《概率论与数理统计》期中试卷
13142《概率论与数理统计》期中试卷_参考答案

所以可知这件产品是次品的概率为 0.0185,若此件产品是次品,则该产品是乙车间生产的概 率为 0.38.
五、 (15 分)设 (X, Y) 的概率密度为
2
x 2 a x y , 0 x 1, 0 y 2, f ( x, y) 0, 其它, ,试求(1)a ; (2)
(2) P{ X Y 1}
f ( x, y )dxdy 0 dx 1 x ( x x y 1
1
xy 65 )dy 3 72
(3)
f X ( x)
2x 2 2 xy )dy 2 x 2 , 0 x 1, 0 ( x f ( x , y )dy 3 3 0, 其它. 1 y 1 2 xy )dx , 0 y 2, 0 ( x f ( x , y )dx 3 3 6 0, 其它.
p q k 1 q k p qi q k k 1 k 0 k 1 i2
p q i q k k 0 i 0
1 1 p 1 q 1 q
3
xe- x , x 0, f ( x) 假设各周的需求量相互独立,以 Uk 表示 k 周的总 0, 其它。
需求量。 (1)求 U2、U3 的概率密度; (2)求接连三周中的最大需求量的概率密度
解 利用卷积公式. 设 Xi 表示第 i 周的需求量, i=1,2,3, Z 表示三周中的周最大需求量.于是
解: 记 q=1-p, X 的概率分布为 P{X=k}=qk-1 p, k=1,2,…,
概率论与数理统计期中试题(一)

概率论与数理统计期中试题(一)《概率论与数理统计》期中试题(一)姓名班级学号成绩一、填空题(每小题4分,共12分)1.设事件仅发生一个的概率为0.3,且,则至少有一个不发生的概率为__________.2.设随机变量服从泊松分布,且,则______.3.设随机变量在区间上服从均匀分布,则随机变量在区间内的概率密度为_________.二、单项选择题(每小题4分,共16分)1.设为三个事件,且相互独立,则以下结论中不正确的是(A)若,则与也独立. (B)若,则与也独立.(C)若,则与也独立.(D)若,则与也独立. ()2.设随机变量的分布函数为,则的值为(A). (B). (C). (D). ()3.设随机变量和不相关,则下列结论中正确的是(A)与独立. (B).(C). (D).4.设离散型随机变量和的联合概率分布为若独立,则的值为(A). (A). (C)(D). ()三、(12分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设为途中遇到红灯的次数,求的分布列、分布函数、数学期望和方差.五、(12分)设二维随机变量在区域上服从均匀分布. 求关于的边缘概率密度;六、(12分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标和纵坐标相互独立,且均服从分布. 求(1)命中环形区域的概率;(2)命中点到目标中心距离的数学期望.七、(12分)设, 求的概率密度.Y X0200.10.2010.30.050.120.1500.1八、(12分)已知离散型随机向量的概率分布为求.。
概率论与数理统计期终考试试卷A及参考答案

上海应用技术学院2011—2012学年第一学期 《概率论与数理统计》期(末)(A )试卷课程代码: B2220073 学分: 3 考试时间: 100 分钟 课程序号: 112-7244、7246、7248、7249、7251、7254、7255、7257、7258等共9个教学班 班级: 学号: 姓名:我已阅读了有关的考试规定和纪律要求,愿意在考试中遵守《考场规则》,如有违反将愿接受相应的处理。
试卷共6页,请先查看试卷有无缺页,然后答题。
一、填空题(每题3分,共计18分)1、有321,,R R R 三个电子元件,用321,,A A A 分别表示事件“元件i R 正常工作”)3,2,1(=i ,试用321,,A A A 表示事件“至少有一个元件正常工作”:_______________。
2、连续型随机变量X 的分布函数为20,0,(),01,1, 1.x F x x x x ⎧<⎪=≤<⎨⎪≥⎩则(0.5 1.5)P X <<=_____。
