高中数学:用样本估计总体练习
2021新教材人教版高中数学A版必修第二册模块练习题--总体取值规律的估计、总体百分位数的估计

9.2用样本估计总体9.2.1总体取值规律的估计9.2.2总体百分位数的估计基础过关练题组一频率分布表1.一个容量为80的样本中,数据的最大值是140,最小值是51,组距是10,则应将样本数据分为()A.10组B.9组C.8组D.7组2.一个容量为100的样本,其数据的分组与各组的频数如下:分组[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)频数1213241516137则样本数据落在[10,40)上的频率为()A.0.13B.0.39C.0.52D.0.643.将容量为72的样本中的数据分成5组,已知第一组、第五组的频数,则第三组的频数为()都为8,第二组、第四组的频率都为29A.16B.20C.24D.364.某农技站为了考察某种大麦穗生长的分布情况,在一块试验田里抽取了100株麦穗,量得长度如下(单位:cm):6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.65.8 5.56.0 6.5 5.1 6.5 5.3 5.9 5.5 5.86.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.56.8 6.0 6.3 5.5 5.0 6.3 5.2 6.07.0 6.46.4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.77.46.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.65.36.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.05.66.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.75.8 5.37.06.0 6.0 5.9 5.4 6.0 5.2 6.06.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3根据上面的数据列出频率分布表,并估计在这块试验田里长度在[5.75,6.35)之间的麦穗所占的百分比.题组二频率分布直方图5.一个样本量为100的样本的频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在[6,10)内的频数为a,样本数据落在[2,10)内的频率为b,则a,b分别为()A.32,0.4B.8,0.1C.32,0.1D.8,0.46.将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n=.7.某样本的频率分布直方图中共有8个小长方形,若最后一个小长方,且样本量为200,则第8形的面积等于其他7个小长方形的面积和的14组的频数为.8.某企业在2020年的招聘考试成绩中随机抽取100名应聘者的笔试成绩(单位:分),按成绩分组得到如下频率分布表:组号分组频数频率第1组[160,165)50.05第2组[165,170)①0.35第3组[170,175)30②第4组[175,180)200.20第5组[180,185]100.10合计100 1.00(1)请求出频率分布表中①②处应填写的数据,并完成如图所示的频率分布直方图;(2)为了选拔出最优秀的应聘者,该企业决定在笔试成绩高的第3,4,5组中用比例分配的分层随机抽样方法抽取6名应聘者进入第二轮面试,求第3,4,5组每组各应抽取多少名应聘者进入第二轮面试.题组三条形图、扇形图、折线图9.(多选)下列说法正确的是()A.频率分布直方图中每个小矩形的高就是该组的频率B.频率分布直方图中各个小矩形的面积之和等于1C.频率分布直方图中各个小矩形的宽必须一样大D.频数分布直方图中每个小矩形的高就是该组的频数10.如图是根据某市3月1日至3月10日的最低气温(单位:℃)情况绘制的折线统计图,试根据折线统计图反映的信息完成下列问题.(1)绘制该市3月1日到3月10日最低气温(单位:℃)的扇形统计图;(2)绘制该市3月1日到3月10日最低气温(单位:℃)的条形统计图;(3)比较以上折线统计图、扇形统计图、条形统计图的特点.11.有一容量为200的样本,数据的分组以及各组的频数如下:分组[-20,-15)[-15,-10)[-10,-5)[-5,0)[0,5)[5,10)[10,15)[15,20]频数711154049412017(1)列出样本的频率分布表;(2)画出频率分布直方图和折线图;(3)求样本数据不足0的频率.题组四总体百分位数的估计12.某地8名新冠肺炎病患者的潜伏期(单位:天)分别为7,8,8,10,12,13,13,16,则它们的50%分位数是()A.10或12B.12C.10D.1113.已知100个数据的第75百分位数是9.3,则下列说法正确的是()A.这100个数据中一定有75个数小于或等于9.3B.把这100个数据按从小到大的顺序排列后,9.3是第75个数据C.把这100个数据按从小到大的顺序排列后,9.3是第75个数据和第76个数据的平均数D.把这100个数据按从小到大的顺序排列后,9.3是第74个数据和第75个数据的平均数14.数据7.0,8.4,8.4,8.4,8.6,8.7,9.0,9.1的第30百分位数是.15.从某珍珠公司生产的珍珠中任意抽取12颗,得到它们的质量(单位:g)如下:7.9,9.0,8.9,8.6,8.4,8.5,8.5,8.5,9.9,7.8,8.3,8.0.(1)分别求出这组数据的第25,75,95百分位数;(2)请找出珍珠质量较小的前15%的珍珠质量;(3)若用第25,50,95百分位数把公司生产的珍珠划分为次品、合格品、优等品和特优品,依照这个样本的数据,给出该公司珍珠等级的划分标准.能力提升练题组一统计图、表的综合应用1.()在抽查某产品尺寸的过程中,将其尺寸分成若干个小组,[a,b)是其中一组,抽查出的个体数在该组内的频率为m,在频率分布直方图中该组的高度为h,则|a-b|=()A.hmB.mℎC.ℎmD.h+m2.(2019山西大同铁一中期末考试,)为了解某校高三学生的身体状况,用分层随机抽样的方法抽取部分男生和女生的体重,将男生体重的数据整理后,画出了如图所示的频率分布直方图,已知图中从左到右前三个小组的频率之比为1∶2∶3,第二小组的频数为12,若全校男、女生比例为3∶2,则全校抽取的学生数为.3.()为了了解学生参加体育活动的情况,某校对学生进行了随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”共有4个选项可供选择:A.1.5小时以上;B.1~1.5小时;C.0.5~1小时;D.0.5小时以下.下图是根据调查结果绘制的两幅不完整的统计图,请你根据统计图中提供的信息解答以下问题:(1)本次一共调查了多少名学生?(2)在图(1)中将选项B对应的部分补充完整;(3)若该校有3000名学生,试估计全校学生平均每天参加体育活动的时间在0.5小时以下的人数.题组二总体百分位数的估计4.(2020山东济南历城二中高一下5月学情检测,)已知甲、乙两组按顺序排列的数据:甲组:27,28,37,m,40,50;乙组:24,n,34,43,48,52.若这两组数据的第30百分位数、第50百分位数分别对应相等,则mn等于()A.127B.107C.43D.745.()如图是一样本的频率分布直方图,样本数据共分3组,分别为[5,10),[10,15),[15,20].估计样本数据的第60百分位数是(深度解析)A.14B.15C.16D.176.()从某校高一新生中随机抽取一个容量为20的身高样本,数据从小到大排序如下(单位:cm):152,155,158,164,164,165,165,165,166,167,168,168,169,170,170, 170,171,x,174,175.若样本数据的第90百分位数是173,则x的值为()A.171B.172C.173D.1747.(2020福建师大附中高二期末,)从某保险公司的推销员中随机抽取50名,统计这些推销员某月的月销售额(单位:千元),由统计结果得如下频数分布表:月销售额分组[12.25,14.75)[14.75,17.25)[17.25,19.75)[19.75,22.25)[22.25,24.75]频数4102484(1)作出这些数据的频率分布直方图;(2)根据以上抽样调查数据,公司将推销员的月销售指标确定为17.875千元,试判断是否有60%的职工能够完成该销售指标.答案全解全析基础过关练1.B根据列频率分布表的步骤,得极差组距=140−5110=8.9,所以应将样本数据分为9组.2.C样本数据落在[10,40)上的频数为13+24+15=52,故其频率为52100=0.52.3.C由题意得,第二组、第四组的频数都为72×29=16,所以第三组的频数为72-2×8-2×16=24.4.解析(1)计算极差:7.4-4.0=3.4;(2)决定组距与组数:若取组距为0.3,则3.40.3≈11.3,即可以将这些数据分为12组,所以取组距为0.3,组数为12;(3)将数据分组:由于组距为0.3,12个组距的长度超过极差,所以可以使第一组的左端点略小于数据中的最小值,最后一组的右端点略大于数据中的最大值,按如下方式把样本数据以组距0.3分为12组:[3.95,4.25),[4.25,4.55),…,[7.25,7.55];(4)列频率分布表:分组频数频率[3.95,4.25)10.01[4.25,4.55)10.01[4.55,4.85)20.02[4.85,5.15) 5 0.05 [5.15,5.45) 11 0.11 [5.45,5.75) 15 0.15 [5.75,6.05) 28 0.28 [6.05,6.35) 13 0.13 [6.35,6.65) 11 0.11 [6.65,6.95) 10 0.10 [6.95,7.25) 2 0.02 [7.25,7.55] 1 0.01 合计1001.00从表中数据可以看到,样本数据落在[5.75,6.35)之间的频率是0.28+0.13=0.41,所以可以估计在这块试验田里长度在[5.75,6.35)之间的麦穗约占41%. 5.A 由样本的频率分布直方图知:落在[6,10)内的频率是4×0.08=0.32,∴a=100×0.32=32.落在[2,10)内的频率为4×(0.02+0.08)=0.4,∴b=0.4. 6.答案 60解析 设第一组至第六组数据的频率分别为2x,3x,4x,6x,4x,x,则2x+3x+4x+6x+4x+x=1,解得x=0.05,所以前三组数据的频率分别是0.1,0.15,0.2,所以(0.1+0.15+0.2)×n=27,解得n=60. 7.答案 40解析 设最后一个小长方形的面积为x,则其他7个小长方形的面积和为4x,从而x+4x=1,所以x=0.2.故第8组的频数为200×0.2=40. 8.解析 (1)由题意可知,第2组的频数为0.35×100=35,第3组的频率为30100=0.30,故①处应填35,②处应填0.30. 频率分布直方图如图所示.