微专题2:函数与数列放缩(教师版)

合集下载

最新高中数学数列放缩专题用放缩法处理数列和不等问题(精品收藏)

最新高中数学数列放缩专题用放缩法处理数列和不等问题(精品收藏)

数列和不等问题(教师版)一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}na 的前n 项的和nS ,满足12+=n n a S ,试求:(1)数列{}na 的通项公式;(2)设11+=n n na a b,数列{}n b 的前n 项的和为n B ,求证:21<n B 解:(1)由已知得2)1(4+=nna S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n nnna a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}na 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n(2))121121(21)12)(12(111+--=+-==+n n n n a a bn n n,所以21)12(2121)1211215131311(21<+-=+---+-=n n n B n 真题演练1:(06全国1卷理科22题)设数列{}na 的前n 项的和,14122333n nnS a +=-⨯+,1,2,3,n =(Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2n n nT S =,1,2,3,n =,证明:132ni i T =<∑。

解: (Ⅰ)由 S n=错误!a n -错误!×2n +1+错误!, n=1,2,3,… , ①得 a 1=S 1= \f (4,3)a 1—错误!×4+错误! 所以a 1=2再由①有 Sn —1=\f (4,3)a n -1-错误!×2n+错误!, n=2,3,4,…将①和②相减得: a n =S n -S n-1= 错误!(an -a n-1)-错误!×(2n+1—2n),n=2,3, …整理得: a n +2n=4(an-1+2n-1),n=2,3, … , 因而数列{ a n +2n}是首项为a 1+2=4,公比为4的等比数列,即 : a n +2n =4×4n-1= 4n , n=1,2,3, …, 因而a n =4n -2n , n=1,2,3, …,(Ⅱ)将a n =4n —2n 代入①得 S n = \f (4,3)×(4n -2n)—\f (1,3)×2n+1 + 错误! = 错误!×(2n+1-1)(2n+1-2) = \f(2,3)×(2n+1-1)(2n-1)T n= \f(2n,S n) =错误!×错误! = 错误!×(错误! - 错误!)所以, 1ni i T =∑=错误!1(ni =∑错误! - 错误!) = 错误!×(错误! -1121n +-) < \f (3,2)二.先放缩再求和1.放缩后成等比数列,再求和例2.等比数列{}na 中,112a =-,前n 项的和为n S ,且798,,S S S 成等差数列.设nnn a a b -=12,数列{}nb 前n 项的和为nT ,证明:13nT<. 解:∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比9812aq a==-.∴n na)21(-=. nn n nn n b 231)2(41)21(141⋅≤--=--=.(利用等比数列前n 项和的模拟公式n nSAq A=-猜想)∴n n b b b B ++=2131)211(31211)211(213123123123122<-=--⋅=⋅++⋅+⋅≤nn 。