3、设随机变量X 服从(3,7)F 分布,则随机变量1~Y X=____________。
4、设()28,10~N X ,()=<<200X P (用()Φ表示)。
5、已知随机变量,X Y ,有cov(,)5X Y =,设31U X =+,24V Y =-,则cov(,)U V =____。
6、设随机变量,X Y 相互独立~(5,0.5)X N ,~(2,0.6)Y N ,则()E XY =___________。
二、选择题(每题3分,共计18分)1、设S 表示样本空间,下述说法中正确的是( )(A )若A 为一事件,且()0P A =,则A =∅(B )若B 为一事件,且()1P B =,则B S = (C )若C S =,则()1P C =(D )若,A B 相互独立,则()()()P AB P A P B =+2、设随机变量X 与Y 均服从正态分布2~(,4)X N μ,2~(,5)Y N μ。
《概率论与数理统计》期中考试试题汇总,DOC

《概率论与数理统计》期中考试试题(一)一、选择题(本题共6小题,每小题2分,共12分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )A .A 1A 2B .21A AC .21A AD .21A A2345C 68.将3个球放入5个盒子中,则3个盒子中各有一球的概率为=________.9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是=.10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度2f Y (y )=________.11.设二维随机变量(X ,Y )的概率密度f (x ,y )=⎩⎨⎧≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59⎛⎫ ⎪⎝⎭,则相关系数,X Y ρ=________. 13.二维随机变量(X ,Y )(1,3,16,25,0.5)N -,则X ;Z X Y =-+.(-1,31),(2,0),且取这些值的概率依次为61,a ,121,125. 求(1)a =?并写出(X ,Y )的分布律;(2)(X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是否独立;(3){0}P X Y +<;(4)1X Y =的条件分布律;(5)相关系数,X Y ρ18.(8分)设测量距离时产生的随机误差X ~N (0,102)(单位:m),现作三次独立测量,记Y 为三次测量中误差绝对值大于19.6的次数,已知Φ(1.96)=0.975.(1)求每次测量中误差绝对值大于19.6的概率p ;(2)问Y 服从何种分布,并写出其分布律;求E (Y ).1取出的3件中恰有一件次品的概率为( )A .601B .457C .51D .157 2.下列选项不正确的是()A .互为对立的事件一定互斥B .互为独立的事件不一定互斥C .互为独立的随机变量一定是不相关的D .不相关的随机变量一定是独立的3.某种电子元件的使用寿命X (单位:小时)的概率密度为42100,100;()0,100,x p x x x ⎧≥⎪=⎨⎪<⎩任取一只电子元件,则它的使用寿命在150小时以内的概率为( )A .41B .31C .21D .32 4.若随机变量,X Y 不相关,则下列等式中不成立的是.A5A 6A 79.设随机变量X ~E (1),且21Y X =-,则Y 的概率密度f Y (y )=________.10.设随机变量X ~B (4,32),则{}1P X <=___________. 11.已知随机变量X 的分布函数为0,6;6(),66121,6,x x F x x x ≤-⎧⎪+⎪=-<<⎨⎪≥⎪⎩,则X 的概率密度p (x )=______________.12.设二维随机变量(,)X Y 的协方差矩阵是90.60.625⎛⎫⎪⎝⎭,则相关系数,X Y ρ=________. 