(2)因为第3,4,5组共有60名应聘者,所以利用分层随机抽样的方法在60名应聘者中抽取6名应聘者的抽样比为660=110,故第3组应抽取30×110=3名应聘者,第4组应抽取20×110=2名应聘者,第5组应抽取10×110=1名应聘者,所以第3,4,5组应抽取的应聘者人数分别为3,2,1.9.BD 频率分布直方图中每个小矩形的面积是该组的频率,且各个小矩形的面积之和为1,故A 错,B 正确;数据分组时,可以是等距的,也可以是不等距的,要根据数据的特点而定,所以频率分布直方图中各小矩形的宽不一定都是一样大的,故C 错;根据频数分布直方图的特点可知D 正确.10.解析该城市3月1日至3月10日的最低气温(单位:℃)情况如下表:日期12345678910最低气-3-20-1120-122温(℃)其中最低气温为-3℃的有1天,占10%;最低气温为-2℃的有1天,占10%;最低气温为-1℃的有2天,占20%;最低气温为0℃的有2天,占20%;最低气温为1℃的有1天,占10%;最低气温为2℃的有3天,占30%.(1)绘制的扇形统计图如图所示.(2)绘制的条形统计图如图所示.(3)折线统计图能很好地描述数据随时间的变化趋势;扇形统计图更多用于描述各类数据占总数的比例;从条形统计图中可以更直观地看出事物的不同类型或分组数据的频数和频率.11.解析(1)频率分布表如下:分组频数频率[-20,-15)70.035[-15,-10)110.055[-10,-5)150.075[-5,0)400.200[0,5)490.245[5,10)410.205[10,15)200.100[15,20]170.085合计2001(2)频率分布直方图和折线图如图所示.(3)样本数据不足0的频率为0.035+0.055+0.075+0.200=0.365.12.D50%分位数即中位数,为12×(10+12)=11.13.C因为100×75%=75,为整数,所以第75个数据和第76个数据的平均数为第75百分位数.14.答案8.4解析因为8×30%=2.4,所以30%分位数是第三个数据8.4.15.解析(1)将所有数据从小到大排列,得7.8,7.9,8.0,8.3,8.4,8.5,8.5,8.5,8.6,8.9,9.0,9.9,因为12×25%=3,12×75%=9,12×95%=11.4,所以第25百分位数是8.0+8.32=8.15,第75百分位数是8.6+8.92=8.75,第95百分位数是第12个数据9.9.(2)因为12×15%=1.8,所以第15百分位数是第2个数据7.9,所以产品质量较小的前15%的珍珠有2个,它们的质量分别为7.8,7.9.(3)由(1)可知,样本数据的第25百分位数是8.15g,第50百分位数为8.5g,第95百分位数是9.9g,所以质量小于或等于8.15g的珍珠为次品,质量大于8.15g且小于或等于8.5g的珍珠为合格品,质量大于8.5g且小于或等于9.9g的珍珠为优等品,质量大于9.9g的珍珠为特优品.能力提升练1.B根据频率分布直方图中小矩形的高为频率组距,可知m|a-b|=h,所以|a-b|=mℎ.故选B.2.答案80解析由题图得,第四小组与第五小组的频率和为(0.0375+0.0125)×5=0.25.因为从左到右前三个小组的频率之比为1∶2∶3,第二小组的频数为12,所以前三个小组的频数和为36,所以抽取的男生数为361−0.25=48.因为全校男、女生比例为3∶2,所以全校抽取的学生数为48×53=80.3.解析(1)由题图知,选A的共60名学生,占总学生数的30%,所以总学生数为60÷30%=200,即本次一共调查了200名学生.(2)被调查的学生中,选B的有200-60-30-10=100(名),补充完整的条形图如图所示.(3)3 000×5%=150(名),估计全校有150名学生平均每天参加体育活动的时间在0.5小时以下.4.B 因为30%×6=1.8,50%×6=3,所以甲组数据的第30百分位数为28,乙组数据的第30百分位数为n,甲组数据的第50百分位数为37+m2,乙组数据的第50百分位数为34+432=772. 所以{28=n,37+m2=772,解得{n =28,m =40.所以m n =4028=107.5.A 第1组[5,10)的频率为0.04×(10-5)=0.20, 第2组[10,15)的频率为0.10×(15-10)=0.50, 所以第60百分位数是10+5×0.60−0.200.70−0.20=14.方法技巧本题还可以利用方程思想,通过列方程求解.设第60百分位数是x,则0.04×5+(x-10)×0.10=60%,解得x=14. 6.B 因为20×90%=18,所以第90百分位数是第18项和第19项数据的平均数,即12×(x+174)=173,所以x=172.7.解析 (1)根据题意作出频率分布表.月销售 额分组 [12.25, 14.75) [14.75, 17.25) [17.25, 19.75) [19.75, 22.25) [22.25, 24.75] 频数 4 10 24 8 4 频率 0.08 0.20 0.48 0.16 0.08作出频率分布直方图如图所示:(2)由(1)得,月销售额小于17.875千元的频率为0.08+0.2+17.875−17.2519.75−17.25×0.48=0.4.所以有60%的职工能够完成该销售指标.。
高中数学必修二 9 2 用样本估计总体(精讲)(含答案)

9.2 用样本估计总体(精讲)考法一总体取值规律的估计【例1】(2021·全国高一课时练习)某市2020年4月1日~4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45,(1)完成频率分布表;(2)作出频率分布直方图;(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,空间质量为良;在101~150之间时,空间质量为轻微污染;在151~200之间时,空间质量为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.【答案】(1)频率分布表见解析;(2)频率分布直方图见解析;(3)该市空气质量有待进一步改善.【解析】(1)频率分布表(2)频率分布直方图(3)答对下述两条中的一条即可:①该市一个月中空气污染指数有2天处于优的水平,占当月天数的1 15;有26天处于良的水平,占当月天数的13 15;处于优或良的天数共有28天,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115.污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730,超过50%.说明该市空气质量有待进一步改善.【一隅三反】1.(2020·全国高一单元测试)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:用户用水量频数直方图用户用水量扇形统计图(1)此次抽样调查的样本容量是________;(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格.【答案】(1)答案见解析;(2)答案见解析,79.2°;(3)4.08万户.【解析】(1)1010%100÷=;(2)用水15~20吨的户数为100-10-36-24-8=22(户),“15~20吨”部分的圆心角的度数为22 36079.2100︒⨯=︒(3)1022366 4.08100++⨯=(万户)所以该地区6万用户中约有4.08万户的用水全部享受基本价格.2.(2020·全国高一单元测试)对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)求出表中M,p及图中a的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)内的人数. 【答案】(1)M =40,0.075p =,0.125a =;(2)90人. 【解析】(1)由[10,15)内的频数是10,频率是0.25知,100.25M=,所以M =40. 因为频数之和为40,所以10+25+m +2=40,m =3.330.07540p M ===. 因为a 是对应分组[15,20)的频率与组距的商,所以250.125405a ==⨯. (2)因为该校高一学生有360人,分组[10,15)内的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为3600.25⨯=90人.3.(2021·北京丰台区)为了解某市家庭用电量的情况,该市统计局调查了100户居民去年一年的月均用电量,发现他们的用电量都在50kW ·h 至350kW ·h 之间,进行适当分组后,画出频率分布直方图如图所示.(I )求a 的值;(Ⅱ)求被调查用户中,用电量大于250kW ·h 的户数;(III )为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯定价,希望使80%的居民缴费在第一档(费用最低),请给出第一档用电标准(单位:kW ·h )的建议,并简要说明理由. 【答案】(I )0.006;(Ⅱ)18;(III )245.5 kW ·h.【解析】(1)因为()0.00240.00360.00440.00240.0012501a +++++⨯=,所以0.006a =; (2)根据频率分布直方图可知:“用电量大于250kW ·h ”的频率为()0.00240.0012500.18+⨯=, 所以用电量大于250kW ·h 的户数为:1000.1818⨯=, 故用电量大于250kW ·h 有18户;(3)因为前三组的频率和为:()0.00240.00360.006500.60.8++⨯=<,前四组的频率之和为()0.00240.00360.0060.0044500.820.8+++⨯=>, 所以频率为0.8时对应的数据在第四组, 所以第一档用电标准为:0.80.620050245.50.22-+⨯≈kW ·h.故第一档用电标准为245.5 kW ·h.4.(2021·陕西咸阳市)某微商对某种产品每天的销售量(单位:件)进行为期一个月(按30天计算)的数据统计分析,并得出了这种产品该月销售量的频率分布直方图(如图).假设用直方图中所得的频率来估计相应事件发生的概率.(Ⅰ)求频率分布直方图中a 的值;(Ⅱ)若微商在一天的销售量不低于25件,则上级商企会给微商赠送100元的礼金,估计该微商在一年内获得的礼金数.【答案】(Ⅰ)0.02;(Ⅱ)10800元. 【解析】(Ⅰ)由题意可得1[1(0.010.060.070.04)5]0.025a =-+++⨯=. (Ⅱ)根据频率分布直方图知,日销售量不低于25件的天数为: ()0.040.025309+⨯⨯=(天), 一个月可获得的礼金数为9100900⨯=(元),依此可以估计该微商一年内获得的礼金数为9001210800⨯=元. 【点睛】本题考查频率的求法,考查频率分布直方图的性质等基础知识,考查样本估计总体以及运算求解能力、数形结合思想的应用,是基础题.考法二 总体百分数的估计【例2】(2020·天津和平区)已知一组数据为4,5,67,8,8,,第40百分位数是( ) A .8 B .7C .6D .5【答案】C【解析】因为有6位数,所以640 2.4⨯=%,所以第40百分位数是第三个数6.故选:C 【一隅三反】1.(2020·山东菏泽市·高一期末)数据1,2,3,4,5,6的60%分位数为( ) A .3 B .3.5C .3.6D .4【答案】D【解析】由6⨯60%=3.6,所以数据1,2,3,4,5,6的60%分位数是第四个数,故选:D2.