放缩技巧与放缩法 讲义--高考数学压轴题微专题-解析版

放缩技巧与放缩法 讲义--高考数学压轴题微专题-解析版

放缩技巧与放缩法放缩法是不等式证明中最重要的变形方法之一.在高考命题的热点一一数列不等式的证明一一中有广泛的应用,放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考量.常用的放缩法有增项,减项、利用分式的性质、利用不等式的基本性质,利用已知不等式(如均值不等式,柯西不等式、排序不等式等)、利用函数的性质、利用三角函数的有界性进行放缩等,适当放缩是解决不等式问题的重点也是难点所在.虽然各版教材关于不等式放缩的技巧要求并不高,但高考中和全国数学联赛中经常把对这种方法的考查作为命题的热点,特别是在压轴题中,数列不等式的证明是常考题型.放缩法主要有直接放缩、裂项放缩,并项放缩,加强放缩等几种类型.(1)直接放缩:为了证明不等式A<B,可找一个(或多个)中间量C作比较,若能确定A<C与C<B同时成立,则A<B显然正确(实质就是运用不等式基本性质中的传递性).所谓“放”即把A放大到C,再把C 放大到B;反之,由B缩小经过C而变到A,则称为“缩”,统称为放缩法,放缩法是一种技巧性较强的不等变形,关键是放,缩适当,跨度合理,放不能过头,缩不能不及.(2)裂项放缩:在证明数列不等式中涉及数列求和时,经常出现这类技巧.放缩法常用的结论如下:①1k=2k+k>2k+1+k=2(k+1-k);1 k =2k+k<1k+k-1=2(k-k-1)k∈N*,k>1②1k2<1k(k-1)=1k-1-1k;1k2>1k(k+1)=1k-1k+1;③1k2<1k2-1=1(k-1)(k+1)=121k-1-1k+14绝对值不等式:||a|-|b||≤|a±b|≤|a|+|b|.(3)并项放缩:有些不等式问题,直接放缩无法办到,如果对原不等式中的项进行适当重组,可使原问题出现“柳暗花明又一村”的境地,并项放缩是局部调整法最为简单的一种.G・波利亚也说过“局部提示整体”,局部调整,分段逼近是导致不等式证明,特别是数列不等式证明得以解决的重要分析.(4)加强放缩:有些数列不等式问题若直接证明命题比证明其某个加强命题更困难.这时,我们不妨“欲擒故纵",先通过证明原命题的某个“更强的命题”,从而“顺手牵羊”地解决原命题,这种证明方法称为加强命题法,这是证明数列不等式问题的一种有效方法.总之,有关不等式的证明,在对问题作细致观察的基础上,展开丰富的联想,开启创造性思维的大门,将待处理的问题变化(转化)为目标模式或规范问题,从而使原问题得到解决,是化归思想的体现,运用放缩法证明不等式,其实质是化归思想的运用.典型例题1设a,b,c均为非负实数,求证:a2+b2+b2+c2+c2+a2≥2(a+b+c)【分析】运用基本不等式证明不等式有时会出现“放缩过头”的状况,使证明陷入僵局,如用a2+b2≥2ab,则有a2+b2≥2ab,同理b2+c2≥2bc,c2+a2≥2ca,于是有ab+bc+ca≥a+b+c,而实际上,a+b2≥ab,b+c2≥bc,c+a2≥ca,可得a+b+c≥ab+bc+ca,两者矛盾,说明上述用a2+b2≥2ab来缩小a2+b2有点过头,所以用放缩法变形应当把握好放缩的尺度,注意“适度".【证明】由a2+b2≥2ab,得2a2+b2≥(a+b)2{,即a2+b22≥a+b2,也即a2+b2≥22(a+b).同理可得b2+c2≥22(b+c),c2+a2≥22(c+a).∴a2+b2+b2+c2+c2+a2≥22(a+b)+22(b+c)+22(c+a)=2(a+b+c).2若n是正整数,求证:112+122+132+⋯+1n2<2.【分析】本不等式左边项数很多,不能直接通分,要通过适当放缩才能得出证明.可利用1k2<1k(k-1)=1 k-1-1k进行放大再裂项实施.【证明】∵1 k2<1k(k-1)=1k-1-1k,k=2,3,4,⋯,n.∴1 12+122+132+⋯+1n2<11+11⋅2+12⋅3+⋯+1(n-1)n=1+1-12+1 2-1 3+⋯+1n-1-1n=2-1n<2 3已知:a,b,c,d都是正数.求证:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2【分析】与上例类似,本题不能直接通分,只有采用放缩法,即分母放大分数值缩小,且用ab<a+mb+m(0<a<b,m>0)放大,方可获证.