13.二维随机变量(X ,Y )(2,3,9,16,0.4)N -,则X;Z X Y =-+. 14.随机变量X 的概率密度函数为,0()0,0x X e x f x x -⎧>=⎨≤⎩,Y 的概率密度函数为1,12()3Y y f y ⎧-<<⎪=⎨,,X Y 相互独立,且Z X Y =+的概率密度函数为()z f z = 试求:(1)常数α,β;(2)(X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是6否独立;(3)X 的分布函数F(x);(4){1}P X Y +<;(5)1X Y =的条件分布律;(6)相关系数,X Y ρ18.(8分)设顾客在某银行窗口等待服务的时间X (单位:分钟)具有概率密度()3103x e x p x -⎧>⎪=⎨,;某顾客在窗口等待服务,若超过9分钟,他就离视机,厂方获得利润50万元,但如果因销售不出而积压在仓库里,则每一万台需支付库存费10万元,问29寸彩色电视机的年产量应定为多少台,才能使厂方的平均收益最大?《概率论与数理统计》期中试卷试题(五)一、选择题(共5题,每题2分,共计12分)1.下列选项正确的是()A.互为对立事件一定是互不相容的B.互为独立的事件一定是互不相容的C.互为独立的随机变量一定是不相关的 D.不相关的随机变量不二、填空题:(每小题2分,共18分)7.同时扔4枚均匀硬币,则至多有一枚硬币正面向上的概率为________.8.将3个球放入6个盒子中,则3个盒子中各有一球的概率为=________.89.从a 个白球和b 个黑球中不放回的任取3次球,第3次取的黑球的概率是=.10.公共汽车站每隔5分钟有一辆汽车到站,乘客到站的时刻是任意的,则一个乘客候车时间不超过3分钟的概率为 (1,2,9,16,0)N -;2Z X =-. 率密度函数51,050,0x e x x ->≤的概率密,(,)X Y 相互独立,且X Y +的概率密度函数为(z f 在某区域有一架飞机,雷达以99%的概率探测到并报警。
概率论与数理统计期中试题解答

《概率论与数理统计》期中试题(二)解答姓名 班级 学号 成绩一、填空题(每小题4分,共13分)(1) 设()0.5P A =,()0.6P B =,(|)0.8P B A =,则,A B 至少发生一个的概率为_________.(2) 设X 服从泊松分布,若26EX =,则(1)P X >=___________. (3) 元件的寿命服从参数为1100的指数分布,由5个这种元件串联而组成的系统,能够正常工作100小时以上的概率为_____________.解:(1)()()()0.8(|)1()0.5P BA P B P AB P B A P A -===- 得 ()0.2P AB = ()()()() 1.10.20.9P A B P A P B P AB =+-=-= . (2)222~(),6()X P EX DX EX λλλ==+=+ 故 2λ=. (1)1(1)1(0)(1)P X P X P X P X >=-≤=-=-=2221213e e e ---=--=-. (3)设第i 件元件的寿命为i X ,则1~(),1,2,3,4,5100i X E i =. 系统的寿命为Y ,所求概率为125(100)(100,100,,100)P Y P X X X >=>>> 51551[(100)][11].P X e e --=>=-+=二、单项选择题(每小题4分,共16分)(1),,A B C 是任意事件,在下列各式中,不成立的是 (A )()A B B A B -= .(B )()A B A B -= .(C )()A B AB AB AB -= .(D )()()()A B C A C B C =-- . ( )(2)设12,X X 是随机变量,其分布函数分别为12(),()F x F x ,为使12()()()F x aF x bF x =+是某一随机变量的分布函数,在下列给定的各组数值中应取(A )32,55a b ==-. (B )22,33a b ==. (C )13,22a b =-=. (D )13,22a b ==. ( )(3)设随机变量X 的分布函数为()X F x ,则35Y X =-的分布函数为()Y F y =(A )(53)X F y -. (B )5()3X F y -.