(2021·山东高一期末)已知从某中学高一年级随机抽取20名女生,测量她们的身高(单位:cm ),把这20名同学的身高数据从小到大排序:148.0 149.0 150.0 152.0 154.0 154.0 155.0 155.5 157.0 157.0 158.0 159.0 161.0 162.0 163.0 164.0 165.0 170.0 171.0 172.0 则这组数据的第75百分位数是( ) A .163.0 B .164.0C .163.5D .164.5【答案】A【解析】因为这组数据从小到大已排序,所以这组数据的第75百分位数为第200.7515⨯=个数,即为163.0故选:A3.(2020·山东滨州市·高一期末)“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[]0,10内的一个数来表示,该数越接近10表示满意程度越高,现随机抽取6位小区居号,他们的幸福感指数分别为5,6,7,8,9,5,则这组数据的第80百分位数是( ) A .7 B .7.5C .8D .9【答案】C【解析】该组数据从小到大排列为:5,5,6,7,8,9,且680% 4.8⨯=,故选:C.考法三 总体集中趋势的估计【例3】(2021·湖北荆州市)因受新冠疫情的影响,某企业的产品销售面临困难.为了改变现状,该企业欲借助电商和“网红”直播带货扩大销售.受网红效应的影响,产品销售取得了较好的效果.现将该企业一段时间内网上销售的日销售额统计整理后绘制成如下图所示的频率分布直方图:请根据图中所给数据,求: (1)实数a 的值;(2)该企业网上销售日销售额的众数和中位数; (3)该企业在统计时间段内网上销售日销售额的平均数. 【答案】(1)0.012;(2)55万元,57万元;(3)57.4万元. 【解析】(1)由频率分布直方图知:(0.0080.0160.0200.0180.0100.0042)101a ++++++⨯=,解得:0.012a =;(2)用频率分布直方图中最高矩形所在区间的中点值作为众数的近似值,得众数为55万元;因为第一个小矩形的面积为0.08,第二个小矩形的面积为0.12, 第三个小矩形的面积为0.16,0.080.120.160.36++=,设第四个小矩形中底边的一部分长为x ,则0.0200.50.36x ⨯=-,解得7x =, 所以中位数为50757+=万元; (3)依题意,日销售额的平均值为:250.08350.12450.16550.20650.18750.12850.10950.0457.4⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=所以该企业在统计时间段内网上销售日销售额的平均数为57.4万元. 【一隅三反】1.(2020·定边县第四中学高一期末)如图,从参加数学竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图,观察图形,回答下列问题:(Ⅰ)79.5-89.5这一组的频数、频率分别是多少? (Ⅱ)估计这次数学竞赛的平均成绩是多少?(Ⅲ)估计这次数学竞赛的及格率(60分及以上为及格). 【答案】(Ⅰ)15;0.25;(Ⅱ)70.5;(Ⅲ)75%. 【解析】(Ⅰ)79.589.5这一组的频率为0.025100.25⨯=,79.589.5这一组的频数为600.2515⨯=;(Ⅱ)估计这次数学竞赛的平均成绩是:44.50.154.50.1564.50.1574.50.384.50.2594.50.0570.5⨯+⨯+⨯+⨯+⨯+⨯=.故估计这次数学竞赛的平均成绩是70.5.(Ⅲ)估计这次环保知识竞赛的及格率(60分及以上为及格)()10.010.0151075%P =-+⨯=. 2.(2021·河北唐山市·开滦第一中学高一期末)某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段[)[)[]40,50,50,60,,90,100⋯后画出如下频率分布直方图.观察图形的信息,回答下列问题:(1)估计这次考试的众数m 与中位数n (结果保留一位小数); (2)估计这次考试的优秀率(80分及以上为及格)和平均分. 【答案】(1)75m =,73.3n =;(2)优秀率30%,平均分71分. 【解析】(1)众数是最高小矩形中点的横坐标,所以众数为75m =(分)前三个小矩形面积为0.01100.015100.015100.4⨯+⨯+⨯=, ∵中位数要平分直方图的面积, ∴0.50.47073.30.03n -=+=.(2)依题意,80及以上的分数所在的第五、六组, 频率和为 ()0.0250.005100.3+⨯=, 所以,抽样学生成绩的合格率是30%, 利用组中值估算抽样学生的平均分:450.1550.15650.15750.3850.25950.0571⨯+⨯+⨯+⨯+⨯+⨯=,估计这次考试的平均分是71分.3.(2021·吉林市)某城市100户居民的月平均用水量(单位:吨),以[0,2)[2,4)[4,6)[6,8)[8,10)[10,12)[12,14)分组的频率分布直方图如图.(1)求直方图中x 的值;并估计出月平均用水量的众数. (2)求月平均用水量的中位数及平均数;(3)在月平均用水量为[6,8),[8,10),[10,12),[12,14)的四组用户中,用分层抽样的方法抽取22户居民,则应在[10,12)这一组的用户中抽取多少户?(4)在第(3)问抽取的样本中,从[10,12)[12,14)这两组中再随机抽取2户,深入调查,则所抽取的两户不是来自同一个组的概率是多少?【答案】(1) x =0.075,7;(2) 6.4,5.36;(3) 2;(4)23. 【解析】(1)根据频率和为1,得2×(0.02+0.095+0.11+0.125+x +0.05+0.025)=1, 解得x =0.075;由图可知,最高矩形的数据组为[6,8),所以众数为()16872+=; (2) [2,6)内的频率之和为(0.02+0.095+0.11)×2=0.45;设中位数为y ,则0.45+(y −6)×0.125=0.5,解得y =6.4,∴中位数为6.4;平均数为()210.0230.09550.1170.12590.075110.025 5.36⨯+⨯+⨯+⨯+⨯+⨯=(3)月平均用电量为[10,12)的用户在四组用户中所占的比例为0.0520.1250.0750.050.02511=+++, ∴月平均用电量在[10,12)的用户中应抽取11×211=2(户). (4)月平均用电量在[12,14)的用户中应抽取11×111=1(户), 月平均用电量在[10,12)的用户设为A 、B , 月平均用电量在[12,14)的用户设为C ,从[10,12),[12,14)这两组中随机抽取2户共有 ,,AB AC BC ,3种情况,其中,抽取的两户不是来自同一个组的有,,AC BC ,2种情况, 所以,抽取的两户不是来自同一个组的概率为23. 考点四 总体离散程度的估计【例4】(2021·山东威海市·高一期末)如图所示的四组数据,标准差最小的是( )A .B .C .D .【答案】A【解析】对A ,()12106206302402516x =⨯+⨯+⨯+⨯=,s == 对B ,()16102202306402516x =⨯+⨯+⨯+⨯=,s == 对C ,()13105205303402516x =⨯+⨯+⨯+⨯=,10s ==, 对D ,()15103203305402516x =⨯+⨯+⨯+⨯=,s == 所以标准差最小的是A.故选:A.【一隅三反】1.(2020·全国高一)已知数据12,,,n x x x 的平均数为x ,方差为2s ,则123x +,223x +,…,23n x +的平均数和方差分别为( )A .x 和2sB .23x +和24sC .23x +和2sD .23x +和24129s s ++ 【答案】B【解析】因为数据12,,,n x x x 的平均数为x ,方差为2s ,所以123x +,223x +,…,23n x +的平均数和方差分别为23x +和24s故选:B2.(2020·安徽蚌埠市·蚌埠二中高一月考)一组数据中的每一个数据都乘以3,再减去50,得到一组新数据,若求得新的数据的平均数是1.6,方差是3.6,则原来数据的平均数和方差分别是( )A .17.2,3.6B .54.8,3.6C .17.2,0.4D .54.8,0.4 【答案】C【解析】设一组数据为i x (1,2,3,,)i n =,平均数为x ,方差为21s ,所得一组新数据为i y (1,2,3,,)i n =,平均数为y ,方差为22s ,则350i i y x =-(1,2,3,,)i n =,12 1.6n y y y y n +++==, 所以123503503501.6n x x x n -+-++-=, 所以350 1.6x -=,所以51.617.23x ==, 由题意得22222121()()() 3.6n s y y y y y y n ⎡⎤=-+-++-=⎣⎦, 所以222121(350 1.6)(350 1.6)(350 1.6) 3.6n x x x n⎡⎤--+--++--=⎣⎦, 所以2221219(17.2)(17.2)(17.2) 3.6n x x x n ⎡⎤⨯-+-++-=⎣⎦ 所以2221219()()() 3.6n x x x x x x n⎡⎤⨯-+-++-=⎣⎦, 所以219 3.6s =,所以210.4s =.故选:C.3.(2020·唐山市第十一中学)已知样本数据由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且样本的中位数为10.5,若使该样本的方差最小,则a ,b 的值分别为( ).A .10,11B .10.5,9.5C .10.4,10.6D .10.5,10.5 【答案】D【解析】由于样本共有10个值,且中间两个数为a ,b ,依题意,得10.52a b +=,即21b a =-. 因为平均数为23371213.718.320101()0a b +++++++++÷=,所以要使该样本的方差最小,只需()()221010a b -+-最小.又()()()()222221010102110242221a b a a a a -+-=-+--=-+, 所以当4210.522a -=-=⨯时,()()221010a b -+-最小,此时10.5b =. 故选:D4.(2021·合肥市第六中学=)为了测试小班教学的实践效果,刘老师对A 、B 两班的学生进行了阶段测试,并将所得成绩统计如图所示;记本次测试中,A 、B 两班学生的平均成绩分别为A x ,B x ,A 、B 两班学生成绩的方差分别为2A s ,2B s ,则观察茎叶图可知( )A .AB x x <,22A B s s < B .A B x x >,22A B s s <C .A B x x <,22A B s s >D .A B x x >,22A B s s >【答案】B【解析】根据茎叶图中数据的分布可得,A 班学生的分数多集中在[]70,80之间, B 班学生的分数集中在[]50,70 之间,所以A B x x >.相对两个班级的成绩分布来说,A 班学生的分数更加集中,B 班学生的分数更加离散,所以22A B s s <.故选:B。
高中数学必修第二册用样本估计总体练习题(平均数、方差、众数、百分位数等)