【证明】ba+b+c +cb+c+d+dc+d+a+ad+a+b>ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d =a+b+c+da+b+c+d=1又由ab<a+mb+m(0<a<b,m>0)可得ba+b+c <b+da+b+c+d,cb+c+d<c+aa+b+c+d,dc+d+a<d+ba+b+c+d,ad+a+b <a+ca+b+c+d,∴b a +b +c +c b +c +d +d c +d +a +a d +a +b <b +d a +b +c +d +c +a a +b +c +d+d +b a +b +c +d +a +c a +b +c +d =2(a +b +c +d )a +b +c +d =2.综上,1<b a +b +c +c b +c +d +d c +d +a +a d +a +b <2得证.4已知:数列a n 满足S n =n 2a n n ∈N * ,S n 是a n 的前$n $项的和,a 2=1.(1)求S n ;(2)证明:32≤1+12a n +1 n <2.【分析】第(1)问,通过累成法求通项a n ,再求前n 项和S n ;第(2)问,通过二项展开式直接放缩.注意放缩的跨度,放不能过头,缩不能不及.【解析】(1)当n ≥2时,有\S n =n 2a n,①S n +1=n +12a n +1,② ②-①得(n -1)a n +1=na n ,即a n +1a n =n n -1.∴a n =a n a n -1⋅a n -1a n -2⋅⋯⋅a 3a 2⋅a 2=n -1n -2⋅n -2n -3⋯⋅21⋅1=n -1,又a 1=12a 1,得a 1=0,故S n =n 2a n =n (n -1)2(2)【证明】1+12a n +1 n =1+12n n =C 0a +C 1n ⋅12n +C 2n ⋅12n 2+⋯+C r n ⋅12n r +⋯+C n n ⋅12nn .因此,1+12n n ≥C 0n +C 1n ⋅12n =32(当n =1时取等号).另一方面,易证2n +12n <2n -k 2n -(k +1)(k =0,1,⋯,n -1),则1+12n n =2n +12n n <2n 2n -1⋅2n -12n -2⋯⋯⋅n +1n=2因此,有32≤1+12a n +1n <2,当n =1时,32=1+12⋅1,左边等号成立.5已知:各项均为正数的数列a n 的前$n $项和为S n ,且a 2n +a n =2S n .(1)求证:S n <a 2n +a 2n +14;(2)求证:S n 2<S 1+S 2+⋯+S n <S n +1-12.【分析】第(1)问,运用基本不等式放缩;第(2)问,放缩后构造成等差数列求和.【证明】(1)在条件中,又由条件a 2n +a n =2S n ,有a 2n +1+a n +1=2S n +1,将这两式相喊,∵a n +1=S n +1-S n ,有a n +1+a n a n +1-a n -1 =0.∵a n >0,∴a n +1+a n >0,故a n +1-a n =1.∴a n =1+(n -1)⋅1=n ,S n =n (n +1)2,∴S n =n (n +1)2<12⋅n 2+(n +1)22=a 2n +a 2n +14.(2)∵n <n (n +1)<n +1,∴n 2<n (n +1)2<n +12.∴S 1+S 2+⋯+S n =1⋅22+2⋅32+⋯+n (n +1)2<22+32+⋯+n +12=n 2+3n 22=S n +1-12S 1+S 2+⋯+S n >12+22+⋯+n 2=n (n +1)22=S n26已知数列a n 满足a 1=1,a n +1=1+n 2na n (n =1,2,3⋯).求证:a n +1>a n ≥3-n +12n -1.【分析】运用累加法结合放缩法证明.【证明】∵a n +1=1+n 2na n ,∴a n +1与a n 同号,又∵a 1=1>0,∴a n >0即a n +1-a n =n 2n a n >0,即a n +1>a n ,∴数列a n 为递增数列.∴a n ≥a 1=1,即a n +1-a n =n 2n a n 运用累加法得:a n -a 1≥12+222+⋯+n -12n -1令S n =12+222+⋯+n -12n -1,∴12S n =122+223+⋯+n -12n 错位相㖪得:12S n =12+122+123+⋯+12n -1-n -12n ∴S n =2-n +12n -1,由a n -a 1≥S n =2-n +12n -1得a n ≥3-n +12n -1故得a n +1>a n ≥3-n +12n -1.7已知f (x )=-12x 2+x +1,x n +1=f x n ,n ∈N *,且1<x 1<2.(1)当n ≥2时,求证:1<x n <32;(2)试确定一个正整数N (N ≥2),使得当n >N 时,都有x n -2 <132.【分析】第(1)问,探究数列的单调性得到一个不等式模型依次放缩,逐步通向结论;第(2)问,将通项依等比递缩的形式进行放缩持续靠近目标.