(C )3()5X y F +. (D )31()5X yF --. ( ) (4)设随机变量12,X X 的概率分布为101111424i X P- 1,2i =. 且满足12(0)1P X X ==,则12,X X 的相关系数为12X X ρ=(A )0. (B )14. (C )12. (D )1-. ( ) 解:(1)(A ):成立,(B ):()A B A B A B -=-≠ 应选(B )(2)()1F a b +∞==+. 应选(C ) (3)()()(35)((3)/5)Y F y P Y y P X y P X y =≤=-≤=>- 331()1()55X y yP X F --=-≥=- 应选(D ) (4)12(,)X X 的分布为12120,0,0EX EX EX X ===,所以12cov(,)0X X =, 于是 120X X ρ=. 应选(A )三、(12分)在一天中进入某超市的顾客人数服从参数为λ的泊松分布,而进入超市的每一个人购买A 种商品的概率为p ,若顾客购买商品是相互独立的, 求一天中恰有k 个顾客购买A 种商品的概率。
《概率论与数理统计》期中考试(B卷)

概率论与数理统计
期中考试 B 卷
《概率论与数理统计》期中考试(B卷)
序号:_____ 学号:____ 姓名:_____ 成绩:_____
3 1 1. (7分)某医院用某种新药医治流感,对病人进行试验,其中 的病人服此药, 的病人 4 4 不服此药,5天后有70%的病人痊愈,已知不服药的病人5天后10%有的可以治愈。 (1). 求该药的治愈率; (2). 若某病人5天后痊愈求他是服此药而痊愈的概率。 解:(1)设A = {病人服药} B = {病人痊愈}. 因 ¯ ) = P(A)P( B|A) + P(A ¯ )( BA ¯ ) = 3 × P( B|A) + 1 × 0.1 = 0.9. P( B) = P(AB) + P(AB 4 4 故该药的自愈率为P( B|A) = 0.9.′ P(AB) 27 (2)P(A| B) = = . P( B) 28 2. (10分)已知随机变量X ∼ U (−2, 5), (1). 试求方程4t2 + 4Xt + X + 2 = 0有实根的概率; (2). 求Y = |X |的概率密度。 1 7 , −2 < x < 5, 解:(1) 由已知, fX ( x) = 0, 其他 P(方程有实根) = P(判别式▽ = P{16X 2 − 16X + 2 = P{X 2} + P{X 0) 得分____ 得分____
在区域0 < y < 1, −y < x < y 内, f ( x, y) = fX ( x) fY (y), · · · · · · 1′ 因此X 与Y 不相互独立. (2)
1 P{X ≤ 1 ,Y ≥ 2 } 5 1 1 2 = . P{Y ≥ |X ≤ } = 1 2 2 7 P{ X ≤ 2 }
张广亮概率论与数理统计期中测试试卷答案.doc

经济与管理学院2012/2013学年(一)学期试卷《概率论与数理统计》期中测试试卷答案专业________ 年级 _____ 班级_姓名_____ 学号题号—二三四五六七八九十总分得分一、填空题(每小题3分,共15分):1、设A、B 为随机事件,P (A)=0.5 , P(B)=0.6, P(B|A)=0.8 .则P(BU/!)= 0. 73 0 < x < 丨2、设随机变量X的密度函数为/(x) = ^X’,设r表示对X的10次独0,具匕立观察中事件<! X S 出现的次数,则= 2) = O.24^C?o(|)2(|y3、设£(;0 =仏£>(;0 = /?,则£(X2) = “2+/?。
4、三人独立的破译一个密码,他们能译出密码的概率分别为1/5、1/4、1/3,此密码能被译出的概率是_ 0.6 __________ 。
5、设随机变量f的密度函数为/?(x) = Ce_2v,x〉0,則常数C的值为 2 。