用样本估计总体(平均数、众数、方差、百分位数等)一、单选题1.甲、乙、丙三人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示.则甲、乙、丙三人训练成绩方差S甲2,S乙2,S丙2的大小关系是()A. S丙2<S乙2<S甲2B. S丙2<S甲2<S乙2C. S乙2<S丙2<S甲2D. S乙2<S甲2<S丙22.某棉纺厂为了了解一批棉花的质量,从中随机抽测了100根棉花的纤维长度(棉花的纤维长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示.估计棉花的纤维长度的样本数据的80%分位数是()A. 28mmB. 28.5mmC. 29mmD. 29.5mm3.某校为了解高三年级学生在线学习情况,统计了2020年4月18日∼27日(共10天)学生在线学习人数及其增长比例数据,并制成如图所示的条形图与折线图的组合图.根据组合图判断,下列结论正确的是()A. 这10天学生在线学习人数的增长比例在逐日减小B. 前5天在线学习人数的方差大于后5天在线学习人数的方差C. 这10天学生在线学习人数在逐日增加D. 前5天在线学习人数增长比例的极差大于后5天在线学习人数增长比例的极差4.下列说法中,正确的是()A. 数据5,4,4,3,5,2的众数是4B. 一组数据的标准差的平方是这组数据的方差C. 数据2,3,4,5的方差是数据4,6,8,10的方差的一半D. 频率分布直方图中各小矩形的面积等于相应各组的频数5.为促进精准扶贫,某县计划引进一批果树树苗免费提供给贫困户种植.为了解果树树苗的生长情况,现从甲、乙两个品种中各随机抽取了100株,进行高度测量,并将高度数据制作成了如图所示的频率分布直方图.由频率分布直方图求得甲、乙两个品种高度的平均值都是66.5,用样本估计总体,则下列描述正确的是()A. 甲品种的平均高度高于乙品种,且乙品种比甲品种长的整齐B. 乙品种的平均高度高于甲品种,且甲品种比乙品种长的整齐C. 甲、乙品种的平均高度差不多,且甲品种比乙品种长的整齐D. 甲、乙品种的平均高度差不多,且乙品种比甲品种长的整齐6.从某中学抽取10名同学,他们的数学成绩如下:82,85,88,90,92,92,92,96,96,98(单位:分),则这10名同学数学成绩的众数、第25百分位数分别为()A. 92,85B. 92,88C. 95,88D. 96,857.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是13,那么另一组数3x1−2,3x2−2,3x3−2,3x4−2,3x5−2的平均数,方差分别是()A. 2,13B. 2,1 C. 4,3 D. 4,238.甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲乙丙丁平均环数x8.68.98.98.2方差s2 3.5 3.5 2.1 5.6从这四人中选择一人参加奥运会射击项目比赛,最佳人选是()A. 甲B. 乙C. 丙D. 丁9.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B,则()A. x A>x B,s A>s BB. x A<x B,s A<s BC. x A>x B,s A<s BD. x A<x B,s A>s B10.某工厂的机器上有一种易损元件,这种元件发生损坏时,需要及时维修.现有甲、乙两名工人同时从事这项工作,下表记录了某月1日到10日甲、乙两名工人分别维修这种元件的件数.日期1日2日3日4日5日6日7日8日9日10日甲3546463784乙4745545547由于甲、乙的任务量大,拟增加工人,为使增加工人后平均每人每天维修的元件不超过3件,请利用上表数据估计最少需要增加工人的人数为()A. 2B. 3C. 4D. 5二、多选题(本大题共2小题,共10.0分)11.某赛季甲乙两名篮球运动员各6场比赛得分情况如表:场次123456甲得分31162434189乙得分232132113510则下列说法正确的是()A. 甲运动员得分的极差小于乙运动员得分的极差B. 甲运动员得分的中位数小于乙运动员得分的中位数C. 甲运动员得分的平均值大于乙运动员得分的平均值D. 甲运动员的成绩比乙运动员的成绩稳定12.一组样本数据的频率分布直方图如图所示,每组数据取中间值为代表,则下列说法正确的是()A. 此样本数据的中位数估计值为12B. 此样本数据的众数估计值为12C. 此样本数据的均值估计值为11.52D. 若将样本数据中每个数扩大1倍,则数据的方差也扩大1倍第II卷(非选择题)三、单空题13.200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速的众数、中位数的估计值分别为.14.某学校组织学生参加数学测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],则60分为成绩的第百分位数.15.为了解中学生课外阅读情况,现从某中学随机抽取200名学生,收集了他们一年内的课外阅读量(单位:本)等数据,图是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生阅读量的平均数可能是26本;②这200名学生阅读量的75%分位数在区间[30,40)内;③这200名学生中的初中生阅读量的中位数一定在区间[20,30)内;④这200名学生中的初中生阅读量的25%分位数可能在区间[20,30)内.所有合理推断的序号是.四、多空题16.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:(1)年龄组[25,30)对应小长方形的高度为;(2)由频率分布直方图估计这800名志愿者年龄的85%分位数为岁.(精确到0.01)五、解答题17.某市为了了解人们对“中国梦”的伟大构想的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高),现从参赛者中抽取了x人,按年龄分成5组(第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45]),得到如图所示的频率分布直方图,已知第一组有5人.(1)求x;(2)求抽取的x人的年龄的50%分位数(结果保留整数);(3)以下是参赛的10人的成绩:90,96,97,95,92,92,98,88,96,99,求这10人成绩的20%分位数和平均数,以这两个数据为依据,评价参赛人员对“一带一路”的认知程度,并谈谈你的感想.18.某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200千瓦时的部分按0.5元/千瓦时收费,超过200千瓦时但不超过400千瓦时的部分按0.8元/千瓦时收费,超过400千瓦时的部分按1.0元/千瓦时收费.(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:千瓦时)的函数解析式.(2)为了了解居民的用电情况,通过抽样获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图.若这100户居民中,今年1月份用电费用不超过260元的占80%,求a,b的值.(3)根据(2)中求得的数据计算用电量的75%分位数.19.某校研究性学习课题小组为了了解某市工薪阶层的工资水平,从该市工薪阶层中随机调查了50位市民,调查结果如下表.(1)完成下图的月收入频率分布直方图(注意填写纵坐标);(2)估计该市市民月收入的第25和70百分位数.20.起源于汉代的“踢键子”运动,虽有两千多年历史,但由于简便易行,至今仍很流行.某校为丰富课外活动、增强学生体质,在高一年级进行了“踢键子”比赛,以学生每分钟踢毯子的个数记录分值,一个记一分.参赛学生踢键子的分值均在40∼100分之间,从中随机抽取了100个样本学生踢键子的成绩进行统计分析,绘制了如图所示的频率分布直方图,并称得分在80∼90之间为“踢毽健将”,90分以上为“踢建达人”.(1)求样本的平均值x(同一组数据用该区间的中点值代替);(2)求下列数据的四分位数.13,15,12,27,22,24,28,30,31,18,19,20.(3)求上述数据的40百分位数。
高考数学一轮复习第十章概率、随机变量及其分布课时规范练51随机抽样、用样本估计总体

课时规范练51随机抽样、用样本估计总体基础巩固组1.(2020天津耀华中学高一期末)已知一组数据为4,5,6,7,8,8,40%分位数是()A.8B.7C.6D.52.(多选)(2020江苏泗洪质检)某中学高一年级有20个班,每班50人;高二年级有30个班,每班45人.甲就读于高一,乙就读于高二.学校计划从这两个年级中共抽取235人进行视力调查,下列说法中正确的有()A.应该采用分层随机抽样法B.高一、高二年级应分别抽取100人和135人C.乙被抽到的可能性比甲大D.该问题中的总体是高一、高二年级的全体学生的视力3.(多选)(2020江苏启东高一期末)某人射箭9次,射中的环数依次为7,8,9,7,6,9,8,10,8,关于这组数据,下列说法正确的是()A.这组数据的众数是8B.这组数据的平均数是8C.这组数据的中位数是6D.这组数据的方差是434.将甲、乙两个篮球队10场比赛的得分数据整理成如图所示的茎叶图,由图可知()A.甲队得分的众数是3B.甲、乙两队得分在[30,39)内的频率相等C.甲、乙两队得分的极差相等D.乙队得分的中位数是38.55.(2020陕西榆林高三四模)港珠澳大桥位于中国广东省珠江口伶仃洋海域内,是中国境内一项连接香港、珠海和澳门的桥隧工程,因其超大的建筑规模、空前的施工难度和顶尖的建造技术而闻名世界.2018年10月24日上午9时开通运营后香港到澳门之间4个小时的陆路车程极大缩短.为了解实际通行所需时间,随机抽取了n台车辆进行统计,结果显示这些车辆的通行时间(单位:分钟)都在[35,50]内,按通行时间分为[35,38),[38,41),[41,44),[44,47),[47,50]五组,其中通行时间在[38,47)内的车辆有182台,频率分布直方图如图所示,则n=()A.280B.260C.250D.2006.(2020天津一中高三月考)某社区组织“学习强国”的知识竞赛,从参加竞赛的市民中抽出40人,将其成绩分成以下6组:第1组[40,50),第2组[50,60),第3组[60,70),第4组[70,80),第5组[80,90),第6组[90,100],得到如图所示的频率分布直方图.现采用分层随机抽样的方法,从第2,3,4组中抽取8人,则第2,3,4组抽取的人数依次为()A.1,3,4B.2,3,3C.2,2,4D.1,1,67.(2020山东泰安高一期末)某校从高一新生中随机抽取了一个容量为20的身高样本,数据从小到大排序如下(单位:cm):152,155,158,164,164,165,165,165,166,167,168,168,169,170,170,170,171,x ,174,175,若样本数据的90%分位数是173,则x 的值为.8.(2020北京密云高三质检)某校高一年级三个班共有学生120名,这三个班的男生、女生人数如下表所示,已知在全年级中随机抽取1名学生,抽到二班女生的概率是0.2,则x=.现用分层随机抽样的方法在全年级抽取30名学生,则应在三班抽取的学生人数为.班级一班二班三班女生人数20x y 男生人数2020z 综合提升组9.(多选)(2020山东淄博高三质检)某学校为了调查学生一周内在生活方面的支出情况,抽出了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[50,60)内的学生有60人,则下列说法正确的是()A.