【解析】(1)证明∵x n +1=-12x 2n +x n +1=-12x n -1 2+32,∴x n +1<32,从而x n <32.又当1<x 1<2时,有x 2=-12x 1-1 2+32,故x 2是x 1∈(1,2)上的递㖅函数.∴x 2=-12x 1-1 2+32∈1,32 .同理可得x 3=-12x 2-1 2+32易知x 3是x 2∈1,32 上的递减函数,且x 3∈32-18,32 ⊊1,32 .由此依次迭代可得x n ∈1,32n ∈N *,n ≥2 .(2)因为x x +1-2 =-x 2n 2+x n +1-2 =-x 2n -22+x n -2 =x n -22 ⋅x n +2-2 <x n -22 ⋅32+2-2 <12x n -2 ∴x n -2 <12 x n -1-2<122 xn -2-2<⋯<124 xn -4-2|当n =0时,有x 6-4-2 =x 2-2 <12,由此可得,当取N =6时,能使得当n >N 时,都有x n -2 <132.强化训练1求证:1+12+13+14+⋯+12n -1+12n >1+n 2n ≥2,n ∈Z + .【解析】证明:先将原数列各项分别“组合”,得左=1+12+13+14 +15+16+17+18 +19+110+⋯+116+⋯+12n -1+1+12n -1+2 +⋯+12n >1+12+14+14 +18+18+18+18 +⋯+116+116+⋯+116+⋯+12n +12n +⋯+12n=1+12+12+⋯+12n 个=1+n 2.2已知数列a n 满足a 1=12且a n +1=a n -a 2n n ∈N * .(1)求证:1≤a n a n +1≤2n ∈N * ;(2)设数列a 2n 的前n 项和为S n .求证:12(n +1)≤S n n ≤12(n +1).【解析】证明:(1)由题意得a n +1-a n =-a 2n ≤0,即a n +1≤a n ,a n ≤12.由a n =1-a n -1 a n -1得a n =1-a n -1 1-a n -2 ⋯1-a 1 a n >0,由0<a n ≤12,得a n a n +1=a n a n -a 2n =11-a n ∈1,2 .即1≤a n a n +1≤2.(2)由题意得a 2n =a n -a n ,故S n =a 2n +a 2n +⋯+a 2n =a n -a 2 +a 2-a 3 +⋯+a n -a n +1 =a n -a n +1,由a 2n =a n -a n +1,得1a n +1-1a n =a n a n +1,又由1 知,1≤a n a n +1≤2,∴1≤1a n +1-1a n ≤2.即1≤1a 2-1a 1≤2,1≤1a 3-1a 2≤2,1≤1a 4-1a 3≤2,⋯,1≤1a n +1-1a n≤2,以上各式相加得n ≤12-1a n +1-1a 1≤2n .∴n +2≤1a n ≤2n +1 ,即12n +1 ≤a n +1≤1n +2,∴12-1n +2≤a 1-a n +1≤12-12n +1,即n 2n +2 ≤S n ≤n 2n +1 ,∴12n +2 ≤S n n ≤12n +1.3设数列a n 满足a n +1=a 2n -na n +1,n ∈N *.(1)当a 1=2时,求a 2,a 3,a 4,并由此猜测出a n 的一个通项公式(不需要证明);(2)当a 1≥3时,用数学归纳法证明a n ≥n +2;(3)当a 1=3时,求证:11+a 1+11+a 2+⋯+11+a n <12.【解析】(1)令n =1,a n =12 n +1<12.令n =2,则a 3=a 2=a 22-a 2+1=4-2+1=3;令n =3,则a 4=a 23-3a 3+1=16-12+1=5;猜测a n =n +1.(2)(1)当n =1时,a 1≥3=1+2,不等式成立;(2)假设当n =k 时结论成立,即a k ≥k +2,则a k +1=a 2k -ka k +1=a k a k -k +1≥k +2 k +2-k +1=2k +2 +1>k +3=k +1 +2.即n =k +1时,结论也成立,由(1)(2)可知,a n ≥n +2.(3)证明:由2 知,a n +1=a n a n -n +1≥2a n +1,即a n +1+1≥2a n +1 ,于是11+a n +1≤12⋅11+a n∴11+a n ≤12⋅11+a n -1≤12 2⋅11+a n -2≤⋯≤12 n -1⋅11+a 1=12 n +1故11+a 1+11+a 2+⋯+11+a n ≤12 2+12 3+⋯+12n +1=12 n 1-12 n1-12=12-12 n +1<12.。