二、选择题(每小题3分,共15分):1、从一个由五男生和二女生组成的学习小组屮随机地抽出三个人,则“抽出的三人中至少有一个是男学生”的事件为(C)(A)随机事件(B)不可能事件(C)必然事件(D)偶然事件2、设随机变量《服从正态分布的yv(o,i),其密度函数为炉(%),则炉(o)= (A )3、若每次试验的成功率为(0 < /? < 1),则在3次重复试验中至少失败一次的概率为(B )(A)(l —厂)3(B) 1-p3(C) 3(1 —p) (D) (1 —/))3+p(l —/?)2+p2(l —p).4、甲乙进行乒乓球比赛,一局甲的胜率大于二分之一。
对乙而言,下列哪种赛制较有利(A )(A)三局两胜(B)五局三胜(C)七局四胜(D)九局五胜5、设事件A与B互不相容,= = 则尸(25)= (A )(A) 1 —(“ + /?)(B) 2 — 6/ — /? (C) (1 — 6/)(1—b)(I)) 1 —ab三、(8分)已知男人中有5%是色盲,女人中有0.25%是色盲.今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 解:rdA :挑选出的人是男人;B :挑选出的人是色盲. 取{A ,为样本空间的划分. 由w 叶斯公式:馴娜)_ _P(B | A)P(A) + P {B | A)P(A)0.05x0.5_ 0.05x0.5 + 0.0025x0.5四、(8分)某种动物由出生算起活20岁以上的概率为0.8,活到25岁以上的概 率为0.4,如果现在有一个20岁的这种动物,问它能活到25岁以上的概率是多 少?五、(9分)一个机床冇三分之一的时间加工零件A,其余时间加工零件B,加工 零件A 吋,停机的概率吋0.3,加工零件B 时,停机的概率是0.4,求这个机床 停机吋正在生产零件A 的概率.解:设A 表示生产零件A ,B 表示生产零件B ,C 表示机床停机,由题意可得 勝謂= 0.4P(C|A)P(A)P(C\A)P(A)-hP(C\B)P(B) 常数A; (2) PfX<\}; (3) X 的数学期望£(X)和方差解:由密度函数的归一性得1 = f Ar(l - x)dx = A 丄,故 A = 6 Jo6P{ X < 1 / = J f( x )dx = £ 6x( 1 - x )dx = (3%2 - 2x 3) |r=, = 1= 20/21设A 表示“能活20岁以上”的事件,B 表示“能活25岁以上”的事件,则P(B|A) = P(AB)尸⑷因为 p(A) = 0.8,P(B) = 0.4, P(AB) = P(B),所以 P(B|A) =P(A8)_0A_l P(A)0i~2由贝叶斯公式得=0.4 + 04!六、(15分)设随机变量X 的密度函数为/(x) =Ax(l - x),0,0 < x < 1 其它£(X) = £x6x(l-x)t/x = 0.5 D(X) =J>26X (1-^A -0.25 = 0.05七、(20分)一种电子管的使用寿命X (单位:小吋)的概率密度函数为设某种仪器中装有5个这种工作相互独立的电子管,求: (1) 使用最初1500小时没有一个电子管损坏的概率; (2) 这段时间内至少有两个电子管损坏的概率。
概率论与数理统计试题期中考试-答案

概率论与数理统计课程期中考试考试时间:90分钟姓名:班级:学号:一、单项选择题(本大题共有5个小题,每小题4分,共20分)1,设..~(100,0.1)R V X B,1..~()2R V Yπ,且X和Y相互独立,令72+-=YXZ,则D(Z)=(D )。
A:7 B:8 C:10 D:11 2,若P(A)=1/2,P(B|A)=1/3,则P(AB)=( B )A:1/2 B: 1/3 C: 5/6 D:1/63,设X的概率密度函数为30()xke xf x-⎧>=⎨⎩其它,则=k( C )A:1/3 B:1/9 C: 3 D: 94, 如果X,Y为两个随机变量,满足COV(X,Y)=0,下列命题中正确的是( A )。