样本中支出在[50,60)内的频率为0.03B.样本中支出不少于40元的人数为132C.n的值为200D.若该校有2000名学生,则定有600人支出在[50,60)内10.在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带钱多少的比例进行交税,问三人各应付多少税?则下列说法错误的是()A.甲应付5141109钱B.乙应付3224109钱C.丙应付1656109钱D.三者中甲付的钱最多,丙付的钱最少11.(多选)(2020山东嘉祥一中高三月考)在某次高中学科知识竞赛中,对4000名考生的参赛成绩进行统计,可得到如图所示的频率分布直方图,其中分组的区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],60分以下视为不及格,若同一组中数据用该组区间中点值作代表,则下列说法中正确的是()A.成绩在[70,80)内的考生人数最多B.不及格的考生人数为1000C.考生竞赛成绩的平均分约为70.5分D.考生竞赛成绩的中位数为75分12.(2020江西九江高三模拟)一组数据中的每一个数据都乘以3,再减去50,得到一组新数据,若求得新的数据的平均数是1.6,方差是3.6,则原来数据的平均数和方差分别是()A.17.2,3.6B.54.8,3.6C.17.2,0.4D.54.8,0.413.(2020福建福州高二期中)为让学生适应新高考的赋分模式,某校在一次校考中使用赋分制给高二年级学生的生物成绩进行赋分,具体方案如下:A等级,排名等级占比7%,分数区间是83—100;B等级,排名等级占比33%,分数区间是71—82;C等级,排名等级占比40%,分数区间是59—70;D等级,排名等级占比15%,分数区间是41—58;E等级,排名等级占比5%,分数区间是30—40.现从全年段的生物成绩中随机抽取100名学生的原始成绩(未赋分)进行分析,其频率分布直方图如图所示:(1)求图中a的值;(2)以样本估计总体的办法,估计该校本次生物成绩原始分不少于多少分才能达到赋分后的C等级及以上(含C等级);(3)若采用分层抽样的方法,从原始成绩在[40,50)和[50,60)内的学生中共抽取5人,查看他们的答题情况来分析知识点上的缺漏,再从中选取2人进行调查分析,求这2人中至少一人原始成绩在[40,50)内的概率.创新应用组14.(多选)(2020重庆巴蜀中学高三月考)气象意义上从春季进入夏季的标志为:“连续5天每天日平均温度不低于22℃”.现有甲、乙、丙三地连续5天日平均温度的记录数据(数据都是正整数,单位:℃)满足以下条件:甲地:5个数据的中位数是24,众数是22;乙地:5个数据的中位数是27,平均数是24;丙地:5个数据有1个是32,平均数是26,方差是10.2,则下列说法正确的是()A.进入夏季的地区至少有2个B.丙地区肯定进入了夏季C.不能肯定乙地区进入夏季D.不能肯定甲地区进入夏季15.如图是某城市100户居民的月平均用电量(单位:度)的频率分布直方图.(1)求频率分布求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?参考答案课时规范练51随机抽样、用样本估计总体1.C因为有6位数,所以6×40%=2.4,所以40%分位数是第三个数6.2.ABD由于各年级的年龄段不一样,因此应采用分层随机抽样法.由于比例为23520×50+30×45=110,因此高一年级1000人中应抽取100人,高二年级1350人中应抽取135人,甲、乙被抽到的可能性都是110,因此只有C不正确,故选ABD.3.ABD数据从小到大排列为6,7,7,8,8,8,9,9,10,所以众数为8,故A正确;中位数为8,故C错误;平均数为6+7+7+8+8+8+9+9+109=8,故B正确;方差为19×[(6-8)2+(7-8)2×2+(8-8)2×3+(9-8)2×2+(10-8)2]=43,故D正确.4.D甲队得分的众数是33和35,故A错误;甲、乙两队得分在[30,39)内的频率分别为25和310,所以甲、乙两队得分在[30,39)内的频率不相等,故B错误;甲队得分的极差为51-24=27,乙队得分的极差为52-22=30,所以甲、乙两队得分的极差不相等,故C错误;乙队得分的中位数是34+432=38.5,故D正确.故选D.5.D由题意可知,通行时间在[38,47)内的频率为1-(0.01+0.02)×3=0.91,所以182=0.91,所以n=200.6.C由图可知第2,3,4组的频率之比为0.15∶0.15∶0.3,所以频数之比为1∶1∶2,现采用分层随机抽样的方法,从第2,3,4组中抽取8人,所以第2,3,4组抽取的人数依次为2,2,4.7.17290%分位数是173,所以r1742=173,x=172.8.249由题意可得120=0.2,解得x=24.三班总人数为120-20-20-24-20=36,用分层随机抽样的方法在全年级抽取30名学生,每个学生被抽到的概率为30120=14,故应从三班抽取的人数为36×14=9.9.BC样本中支出在[50,60)内的频率为1-(0.01+0.024+0.036)×10=0.3,故A错误;样本中支出不少于40元的人数为0.0360.03×60+60=132,故B正确;n=600.3=200,故n的值为200,故C正确;若该校有2000名学生,则可能有0.3×2000=600(人)支出在[50,60)内,故D错误.10.B依题意由分层随机抽样可知,100÷(560+350+180)=10109,则甲应付10109×560=5141109(钱);乙应付10109×350=3212109(钱);丙应付10109×180=1656109(钱).11.ABC由频率分布直方图可得,成绩在[70,80)内的频率最高,因此考生人数最多,故A正确;成绩在[40,60)内的频率为0.01×10+0.015×10=0.25,因此,不及格的人数为4000×0.25=1000,故B 正确;考生竞赛成绩的平均分约为45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5(分),故C正确;因为成绩在[40,70)内的频率为0.45,在[70,80)内的频率为0.3,所以考生竞赛成绩的中位数为70+10×0.050.3≈71.67(分),故D错误.12.C设一组数据为x i(i=1,2,3,…,n),平均数为,方差为12,所得一组新数据为y i(i=1,2,3,…,n),平均数为,方差为22,则y i=3x i-50(i=1,2,3,…,n),=1+2+…+=1.6,即31-50+32-50+…+3-50=1.6,所以3-50=1.6,所以=51.63=17.2.22=1[(y1-)2+(y2-)2+…+(y n-)2]=1[(3x1-50-1.6)2+(3x2-50-1.6)2+…+(3x n-50-1.6)2]=1×9[(x1-17.2)2+(x2-17.2)2+…+(x n-17.2)2]=1×9[(x1-)2+(x2-)2+…+(x n-)2]=3.6,所以912=3.6,所以12=0.4.故选C.13.解(1)由题意(0.010+0.015+0.015+a+0.025+0.005)×10=1,所以a=0.030.(2)由已知等级达到C及以上所占排名等级占比为7%+33%+40%=80%,假设原始分不少于x分可以达到赋分后的C等级及以上,则有(0.005+0.025+0.030+0.015)×10+(60-x)×0.015=0.8,所以x≈57.估计原始分不少于57分才能达到赋分后的C等级及以上.(3)由题知评分在[40,50)和[50,60)内的频率分别为0.1和0.15,则抽取的5人中,评分在[40,50)内的有2人,评分在[50,60)内的有3人,记评分在[50,60)内的3位学生为a,b,c,评分在[40,50)内的2位学生为D,E,则从5人中任选2人的所有可能结果为:(a,b),(a,c),(a,D),(a,E),(b,c),(b,D),(b,E),(c,D),(c,E),(D,E),共10种,其中,这2人中至少一人评分在[40,50)内的可能结果为(a,D),(a,E),(b,D),(b,E),(c,D),(c,E),(D,E),共7种.所以这2人中至少一人评分在[40,50)内的概率为710.14.ABC甲地:5个数据由小到大排,则22,22,24,a,b,其中24<a<b,满足进入夏季的标志;乙地:将5个数据由小到大排,则a,b,27,c,d,其中a≤b≤27≤c≤d,则27+c+d≥81,而a+b+27+c+d=120,故a+b≤39,其中必有一个小于22,故不满足进入夏季的标志;丙地:设5个数据为a,b,c,d,32,且a,b,c,d∈N*,由方差公式可知:(a-26)2+(b-26)2+(c-26)2+(d-26)2+(32-26)2=10.2×5=51,则(a-26)2+(b-26)2+(c-26)2+(d-26)2=15=9+4+1+1,不妨设|a-26|=3,|b-26|=2,|c-26|=|d-26|=1,则a,b,c,d均大于22,满足进入夏季标准.综上,ABC正确.15.解(1)由频率分布直方图得20×(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)=1,解得x=0.0075.(2)由频率分布直方图知众数为230,用电量在[160,220)的频率是20×(0.002+0.0095+0.011)=0.45,用电量在[220,240)的频率为0.0125×20=0.25,设中位数为m,则-22020=0.5-0.450.25,解得m=224,即中位数是224.(3)由频率分布直方图知月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户的频率依次为0.25,0.15,0.1,0.05,则月平均用电量在[220,240)的用户中应抽取户数为0.250.25+0.15+0.1+0.05×11=5,应抽取5户.。
05-第四节 用样本估计总体的数字特征-课时1 样本的数字特征高中数学必修一北师大版

等待时间
[0,5)
[5,10)
[10,15)
[15,20)
[20,25]
频数
4
8
5
2
1
9.5
则估计该医院急救中心病人的平均等待时间为____,病人等待时间的方差
28.5
为_____.
【解析】 记20位病人的平均等待时间为,等待时间的方差为 2 ,则
若在这组数据中插入一个自然数使得这组新数据满足中位数是7且平均数
4(答案不唯一)
大于7,则的值可以是_________________(写出符合条件的一个值即可).
【解析】 要使得中位数是7,必须插在7的前面,即 ≤ 7,平均数为
2+3+6++7+8+10+11+13
9
> 7,解得 > 3,又是自然数,所以 = 4,5,6,7.
[70,75), [75,80),[80,85), [85,90),[90,95),[95,100],则下列说法正确
的是( ACD )
A.估计该样本的众数是87.5
B.估计该样本的平均数是80
C.估计该样本的中位数是86
D.若测试成绩达到85分方可参加评奖,
则有资格参加评奖的大一新生约为
2 200人
【解析】 由题意,将这组数据按照从小到大的顺序排列,得1,2,2,,5,10,易
2+
2+
2
得这组数据的众数为2,中位数为 .又2 =
× ,所以
2
2
3
1
据的平均数为 × 1 + 2 + 2 + 4 + 5 + 10 = 4.