高中数学解题技巧-数列放缩

高中数学解题技巧-数列放缩

数列放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩例1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k.解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n (12)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nnn-+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到 nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>. 解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k kn n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nnna a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++ 因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1)12ln 3ln 2ln 2--n n n αααααα解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 例14. 已知112111,(1).2n n n aa a n n +==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案)放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。

放缩法证明数列不等式

放缩法证明数列不等式

数列微专题——放缩法证明数列不等式一、常见的放缩变形: (1)()()211111n n n n n <<+-, ()()22111111111211n n n n n n ⎛⎫<==- ⎪--+-+⎝⎭,()()22211411111412121221214n n n n n n n ⎛⎫<==- ⎪--+-+⎝⎭- (2=,从而有:22-=<<<(3)分子分母同加常数:()()0,0,0,0b b m b b m b a m a b m a a m a a m++>>>>>>>>++ (4)()()()()()()()121222221212122212121nn n n n n n n n n n--=<=------- ()1112,2121n nn n N *-=-≥∈-- 可推广为:()()()()()()()121111111nn n n n n n n n n n k k k k k k k k k k k k --=<=------- ()1112,2,,11n nn k k n N k k *-=-≥≥∈-- 二、典型例题:例1:已知数列{}n a 的前n 项和为n S ,若()14211n n S n a +=-+,且11a = (1)求证:数列{}n a 是等差数列,并求出{}n a 的通项公式 (2)设n b =,数列{}n b 的前n 项和为n T ,求证:32n T <例2:设数列{}n a 满足:111,3,n n a a a n N *+==∈,设n S 为数列{}n b 的前n 项和,已知10b ≠,112,n n b b S S n N *-=⋅∈(1)求数列{}{},n n a b 的通项公式 (2)求证:对任意的n N *∈且2n ≥,有223311132n n a b a b a b +++<---例3:已知正项数列{}n a 的前n 项和为n S ,且12,n n na S n N a *+=∈ (1)求证:数列{}2n S 是等差数列(2)记数列3121112,n n n n bS T b b b ==+++,证明:312n T <≤-例4:已知数列{}n a 满足21112,21,n n a a a n N n ++⎛⎫==+∈ ⎪⎝⎭(1)求证:数列2n a n ⎧⎫⎨⎬⎩⎭是等比数列,并求出数列{}n a 的通项公式 (2)设n nnc a =,求证:121724n c c c +++<例5:已知数列{}n a 满足()()1111,2,412n n n n a a a n n N a --==≥∈-- (1)试判断数列()11n n a ⎧⎫+-⎨⎬⎩⎭是否为等比数列,并说明理由 (2)设()21sin 2n n n b a π-=,数列{}n b 的前n 项和为n T ,求证:对任意的4,7n n N T *∈<放缩法证明数列不等式教师版一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。

数列与不等式的放缩法(教师版)

数列与不等式的放缩法(教师版)

数列与不等式的放缩法放缩法是不等式证明中一种常用的方法,也是一种非常重要的方法。

在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。

但放缩的范围较难把握,常常出现放缩之后得不出结论或得出相反结论的现象。

因此,使用放缩法时,如何确定放缩目标尤为重要。

要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点。

掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法,才能把题解活,从而培养和提高自己的思维和逻辑推理能力,分析问题和解决问题的能力。