A:X,Y不相关B:X,Y相互独立C:D(XY) =D(X)+D(Y) D:D(X-Y) =D(X)-D(Y)5,在8片药中有4片是安慰剂,从中任取3片,则取到2片是安慰剂的概率为( B )A:1/4 B :3/7 C:1/2 D:6/7二、填空题(本大题共有6个小题,每空2分,共20分)4 A,B为两个随机事件,若P(A)=0.4,P(B)=0.6,P(B A)=0.2.则P(AB)= 0.4 ,P(AB)= 0.25 甲乙两人独立射击,击中目标的概率分别为0.8,0.7,现在两人同时射击同一目标,则目标被击中的概率为 0.946.若某产品平均数量为73,均方差为7,利用切比雪夫不等式估计数量在52~94之间的概率为 8/97.在8件产品中有2件次品。
从中随机抽取2次,每次抽取一件,做不放回抽取。
则两次都是正品的概率为 15/28 抽取的产品分别有一正品和一件次品的概率为 3/7 ,第二次取出的产品为次品的概率为 1/48若X~N(2,1),Y~U[1,4],X,Y互相独立,则E(X+2Y-XY+2)= 4 ,D(X-2Y+3)=49 设D(X)=D(Y)=2,0.3XY ρ=,则D(X-Y)= 2.8三、解答题(本大题共有3个小题,共32分)10(7分)病树主人外出,委托邻居浇水。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杉达 各 专业 2007 级 专科《概率论与数理统计》期中试卷A 评析一、单项选择题(在每小题的四个备选答案中选出一个正确答案,每小题3分,共21分。
)1.设事件A 与B 相互独立,且P(A)>0, P(B)>0,则下列等式成立的是 ( )A 、AB=∅B 、P(AB ¯)=P(A)P(B ¯)C 、P(B)=1-P(A)D 、P(B |A¯)=0 【讲评】考点:事件的相互独立的性质。
如果事件A 与事件B 满足P(AB)=P(A)P(B),则称事件A 与事件B 相互独立。
本题: 因为A 与B 独立⇔事件A 与事件B  ̄独立⇔ P(AB¯)=P(A)P(B ¯) 选B 。
2.设甲、乙两人向同一目标射击,事件A, B 分别表示甲、乙击中目标,则AB¯¯表示 ( )A 、两人都没有击中目标B 、两人都击中了目标C 、至少有一人击中目标.D 、至少有一人没有击中目标.【讲评】考点:事件的运算的算律与实际意义。
对偶律:AB¯¯=A ¯∪B ¯ 本题: 因为AB ¯¯=A ¯∪B ¯,所以其实际意义为至少有一人没有击中目标. 选D 。
3.一批产品共10件,其中有3件次品,从这批产品中任取3件,则取出的3件中恰有一件次品的概率为 ( )A 、1/60B 、21/40C 、1/5D 、7/15【讲评】考点:P(A)=A 包含样本总个数样本点总数=N(A)N(S), 本题: N(S)= C 103=10×9×8/3! = 120 . N(A)= C 31×C 72= 63,P(A)=N(A)/N(S)=63/120 = 21/40 .选B 。
4.下列各函数中可作为随机变量分布函数的是 ( )A 、F 1(x)=⎩⎨⎧2x 0≤x ≤1 0 其他B 、F 2(x)=⎩⎨⎧0 x<0x 0≤x<11 x ≥1C 、F 3(x)=⎩⎨⎧-1 x<-1x -1≤x<11 x ≥1D 、F 4(x)=⎩⎨⎧0 x<02x 0≤x<12 x ≥1【讲评】考点:分布函数的性质。
(1)0≤F(x)≤1; (2) F(-∞)=0, F(+∞)=1,(3)单调非减,当x 1<x 2时,F(x 1)≤F(x 2) (4)右连续 lim x →x 0+ F(x)=F(x 0) 本题:因为F 1(x), F 3(x), F 4(x)都不满足性质(1),所以只有F 2(x)是正确的。
选B 。
5.设随机变量X 在区间[3,5]上服从均匀分布,则P{3<X<4}= ( )A 、P{4.5<X<5.5}B 、P{2.5<X<3.5}C 、P{3.5<X<4.5}D 、P{5.5<X<6.5}【讲评】考点:均匀分布X~U[a,b];密度函数 f(x)=⎩⎪⎨⎪⎧ 1b-a a ≤x ≤b 0 其他 分布函数F(x)= ⎩⎪⎨⎪⎧ 0 x<a x-a b-a a ≤x ≤b 1 x>bP{c<X<d}= ∫c df(x)dx ,注意分段函数的积分分段性。