2025版高考数学总复习第9章统计成对数据的统计分析第1讲随机抽样用样本估计总体提能训练

第1讲 随机抽样 用样本估计总体A 组基础巩固一、单选题1.(2024·陕西汉中模拟)某射击运动员连续射击5次,命环数(环数为整数)形成的一组数据中,中位数为8,唯一的众数为9,极差为3,则该组数据的平均数为( B )A .7.6B .7.8C .8D .8.2[解析] 由题意可知该组数据为6,7,8,9,9,∴平均数x =6+7+8+9+95=7.8.故选B.2.(2023·陕西西安联考)某社区有1 500名老年居民、2 100名中青年居民和1 800名儿童居民.为了解该社区居民对社区工作的满意度,现采用分层抽样的方法从这些居民中抽取一个容量为n 的样本,若中青年居民比老年居民多抽取20人,则n =( C )A .120B .150C .180D .210[解析] 由题可知⎝ ⎛⎭⎪⎫2 1001 500+2 100+1 800- 1 5001 500+2 100+1 800×n =20,解得n =180.故选C.3.(2023·湖南部分学校联考)已知某班共有学生46人,该班语文老师为了了解学生每天阅读课外书籍的时长情况,决定利用随机数表法从全班学生中抽取10人进行调查.将46名学生按01,02,…,46进行编号.现提供随机数表的第7行至第9行:84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 57 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 32 21 12 34 29 78 64 56 07 82 82 42 07 44 38 15 51 00 13 42 99 66 02 79 54 若从表中第7行第41列开始向右依次读取2个数据,每行结束后,下一行依然向右读数,则得到的第8个样本编号是( D )A .07B .12C .39D .44 [解析] 依次抽取的样本编号为12,06,01,16,19,10,12,07,44,39,38.剔除重复号码12,故选D.4.(2024·江苏南京六校联合调研)已知样本数据3x 1+1,3x 2+1,3x 3+1,3x 4+1,3x 5+1,3x 6+1的平均数为16,方差为9,则另一组数据x 1,x 2,x 3,x 4,x 5,x 6,12的方差为( C )A.467B .477C .487D .7[解析] 设数据x 1,x 2,x 3,x 4,x 5,x 6的平均数为x ,方差为s 2,由3x +1=16,9s2=9,得x =16∑i =16x i =5,s 2=16∑i =16 (x i -5)2=1,则x 1,x 2,x 3,x 4,x 5,x 6,12的平均数为5×6+127=6,方差为∑i =16x i -62+12-627=∑i =16x i -5-12+367=∑i =16x i -52-2∑i =16x i -5+1×6+367=∑i =16x i -52-2∑i =16x i +1027=6s 2-2×6x +1027=487.故选C.5.(2022·全国高考甲卷)某社区通过公益讲座以普及社区居民的垃圾分类知识,为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( B )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座后问卷答题的正确率的极差大于讲座前正确率的极差[解析] 讲座前中位数为70%+75%2>70%,所以A 错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B 对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C 错;讲座后问卷答题的正确率的极差为100%-80%=20%,讲座前问卷答题的正确率的极差为95%-60%=35%>20%,所以D 错.故选B.6.(2024·四川南充高级中学月考)已知某地区中小学生人数和近视情况分别如图甲和图乙所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( D )A.100,10 B.100,20C.200,10 D.200,20[解析]依题意可得样本容量为(3 500+2 000+4 500)×2%=200,其中高中生抽取2 000×2%=40人,因为样本中高中生的近视率为50%,所以抽取的高中生近视人数为40×50%=20人;故选D.7.(2024·江苏基地校大联考改编)如图为甲、乙两人在同一星期内每日步数的折线统计图,则下列结论错误的是( C )A.这一星期内甲的日步数的中位数为11 600B.这一星期内甲的日步数的极差大于乙的日步数的极差C.这一星期内乙的日步数的方差大于甲的日步数的方差D.这一星期内乙的日步数的下四分位数是7 030[解析]甲的步数从小到大排列为:2 435,7 965,9 500,11 600,12 700,16 000,16 800,中位数是11 600.故A正确;这一星期内甲的日步数的极差16 800-2 435=14 365,这一星期内乙的日步数的极差14 200-5 340=8 860,这一星期内甲的日步数的极差大于乙的日步数的极差,故B正确;由图知甲的波动程度大,故方差大故C错误;乙的步数从小到大排列为:5 340,7 030,10 060,11 600,12 300,12 970,14 200,7×25%=1.75,故这一星期内乙的日步数为25%分位数是7 030,故D正确.故选C.8.(2023·江西赣州模拟)某校随机抽取了100名学生测量体重,经统计,这些学生的体重数据(单位:kg)全部介于45至70之间,将数据整理得到如图所示的频率分布直方图,则下列结论错误的是( D )A .频率分布直方图中a 的值为0.07B .这100名学生中体重低于60 kg 的人数为70C .据此可以估计该校学生体重的第78百分位数约为62D .据此可以估计该校学生体重的平均数约为56.25[解析] 因为5×(0.01+0.02+0.04+0.06+a )=1,解得a =0.07,所以A 正确;体重低于60 kg 的频率为5×(0.01+0.06+0.07)=0.7,所以人数为0.7×100=70,所以B 正确;因为5×(0.01+0.06+0.07)=0.7,5×(0.01+0.06+0.07+0.04)=0.9,所以体重的第78百分位数位于[60,65)之间,设体重的第78百分位数为x ,则(0.01+0.07+0.06)×5+(x -60)×0.04=0.78,解得x =62,所以C 正确;体重的平均数约为0.01×5×47.5+0.07×5×52.5+0.06×5×57.5+0.04×5×62.5+0.02×5×67.5=57.25,所以D 错误.故选D.二、多选题9.(2024·安徽安庆、池州、铜陵部分学校联考)甲乙两名射击运动员在一次射击测试中各射靶10次,每次命中的环数如下:甲 7 8 7 9 5 4 9 10 7 4 乙9578768677则A .甲乙两人射击成绩的平均数相同 B .甲乙两人射击成绩的中位数相同 C .甲命中环数的极差大于乙命中环数的极差 D .甲比乙射击成绩更稳定[解析] 可求甲乙平均数为x 1=x 2=7,中位数均为7,故A ,B 正确;甲的极差为6,乙的极差为4,故C 正确;甲的方差为:17×(1+4+4+9+4+9+9)=407,乙的方差为:17×(4+4+1+1+1+1)=127,故D 错误.10.(2024·湖北宜荆荆恩联考、广东深圳宝安区调研)下列说法正确的有( AC )A .从40个个体中随机抽取一个容量为10的样本,则每个个体被抽到的概率都是0.25B .已知一组数据1,2,m,6,7的平均数为4,则这组数据的方差是5C .数据26,11,14,31,15,17,19,23的50%分位数是18D .若样本数据x 1,x 2,…,x n 的标准差为4,则数据2x 1+1,2x 2+1,…,2x n +1的标准差为16[解析] 从40个个体中随机抽取一个容量为10的样本,则每个个体被抽到的概率都是1040=0.25,故A 正确;已知一组数据1,2,m,6,7的平均数为4,则m =4×5-(1+2+6+7)=4,这组数据的方差为15×[(1-4)2+(2-4)2+(4-4)2+(6-4)2+(7-4)2]=265,故B 错误;这组数据从小到大排列为:11,14,15,17,19,23,26,31,共8个,故其50%分位数为第4个数17和第5个数19的平均数,为18,故C 正确;若样本数据x 1,x 2,…,x n 的标准差为4,则方差为16,故数据2x 1+1,2x 2+1,…,2x n +1的方差为16×22=64,标准差为8,故D 错误.故选AC.11.(2024·江西南昌摸底)“未来之星”少儿才艺大赛,选手通过自我介绍和才艺表演,展示仪表形象、表达能力、风度气质等自身的整体形象,评委现场打分.若九位评委对某选手打分分别是x 1,x 2,…,x 9,记这组数据的平均分、中位数、标准差、极差分别为x ,z ,s ,j ,去掉这组数据的一个最高分和一个最低分后,其平均分、中位数、标准差、极差分别为x ′,z ′,s ′,j ′,则下列判断中一定正确的是( BCD )A.x =x ′ B .z =z ′ C .s ≥s ′D .j ≥j ′[解析] 根据平均数的性质可知x =x ′不一定成立,例如九个数一个90,其他都是80,显然该等式不成立,因此A 不正确;根据中位数的定义可知这九个数据从小到大排列,中间的一个数据是中位数,去掉最高和最低不影响中间的数据,所以B 正确;根据标准差的意义可知去掉最高和最低分,数据有可能会更集中,所以选项C 正确;因为去掉最高和最低分,极差有可能减小,所以选项D 正确,故选BCD.12.(2024·江西新余一中开学考)下列命题是真命题的有( BD )A .分层抽样调查后的样本中甲、乙、丙三种个体的比例为3∶1∶2,如果抽取的甲个体数为9,则样本容量为30B .某一组样本数据为125,120,122,105,130,114,116,95,120,134,则样本数据落在区间[114.5,124.5]内的频率为0.4C .甲、乙两队队员体重的平均数分别为60,68,人数之比为1∶3,则甲、乙两队全部队员体重的平均数为67D .一组数6,5,4,3,3,3,2,2,2,1的85%分位数为5[解析] 根据样本的抽样比等于各层的抽样比,样本容量为9÷33+1+2=18,故选项A 错误;样本数据落在区间[114.5,124.5]内的有120,122,116,120共4个,所以样本数据落在区间[114.5,124.5]内的频率为410=0.4,故选项B 正确;甲、乙两队的人数之比为1∶3,则甲队队员在所有队员中所占权重为11+3=14,乙队队员在所有队员中所占权重为31+3=34,则甲、乙两队全部队员体重的平均数为x =14×60+34×68=66,故选项C 错误;将该组数据从小到大排列为:1,2,2,2,3,3,3,4,5,6,由10×85%=8.5,则该组数据的85%分位数是第9个数,该数为5,故选项D 正确.13.(2024·陕西西安、河北保定部分学校联考)某公司统计了2023年1月至6月的月销售额(单位:万元),并与2022年比较,得到同比增长率数据,绘制了如图所示的统计图,则下列说法正确的是( ACD )注:同比增长率=(今年月销售额-去年同期月销售额)÷去年同期月销售额×100%. A .2023年1月至6月的月销售额的极差为8B .2023年1月至6月的月销售额的第60百分位数为8C .2023年1月至6月的月销售额的中位数为9.5D .2022年5月的月销售额为10万元[解析] 2023年1月至6月的月销售额的极差为8,故A 正确;因为6×60%=3.6,所以2023年1月至6月的月销售额的第60百分位数为11,故B 错误;2023年1月至6月的月销售额的中位数为9.5,故C 正确;设2022年5月的月销售额为x 万元,则11-xx×100%=10%,解得x =10,故D 正确.故选ACD.三、填空题14.(2023·辽宁沈阳东北育才学校模拟)已知一组样本数据x 1,x 2,x 3…x 10,且x 21+x 22+x 23+…+x 210=185,平均数x =4,则该组数据的方差s 2= 2.5 .[解析] 由题意知x 1+x 2+x 3…+x 10=4×10=40,又s 2=x 1-42+x 2-42+x 3-42+…+x 10-4210=x 21+x 22+x 23+…+x 210-8x 1+x 2+x 3…+x 10+16×1010=185-8×40+16×1010=18.5-32+16=2.5.15.(2024·浙江名校联盟高考研究卷改编)从树人小学二年级学生中随机抽取100名学生,将他们的身高(单位:cm)数据绘制成频率分布直方图如图,则下列结论正确的是 ①② (填上所有正确结论的序号)①a =0.030②估计树人小学这100名二年级学生的平均身高为124.5 cm ③估计树人小学这100名二年级学生身高的中位数为122.5 cm ④估计树人小学这100名二年级学生身高的众数为120 cm[解析] a =0.1-(0.005+0.01+0.02+0.035)=0.03.①正确.平均身高:105×0.05+115×0.35+125×0.3+135×0.2+145×0.1=124.5(cm),②正确.由(x -120)×0.03=0.1得x ≈123.3(cm),③错.身高的众数为115 cm.④错.故填①②.B 组能力提升1.(2024·山西大同质检)一组数据按从小到大的顺序排列为1,3,5,6,m,10,12,13,若该组数据的中位数是极差的58,则该组数据的第60百分位数是( C )A .7.5B .8C .9D .9.5[解析] 由题意得6+m 2=58×(13-1),∴m =9.故选C.2.