数列与不等式的综合问题常常出现在高考的后三题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩例1.(本小题满分14分)(2013广东文数)设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列.(1)证明:2a =(2) 求数列{}n a 的通项公式;(3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++<. 【解析】(1)当1n =时,22122145,45a a a a =-=+,20n a a >∴=(2)当2n ≥时,()214411n n S a n -=---,22114444n n n n n a S S a a -+=-=--()2221442n n n n a a a a +=++=+,102n n n a a a +>∴=+ ∴当2n ≥时,{}n a 是公差2d =的等差数列.2514,,a a a 构成等比数列,25214a a a ∴=⋅,()()2222824a a a +=⋅+,解得23a =, 由(1)可知,212145=4,1a a a =-∴=21312a a -=-=∴ {}n a 是首项11a =,公差2d =的等差数列.∴数列{}n a 的通项公式为21n a n =-. (3)()()1223111111111335572121n n a a a a a a n n ++++=++++⋅⋅⋅-+11111111123355721211111.2212n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+-+-+- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤=⋅-<⎢⎥+⎣⎦点拔:一般先分析数列的通项公式.如果此数列的前n 项和能直接求和或者通过变形后求和, 则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列{}n a 满足条件()n f a a n n =-+1)求和或者利用分组、裂项、倒序相加等方法来求和.练习1、(本小题满分14分)(2014汕头金山中学)已知数列{}n a 中,111,21nn n a a a a +==+)n N *∈(.(1)求证:数列}1{na 为等差数列; (2)设211n n b a =+ ,数列}{2+n n b b 的前n 项和n T ,求证:43<n T .解:(1)由121n n n a a a +=+得:1112n n a a +-=且111a =, …………2分k$s#5u 所以数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列, …………3分(2)由(1)得:1112(1)21,21n n n n a a n =+-=-=-得:; ------------5分 由211n nb a =+得:212112,n n n n b b n =-+=∴= , ------------7分从而:)211(21)2(12+-=+=+n n n n b b n n ------------9分 则 24231++++=n n n b b b b b b T=)]211()4121()311[(21+-++-+-n n --------12分=)2111211(21+-+-+n n 31113()42124n n =-+<++ ------14分练习2、正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求:(1)数列{}n a 的通项公式;(2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<n B解:(1)由已知平方去根号得2)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列, 由1211+=a S ,得11=a ,所以12-=n a n (2))121121(21)12)(12(111+--=+-==+n n n n a a b n n n ,所以=-+-+--+111111(1)23352121n B n n =-<+11122(21)2n (减项放缩法) 练习3、已知函数2()(1),()4(1)f x x g x x =-=-,数列{}n a 满足12a =,且1()()()0n n n n a a g a f a +-+=.(1)试探究数列{1}n a -是否是等比数列?(2)试证明11nii an =≥+∑.解:(1)由1()()()0n n n n a a g a f a +-+=得214()(1)(1)0n n n n a a a a +--+-=,即1(1)(441)0n n n n a a a a +--+-=∴10n a -=或14410n n n a a a +-+-= ∵12a =,∴10n a -=不合舍去. 由14410n n n a a a +-+-=得1431n n a a +=+,13144n n a a -=+,(2n ≥) ∴1113111344114n n n n a a a a ---+--==--, ∴数列{1}n a -是首项为111a -=,公比为34的等比数列.(2)证明:由(1)知数列{1}n a -是首项为111a -=,公比为34的等比数列 ∴131()4n n a --=,∴13()14n n a -=+,∴2113331()()444nn i i a n -==+++++∑=3[1()]344[1()]3414n n n n -+=-+-∵对n N ∀∈*有33()44n ≤,∴3311()1444n -≥-=∴34[1()]14nn n -+≥+,即11n i i a n =≥+∑二.先放缩再求和1.放缩后成等差数列,再求和例2.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(1)求证:2214n n na a S ++<;(2)<⋅⋅⋅+<解:(1)在条件中,令1=n ,得1112122a S a a ==+,1011=∴>a a ,又由条件n n n S a a 22=+有21112n n n a a S ++++=,上述两式相减,注意到nn n S S a -=++11得0)1)((11=--+++n n n n a a a a 001>+∴>+n n n a a a ∴11n n a a +-=所以, n n a n =-⨯+=)1(11,(1)2n n n S += 所以42)1(212)1(21222++=++•<+=n n n a a n n n n S (基本不等式222a b ab +≤放缩法) 法二:44)1(412222)1(2122222++=++=++<+=+=n n n a a n n n n n n n n S (添项放大) (2)因为1)1(+<+<n n n n ,(不等式性质放缩法)所以212)1(2+<+<n n n n ,n S +(2n n ⨯=+212322++++<n2122312-=+=+n S n n ;(放缩后成等差数列)n S+2n>+++==放缩后成等差数列) 综上, <⋅⋅⋅2.放缩后成等比数列,再求和例3. (本小题满分14分)(2012广东高考理)设数列{}n a 的前n 项和为n S ,满足1*1221()n n n S a n N ++=-+∈,且123,5,a a a +成等差数列。