本题:因为X~U[3, 5];所以密度函数 f(x)=⎩⎨⎧ 1/2 3≤x ≤5 0 其他P{3<X<4}=1/2, P{4.5<X<5.5}=1/4, P{2.5<X<3.5}=1/4, P{3.5<X<4.5}=1/2, P{5.5<X<6.5}=0 选C 。
6. 设随机变量X~N(2, 4),Φ(1)=0.8413, Φ(0)=0.5,则事件{2≤X ≤4}的概率为 ( )A 、0.3413B 、0.2413C 、0.2934D 、0.1385【讲评】考点:正态分布X~N(μ, σ2);分布函数F(x)=Φ(x-μσ),其中Φ(x)为标准正态分布函数。
公式P{a<X ≤b}=F(b)-F(a)= Φ(b-μσ)-Φ(a-μσ), Φ(-x)=1-Φ(x) 本题:因为X~N(2, 4);μ=2, σ=2, 所以P{2≤X ≤4}=Φ(4-μσ)-Φ(2-μσ)=Φ(1)-Φ(0)=0.3413 选A 。
7.设随机变量X 的分布函数为F X (x),则随机变量Y=5X+6的分布函数F Y (y)= ( )A 、F X (5y+6)B 、F X (y-65)C 、F X (y)D 、F X (5x+6)【讲评】考点:随机变量X 的函数Y=g(X)的分布,Y 的分布函数F Y (y)=P{Y ≤y}= P{g(x)≤y}= P{X ∈S},其中S={x|g(x)≤y},然后再把F Y (y)对y 求导,即得Y 的密度函数f Y (y)。
本题:F Y (y)=P{Y ≤y}= P{5X+6≤y}= P{X ≤y-65}= F X (y-65)选B 。
3125476二、简答题(本大题共7小题,每小题 5 分,共35分)写简单解答过程,将正确的答案写出。
8.设随机变量(X,Y)的联合分布为 ⎣⎢⎢⎡⎦⎥⎥⎤X ╲Y 1 2 1 1/6 1/9 2 1/2 α,求α。
【讲评】考点:二维离散型随机变量及其概率分布 P{X=x i ,Y=y j }=p ij , 其中 ∑i=1 ∑j=1p ij =1 且 p ij ≥0[解]:因为⎣⎢⎢⎡⎦⎥⎥⎤X ╲Y 1 21 1/6 1/92 1/2 α为的联合分布律,所以 1/6 + 1/9 +1/2 +α=1⇒ α= 2/99. 设线路由A 、B 两元件并联组成(如右图),A, B 元件独立工作,A 正常工作的概率为7/8,而B 不正常工作的概率为1/6,则此线路工作正常的概率。
【讲评】考点:并联线路的正常工作为A 正常或B 正常,则并联线路的正常工作的概率为P(A ∪B)。
[解]:P(A)=7/8, P(B ¯)=1/6, ⇒ P(B)=5/6A 与B 相互独立 ⇒ P(AB)=P(A)P(B)=35/48所以并联线路的正常工作的概率为P(A ∪B)=P(A)+P(B)-P(AB)=7/8+5/6 – 35/48 =(42+40-35)/48= 47/4810. 设随机变量X 的分布函数为F(x)= ⎩⎨⎧ 0 x ≤-6(x+6)/12 -6<x<61 x ≤6,试求:概率密度函数f(x)。
【讲评】考点:分布函数与概率密度函数的关系。
概率密度函数f(x)=F ′(x)[解]:f(x)=F ′(x)= ⎩⎨⎧ x/12 -6<x<60 其他11.设随机变量X 的分布律为⎣⎡⎦⎤X -1 0 1 2P 1/8 3/8 1/16 7/16 ,且Y =X 2,记随机变量Y 的分布函数为F Y (y ),求F Y (3)的值。
【讲评】考点:离散型随机变量的函数的分布,离散型随机变量的分布函数的值的计算,[解]:Y=X 2的可能取值为0,1,4,且P{Y=0}=P{X=0}=3/8,P{Y=1}=P{X= -1}+P{X=1}=1/8+1/16=3/16, P{Y=4}=P{X=2}= 7/16,即Y~⎣⎡⎦⎤0 1 43/8 3/16 7/16。
F Y (3)=P{Y ≤3}=P{Y=0}+P{Y=1}=3/8 + 3/16 = 9/1612.设连续型随机变量X 的分布函数为F(x)= ⎩⎨⎧Ax 1+x x ≥0 0 x<0,求常数A 的值。