(多选题)(2024·安徽皖东智校协作联盟联考)某学校共有学生2 000人,其中高一800人,高二高三各600人,学校为了了解学生在寒假期间每天的读书时间,按照分层随机抽样的方法从全校学生中抽取100人,其中高一学生,高二学生,高三学生每天读书时间的平均数分别为x 1=2.7,x 2=3.1,x 3=3.3,每天读书时间的方差分别为s 21=1,s 22=2,s 23=3,则下列正确的是( ACD )A.从高二年级抽取30人B.被抽取的学生中,高二年级每天的总读书时间比高一年级多15小时C.被抽取的学生每天的读书时间的平均数为3小时D.估计全体学生每天的读书时间的方差为s2=1.966[解析]根据分层抽样,分别从高一学生,高二学生,高三学生中抽取40人,30人,30人,故A正确;抽取的高二年级每天的总读书时间为x2×30=93,抽取的高一年级每天的总读书时间为x1×40=108,高二年级每天的总读书时间比高一年级少15小时,故B错误;被抽取的学生每天的读书时间的平均数为40100×2.7+30100×3.1+30100×3.3=3(小时),故C正确;被抽取的学生每天的读书时间的方差为40100×[1+(2.7-3)2]+30100×[2+(3.1-3)2]+30100×[3+(3.3-3)2]=1.966,∴估计全体学生每天的读书时间的方差为s2=1.966,故D正确.故选ACD.3.(多选题)(2023高考新课标Ⅰ卷)有一组样本数据x1,x2,…,x6,其中x1是最小值,x6是最大值,则( BD )A.x2,x3,x4,x5的平均数等于x1,x2,…,x6的平均数B.x2,x3,x4,x5的中位数等于x1,x2,…,x6的中位数C.x2,x3,x4,x5的标准差不小于x1,x2,…,x6的标准差D.x2,x3,x4,x5的极差不大于x1,x2,…,x6的极差[解析]x2,x3,x4,x5的平均数不一定等于x1,x2,…,x6的平均数,A错误;x2,x3,x4,x5的中位数等于x3+x42,x1,x2,…,x6的中位数等于x3+x42,B正确;设样本数据x1,x2,…,x6为0,1,2,8,9,10,可知x1,x2,…,x6的平均数是5,x2,x3,x4,x5的平均数是5,x1,x2,…,x6的方差s21=16×[(0-5)2+(1-5)2+(2-5)2+(8-5)2+(9-5)2+(10-5)2]=503,x2,x3,x4,x5的方差s22=14×[(1-5)2+(2-5)2+(8-5)2+(9-5)2]=252,s21>s22,∴s1>s2,C错误;x6>x5,x2>x1,∴x6-x1>x5-x2,D正确.故选BD.4.(2023·陕西渭南模拟)2022年2月28日,国家统计局发布了我国2021年国民经济和社会发展统计公报,在以习近平同志为核心的党中央坚强领导下,实现了“十四五”良好开局.2021年,全国居民人均可支配收入和消费支出均较上一年有所增长,结合如下统计图表,下列说法中正确的是( B )A .2017~2021年全国居民人均可支配收入逐年递减B .2021年全国居民人均消费支出24 100元C .2020年全国居民人均可支配收入较前一年下降D .2021年全国居民人均消费支出构成中食品烟酒和居住占比超过60%[解析] 根据条形图可知,2017~2021年全国居民人均可支配收入逐年递增,A 错误.根据扇形图可知,2021年全国居民人均消费支出为:5 641+1 419+7 178+569+2 115+2 599+3 156+1 423=24 100元,B 正确.根据条形图可知,2020年全国居民人均可支配收入较前一年上升,C 错误.2021年全国居民人均消费支出构成中食品烟酒和居住占比:7 178+5 64124 100×100%≈53.2%<60%,D 错误.故选B.5.(2023·全国乙卷)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为x i ,y i (i =1,2,…,10).试验结果如下: 试验序号i 1 2 3 4 5 6 7 8 9 10 伸缩率x i 545 533 551 522 575 544 541 568 596 548 伸缩率y i536527543530560533522550576536记z i =x i -y i (i =1,2,…,10),记z 1,z 2,…,z 10的样本平均数为z ,样本方差为s2.(1)求z,s2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高.(如果z≥2s210,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高) [解析](1)x=545+533+551+522+575+544+541+568+596+54810=552.3,y=536+527+543+530+560+533+522+550+576+53610=541.3,z=x-y=552.3-541.3=11,z i=x i-y i的值分别为:9,6,8,-8,15,11,19,18,20,12,∴s2=110×[(9-11)2+(6-11)2+(8-11)2+(-8-11)2+(15-11)2+0+(19-11)2+(18-11)2+(20-11)2+(12-11)2]=61.(2)由(1)知:z=11,2s210=2 6.1=24.4,故有z≥2s210,所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.。
高三数学《概率统计(文科)》练习

文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率()()1,0∈AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表. A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表 满意度评分分组[50,60) [60,70) [70,80) [80,90) [90,100]频 数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:()()()()()d b c a d c b a bc d a n K ++++-=22满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意()02k K P ≥ 0.10 0.05 0.01 0.005 0k 2.706 3.841 6.635 7.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ .18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分区间 [25,30) [30,35) [35,40) [40,45) [45,50]人数 25 a b(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.31B.21C.32D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.107 B.85 C.83 D.103 22.在区间[-2,3]上随机选取一个数x ,则1≤x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( )A .1ˆ-=x yB .1ˆ+=x yC .x y 2188ˆ+= D .176ˆ=y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程a x b yˆˆˆ+=中的b ˆ为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年 份 2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程a t b yˆˆˆ+=; (Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程a t b yˆˆˆ+=中,t b y atn tyt n y t b ni ini ii ˆˆ,ˆ1221-=--=∑∑==.28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算y x ,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算()()()()()d b c a d c b a bc ad n K ++++-=22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:a x b y ˆˆˆ+=,其中()()()x b y ax x y y x x b ni ini iiˆˆ,ˆ121-=---=∑∑==; 90,93==y x ,()()()30,4051251=--=-∑∑==y y x x x x ii ii i .30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 ≥5概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁) 频数 频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350[35,40) 30 b[40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。
高中数学第二章统计221用样本的频率分布估计总体分布练习含解析新人教A版必修

2.2.1 用样本的频率分布估计总体分布A级基础巩固一、选择题1.没有信息的损失,所有的原始数据都可以从图中得到的统计图是( )A.总体密度曲线B.茎叶图C.频率分布折线图D.频率分布直方图答案:B2.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )B.C.D.解析:数据总个数n=10,又落在区间[22,30)内的数据个数为4,故所求的频率为410=0.4.答案:B3.某雷达测速区规定:凡车速大于或等于70 km/h的汽车视为“超速”,并将受到处罚.下图是某路段的一个检测点对300辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可得出将被处罚的汽车数为( )A.30辆B.40辆C.60辆D.80辆解析:车速大于或等于70 km/h的汽车数为×10×300=60(辆).答案:C4.一个社会调查机构就某地区居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图),为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000)(单位:元)月收入段应抽出的人数为( )A.5 B.25 C.50 D.2 500解析:组距=500,在[2 500,3 000)的频率=0.000 5×500=,样本数为100,则在[2 500,3 000)内应抽100×=25(人).答案:B5.为了了解某校高三学生的视力情况,随机抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,仅知道后5组的频数和为62.设视力在到之间的学生数为a,最大频率为,则a的值为( )A.27 B.48 C.54 D.64解析:由已知,视力在到之间的学生数为100×=32,又视力在到之间的频率为1-+0.5)×-62100=,所以视力在到之间的学生数为100×=22,所以视力在到之间的学生数a =32+22=54.答案:C二、填空题6.某市共有5 000名高三学生参加联考,为了了解这些学生对数学知识的掌握情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:分组/分频数频率[80,90)①②[90,100)[100,110)[110,120)36[120,130)[130,140)12③[140,150]合计④根据上面的频率分布表,可以①处的数值为________,②处的数值为________. 解析:由位于[110,120)的频数为36,频率=36n=,得样本容量n =120,所以[130,140)的频率=12120=,②处的数值=1------=; ①处的数值为×120=3. 答案:37.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在[140,150]内的学生中抽取的人数应为________.解析:所有小矩形的面积和等于10×++0.020+a +0.035)=1,解得a =;100名同学中,身高在[120,130)内的学生数是10××100=30,身高在[130,140)内的学生数是10××100=20,身高在[140,150]内的学生数是10××100=10,则三组内的总学生数是30+20+10=60,抽样比是1860=310,所以身高在[140,150]内的学生中选取的人数应为10×310=3.答案: 38.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:据此可估计该校上学期200名教师中,使用多媒体进行教学次数在[15,25)内的人数为________.答案:60三、解答题9.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量,得到如图所示的茎叶图.(1)甲网站点击量在[10,40]间的频率是多少? (2)甲、乙两个网站哪个更受欢迎?请说明理由.解:(1)甲网站点击量在[10,40]内的有17,20,38,32,共有4天,则频率为414=27. (2)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲网站更受欢迎.10.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少? 