN19-10/400, 630,1250户外:GW4-10/400, 630,1250或GW4-10W/630爬电比距≥2.5cm/kVGW1-10/400,63035 kV:户内:GN2-35/400, 630,1250户外:GW4-35/630,1250或GW4-35W/630爬电比距≥2.5cm/kV隔离开关带接地10kV:户内:GN24-10D/400,630,1250户外:GW4-10D/400,630,1250或GW4-10DW/630爬电比距≥2.5cm/kV35 kV:户外:GW4-35D/630,1250或GW4-35DW/630爬电比距≥2.5cm/kV隔离开关额定电流的选择隔离开关的额定电流=电容器额定相电流×1.5,再适当加一些余度如果用户对动、热稳定电流有要求,则应首先满足动热稳定的要求放电线圈的选择放电线圈的放电容量>每相电容器容量放电线圈的额定相电压=电容器的额定相电压放电线圈的种类:油浸式:价格较低,但由于用于绝缘的油同空气通过呼吸器相连,使绝缘油会由于呼吸的原因而受潮,同时产品内的绝缘油会对环境造成污染及存在火灾隐患;全封闭式:绝缘油与空气不直接接触,杜绝了绝缘油受潮的可能,但价格较高,同时产品内的绝缘油仍会对环境造成污染及存在火灾隐患;干式:彻底改变了绝缘种类,不会对环境造成污染,也不存在大的火灾隐患,但价格较高;且目前国内35kV级还没有此类产品;并联电容器单台用熔断器熔断器的额定电流=1.5×并联电容器额定电流并联电容器组接线种类单星形接线零序电压开口三角电压保护差动电压保护双星形接线中性点不平衡电流保护带容量抽头的并联电容器补偿装置近几年来,由于以下的原因,对集合式并联电容器提出了新的要求:用户新建变电所, 主变压器负荷小, 而无功补偿容量按满负荷配置, 全部投入时会发生过补偿的现象;周期性负荷变动,如农村电网当高峰及高峰过后需投入的电容器容量便不相同;带容量抽头的集合式并联电容器装置接线图1/2或1/3,2/3容量抽头接线图电抗器前置 1/2容量抽头接线图电抗器前置1/2或1/3,2/3容量抽头接线图电抗器后置 1/2容量抽头接线图电抗器后置电抗器需要抽头的原因:1.组架式高压并联电容器及无功补偿装置特点:构架组成灵活,但占地面积大;2.集合式并联电容器及成套补偿装置2.1 集合式并联电容器的优点:占地面积小,安装维护方便,可靠性高,运行费用省占地面积小:密集型并联电容器的安装占地面积约为组架式成套占地面积1/3~1/4,并且电容器单台容量越大,则占地面积与容量的比值就越小;安装维护方便:由于密封型电容器的台数少,电容器运到现场后,立即就可就位,比组架式成套安装工作量少,成套安装也较为简单,电容器台数少,电容器单元置于油箱内,巡视工作量小,减轻了运行人员的负担;可靠性高:由于对密集型采取了一些行之有效的措施:①采用元件串内熔丝后再并联的方式, 少数元件击穿后由于内熔丝熔断, 电容量变化不大, 电容器仍可继续运行;②适当降低元件工作场强,在绝缘上留有余度;③采用全膜介质,增强箱内外绝缘;从而提高了并联电容器的运行可靠性;自愈式并联电容器的自愈机理:普通金属化膜在介质疵点被击穿时,两极板间即短路放电产生电弧;在电弧高温作用下,击穿点周围的金属化极板补迅速蒸发,在击穿点周围的金属化极板被同时蒸发,在击穿点周围形成一个绝缘区;当绝缘区的半径达到一定尺寸时,电弧熄灭击穿停止,介质绝缘恢复,自愈过程即完成;自愈式并联电容器的特点:优点:体积小,重量轻,具有自愈性能,损耗小,在低压系统已得到广泛运用;缺点:自愈式电容器的金属化层的自愈性是有限的,电容器长期运行介质老化后,若某一点击穿并企图自愈时,因介电强度不够,不能迅速自愈,电弧产生的热量会引起该点邻近层介质发热,介电强度下降,从而发生击穿并企图自愈而又不能自愈;这样就引发邻近多层介质的企图自愈和击穿;击穿使电流增大,自愈使电流减小,结果电流在较长一段时间不会剧烈增加,若使用串联熔丝进行保护,熔丝不一定会熔断,而连续自愈和击穿产生的大量气体却使电容器外壳鼓肚,直到发生外壳爆裂事故;因此金属化自愈式电容器不能象箔式电容器那样使用串联熔丝作为防爆的安全保护,而要使用压力保护或热保护,此种保护方式的响应时间要比熔丝长,因而金属化并联电容器的保护性能不如箔式电容器液体介质为绝缘油的并联电容器;另外由于电容器本身的自愈作用,电容器的容量会随着时间的推移而有所减小,因而,金属化高压并联电容器在高电压领域的使用和推广还需要进一步努力;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档