【讲评】考点:分布函数的性质,lim x →+∝F(x)=1[解]:lim x →+∝F(x)= lim x →+∝Ax 1+x = lim x →+∝A 1 (运用洛必大法则,分子分母求导) = A⇒ A=113. 设A 与B 是两个随机事件,已知P(A)=0.4,P(B)=0.6, P(A ∪B)=0.7, 求P(A ¯B) 。
【讲评】考点:事件的运算与概率的计算。
[解]:因为有A ¯B ∪AB=B , 且A ¯B ∩AB=∅P(A ¯B)= P(B)-P(AB)= P(B)-[P(A)+P(B)-P(A ∪B)]= P(A ∪B)-P(A)=0.7-0.4=0.314.设随机变量X 服从参数为 λ (λ>0) 的泊松分布,且P{X=0}=12P{X=2},求 λ。
【讲评】考点:泊松分布X~P(λ);分布列为 P{X=k}= λk k! e -λ。
[解]:已知P(X=0)= 12P(X=2) ⇒ λ00!e -λ = 12×λ22!e -λ ⇒ λ= 2 或 λ= -2( 舍去)所以, λ=2三,计算题(本大题共3小题,每小题8分,共24 分)15.某物品成箱出售,每箱20件,假设各箱中含0、1件次品的概率分别为0.8和0.2,一顾客在购买时,他可以开箱,从箱中任取三件检查,当这三件都是合格品时,顾客才买下该箱物品,否则退货。
试求:(1)顾客买下该箱的概率 α ;(2)顾客买下该箱物品,问该箱确无次品的概率 β 。
[解]:设事件A 0, A 1箱中含有0, 1件次品, 事件B 为顾客买下该箱物品.则有题知, 有P(A 0)=0.8, P(A 1)=0.2;且P(B|A 0)=1, P(B|A 1)= 1720于是有(1)α=P(B)= P(A 0)P(B|A 0)+ P(A 1)P(B|A 1)=0.8+0.17=0.97(2) β= P(A 0|B)= P(A 0B)P(B) = P(A0)P(B|A 0) P(B) = 0.80.97 =0.824716. 设随机变量X 服从[0,5]上的均匀分布,求y 的方程4y 2+4Xy+X+2=0有实根的概率。
[解]:方程4y 2+4Xy+X+2=0有实根⇔判别式Δ≥0,即(4X)2-16(X+2)≥0⇔ X 2-X-2≥0 ⇔ X ≥2 或 X ≤ -1所求的概率为P{ X ≥2或X ≤ -1}=P{X ≥2}+P{X ≤-1}=P{X ≥2}=∫2∞f(x)dx=∫2515dx=35 = 0.6(注意X~U[0,5] ,X 的密度函数为f(x)= ⎩⎨⎧1/5 0≤<x ≤50 其它 }17. 设(X,Y)的概率密度为 f(x,y)= ⎩⎨⎧cxy 0≤x ≤2,0≤y ≤2 0 其他(1)求常数c ; (2)求概率P{X ≤1,Y ≤1}。
[解]:(1)1=∫-∞+∞∫-∞+∞f(x,y)dxdy =c ∫02xdx ∫02ydy = c(x 22|02)(y 22|02)= 4c ⇒ c=14 (2) P{(X ≤1,Y ≤1)=∫-∞1∫-∞114xydxdy =14∫01xdx ∫01ydy = 14(x 22|01)(y 22|01) = 116四. 综合应用题(本大题共2小题,每小题10分,共20 分)18.已知随机变量 X 和 Y 的分布列分别为 ⎣⎡⎦⎤X -1 0P 1/3 2/3 , ⎣⎡⎦⎤Y -1 0 1P 1/6 1/2 1/3 且已知: P{XY=1}=1/12, P{XY= -1}=1/6,(1) 求 (X,Y) 的联合分布律;(2) 求 P{XY=0}[解]:(1) 因为事件{XY=1}⇔ 事件{X= -1且Y=-1} ⇒ P{ X= -1,Y=-1}=1/12,事件{XY= -1}⇔ 事件{X= -1且Y=1} ⇒ P{ X= -1,Y= 1}=1/6,于是 P{X= -1,Y= 0}=P{X= -1}- P{ X= -1,Y=-1}- P{ X= -1,Y= 1}=1/3-1/12-1/6=1/12.⇒ P{X= 0,Y= -1}= 1/12, P{X= 0,Y= 0}= 5/12, P{X= 0,Y= 1}= 1/6,由此及X, Y 的边缘分布可得到(X,Y)的联合分布律为:⎣⎢⎡⎦⎥⎤X ╲Y -1 0 1 -1 1/12 1/12 1/6 0 1/12 5/12 1/6 。