解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:42+4+17+15+9+3=0.08.又因为第二小组的频率=第二小组的频数样本容量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由题意估计该学校高一学生的达标率约为17+15+9+32+4+17+15+9+3×100%=88%.B 级 能力提升1.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图所示是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .6B .8C .12D .18解析:志愿者的总人数为20(+)×1=50,所以第三组的人数为50×=18,有疗效的人数为18-6=12.答案:C2.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.解析:由题意可知,这35名运动员的分组情况为,第一组(130,130,133,134,135),第二组(136,136,138,138,138),第三组(139,141,141,141,142),第四组(142,142,143,143,144),第五组(144,145,145,145,146),第六组(146,147,148,150,151),第七组(152,152,153,153,153),故成绩在区间[139,151]上的运动员恰有4组,则运动员人数为4.答案:43.从高一学生中抽取50名参加调研考试,成绩的分组及各组的频数如下(单位:分): [40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计成绩在[70,80)分的学生所占总体的百分比.解:(1)频率分布表如下:成绩分组频数频率[40,50)2[50,60)3[60,70)10[70,80)15[80,90)12[90,100]8合计50(2)由题意知组距为10,取小矩形的高根据表格画出如下的频率分布直方图:(3)由频率分布直方图,可估计成绩在[70,80)分的学生所占总体的百分比是×10==30%.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学:用样本估计总体练习1.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个小长方形的面积和的25,且样本容量为140,则中间一组的频数为(B)A.28 B.40C.56 D.60解析:设中间一组的频数为x,因为中间一个小长方形的面积等于其他8个小长方形的面积和的25,所以其他8组的频数和为52x,由x+52x=140,解得x=40.2.(广东广雅中学联考)某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m+n的值是(C)A.10 B.11C.12 D.13解析:∵甲组学生成绩的平均数是88,∴由茎叶图可知78+86+84+88+95+90+m+92=88×7,∴m=3,∵乙组学生成绩的中位数是89,∴n=9,∴m+n=12.3.(山东济南一模)已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x,方差为s2,则(A)A.x =4,s 2<2 B .x =4,s 2>2 C.x >4,s 2<2D .x >4,s 2>2解析:∵某7个数的平均数为4,∴这7个数的和为4×7=28,∵加入一个新数据4,∴x -=28+48=4,又∵这7个数的方差为2,且加入一个新数据4,∴这8个数的方差s 2=7×2+(4-4)28=74<2,故选A.4.(广东茂名五大联盟学校联考)甲、乙两组数的数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数相同的是( C )A.极差 B .方差 C .平均数D .中位数解析:由题中茎叶图中数据的分布,可知方差不同,极差不同, 甲的中位数为16+212=18.5,乙的中位数为14+182=16, x 甲=5+16+12+25+21+376=583,x 乙=1+6+14+18+38+396=583,所以甲、乙的平均数相同.故选C.5.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( D )A.56 B.60C.120 D.140解析:由频率分布直方图知200名学生每周的自习时间不少于22.5小时的频率为1-(0.02+0.10)×2.5=0.7,则这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140,故选D.6.(北京东城质检)某班男女生各10名同学最近一周平均每天的锻炼时间(单位:分钟)用茎叶图记录如下:假设每名同学最近一周平均每天的锻炼时间是互相独立的.①男生每天锻炼的时间差别小,女生每天锻炼的时间差别大;②从平均值分析,男生每天锻炼的时间比女生多;③男生平均每天锻炼时间的标准差大于女生平均每天锻炼时间的标准差;④从10个男生中任选一人,平均每天的锻炼时间超过65分钟的概率比同样条件下女生锻炼时间超过65分钟的概率大.其中符合茎叶图所给数据的结论是(C)A.①②③B.②③④C.①②④D.①③④解析:由茎叶图知,男生每天锻炼时间差别小,女生差别大,①正确.男生平均每天锻炼时间超过65分钟的概率P 1=510=12,女生平均每天锻炼时间超过65分钟的概率P 2=410=25,P 1>P 2,因此④正确. 设男生、女生两组数据的平均数分别为x 甲,x 乙,标准差分别为s 甲,s 乙. 易求x 甲=65.2,x 乙=61.8,知x 甲>x 乙,②正确.又根据茎叶图,男生锻炼时间较集中,女生锻炼时间较分散,∴s 甲<s 乙,③错误, 因此符合茎叶图所给数据的结论是①②④.7.(石家庄质检)设样本数据x 1,x 2,…,x 2 018的方差是4,若y i =2x i -1(i =1,2,…,2 018),则y 1,y 2,…,y 2 018的方差为 16 .解析:设样本数据的平均数为x ,则y i =2x i -1的平均数为2x -1,则y 1,y 2,…,y 2 018的方差为12 018[(2x 1-1-2x +1)2+(2x 2-1-2x +1)2+…+(2x 2 018-1-2x +1)2]=4×12 018[(x 1-x )2+(x 2-x )2+…+(x 2 018-x )2]=4×4=16.8.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 24 株树木的底部周长小于100 cm.解析:底部周长在[80,90)的频率为0.015×10=0.15,底部周长在[90,100)的频率为0.025×10=0.25,样本容量为60,所以树木的底部周长小于100 cm 的株数为(0.15+0.25)×60=24.9.一组数据1,10,5,2,x,2,且2<x <5,若该数据的众数是中位数的23倍,则该数据的方差为 9 .解析:根据题意知,该组数据的众数是2,则中位数是2÷23=3, 把这组数据从小到大排列为1,2,2,x,5,10, 则2+x2=3,解得x =4,所以这组数据的平均数为x =16×(1+2+2+4+5+10)=4,方差为s 2=16×[(1-4)2+(2-4)2×2+(4-4)2+(5-4)2+(10-4)2]=9.10.(江西新余一模)“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分为100分(90分及以上为认知程度高).现从参赛者中抽取了x 人,按年龄分成5组,第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45),得到如图所示的频率分布直方图,已知第一组有6人.(1)求x ;(2)求抽取的x 人的年龄的中位数(结果保留整数);(3)从该市大学生、军人、医务人员、工人、个体户,五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90.(ⅰ)分别求5个年龄组和5个职业组成绩的平均数和方差;(ⅱ)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想.解:(1)根据频率分布直方图得第一组的频率为0.01×5=0.05,∴6x =0.05, ∴x =120.(2)设中位数为a ,则0.01×5+0.07×5+(a -30)×0.06=0.5, ∴a =953≈32,则中位数为32.(3)(ⅰ)5个年龄组成绩的平均数为x 1=15×(93+96+97+94+90)=94,方差为s 21=15×[(-1)2+22+32+02+(-4)2]=6.5个职业组成绩的平均数为x 2=15×(93+98+94+95+90)=94,方差为s 22=15×[(-1)2+42+02+12+(-4)2]=6.8.(ⅱ)从平均数来看两组的认知程度相同,从方差来看年龄组的认知程度更稳定.感想合理即可.11.在一个文艺比赛中,12名专业人士和12名观众代表各组成一个评判小组,给参赛选手打分,如图是两个评判组对同一选手打分的茎叶图:(1)求A 组数的众数和B 组数的中位数;(2)对每一组计算用于衡量相似性的数值,回答:小组A 与小组B 哪一个更像是由专业人士组成的?并说明理由.解:(1)由茎叶图可得:A 组数据的众数为47,B 组数据的中位数为55+582=56.5.(2)小组A ,B 数据的平均数分别为x A =112(42+42+44+45+46+47+47+47+49+50+50+55)=56412=47, x B =112(36+42+46+47+49+55+58+62+66+68+70+73)=67212=56, 小组A ,B 数据的方差分别为s2A=112[(42-47)2+(42-47)2+…+(55-47)2]=112(25+25+9+4+1+0+0+0+4+9+9+64)=12.5,s2B=112[(36-56)2+(42-56)2+…+(73-56)2]=112(400+196+100+81+49+1+4+36+100+144+196+289)=133.因为s2A<s2B,所以A组成员的相似程度高,由于专业裁判给分更符合专业规则,相似程度应该高,因此A组更像是由专业人士组成的.12.(河北石家庄教学质量检测)某学校A、B两个班的兴趣小组在一次对抗赛中的成绩如茎叶图所示,通过茎叶图比较两个班兴趣小组成绩的平均值及标准差.①A班兴趣小组的平均成绩高于B班兴趣小组的平均成绩;②B班兴趣小组的平均成绩高于A班兴趣小组的平均成绩;③A班兴趣小组成绩的标准差大于B班兴趣小组成绩的标准差;④B班兴趣小组成绩的标准差大于A班兴趣小组成绩的标准差.其中正确结论的编号为(A)A.①④B.②③C.②④D.①③解析:A班兴趣小组的平均成绩为53+62+64+…+92+9515=78,其方差为115×[(53-78)2+(62-78)2+…+(95-78)2]=121.6,则其标准差为121.6≈11.03;B班兴趣小组的平均成绩为45+48+51+…+9115=66,其方差为115×[(45-66)2+(48-66)2+…+(91-66)2]=175.2,则其标准差为175.2≈13.24.故选A.13.某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=3;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为 6 000.解析:(1)由频率分布直方图可知:0.1×(0.2+0.8+1.5+2.0+2.5+a)=1,解得a=3.(2)消费金额在区间[0.5,0.9]内的购物者的频率为0.1×(3.0+2.0+0.8+0.2)=0.6,所以所求购物者的人数为0.6×10 000=6 000.14.全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n天监测空气质量指数(AQI),数据统计如下表:空气质量指数(μg/m3)[0,50](50,100](100,150](150,200](200,250] 空气质量等级优良轻度污染中度污染重度污染天数2040m 10 5(2)由频率分布直方图,求该组数据的平均数与中位数;(3)在空气质量指数分别为(50,100]和(150,200]的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A“两天空气质量等级都为良”的概率.解:(1)∵0.004×50=20 n,∴n=100,∵20+40+m+10+5=100, ∴m=25.40 100×50=0.008;25100×50=0.005;10 100×50=0.002;5100×50=0.001.由此完成频率分布直方图,如图:(2)由频率分布直方图得该组数据的平均数为25×0.004×50+75×0.008×50+125×0.005×50+175×0.002×50+225×0.001×50=95,∵[0,50]的频率为0.004×50=0.2,(50,100]的频率为0.008×50=0.4,∴中位数为50+0.5-0.20.4×50=87.5.(3)由题意知在空气质量指数为(50,100]和(150,200]的监测天数中分别抽取4天和1天,在所抽取的5天中,将空气质量指数为(50,100]的4天分别记为a,b,c,d;将空气质量指数为(150,200]的1天记为e,从中任取2天的基本事件为(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),共10个, 其中事件A“两天空气质量等级都为良”包含的基本事件为(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共6个,所以P(A)=610=35.。