数列放缩教师版

数列放缩教师版

教案教师:__________ 科目; __________ 学生:________ 上课时间:________数列放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩例1. 求证:35112<∑=nk k .解析:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nnn-+<+++=++++例3. 求证:35191411)12)(1(62<++++≤++n n n n 解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ , 当2=n 时,2191411)12)(1(6n n n n ++++<++ ,所以综上有 35191411)12)(1(62<++++≤++n n n n二、函数放缩例1. 求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xx x f ln )(=,得到22ln ln n n n n ≤αα,再进行裂项)1(1111ln 222+-<-≤n n nn n ,求和后可以得到答案 函数构造形式:1ln -≤x x ,)2(1ln ≥-≤αααn n例2. 求证:nn 1211)1ln(+++<+解析:提示:2ln 1ln 1ln 121ln )1ln(++-++=⋅⋅⋅+=+ n n nn n n n例3. 证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n三、分式放缩姐妹不等式:)0,0(>>>++>m a b m a mb a b 和)0,0(>>>++<m b a ma mb a b例1. 姐妹不等式:12)1211()511)(311)(11(+>-++++n n 和 121)211()611)(411)(211(+<+---n n 也可以表示成为 12)12(5312642+>-⋅⋅⋅⋅⋅⋅⋅n n n 和1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n n n解析: 利用假分数的一个性质)0,0(>>>++>m a b ma mb ab 可得>-⋅⋅122563412n n =+⋅⋅n n 212674523 )12(212654321+⋅-⋅⋅n nn ⇒12)122563412(2+>-⋅⋅n n n 即.12)1211()511)(311)(11(+>-++++n n 例2. 证明:.13)2311()711)(411)(11(3+>-++++n n解析: 运用两次次分式放缩: 1338956.232313784512-⋅⋅⋅⋅>--⋅⋅⋅⋅n nn n (加1)nn n n 31391067.342313784512+⋅⋅⋅⋅>--⋅⋅⋅⋅ (加2) 相乘,可以得到:)13(1323875421131381057.2423137845122+⋅--⋅⋅⋅⋅=-+⋅⋅⋅⋅>⎪⎭⎫ ⎝⎛--⋅⋅⋅⋅n n n n n n n 所以有.13)2311()711)(411)(11(3+>-++++n n四、均值不等式放缩例1. 设.)1(3221+++⋅+⋅=n n S n 求证.2)1(2)1(2+<<+n S n n n解析: 此数列的通项为.,,2,1,)1(n k k k a k=+=2121)1(+=++<+<k k k k k k ,)21(11∑∑==+<<∴nk n n k k S k , 即.2)1(22)1(2)1(2+<++<<+n n n n Sn n n注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2ba ab +≤,若放成1)1(+<+k k k 则得2)1(2)3)(1()1(21+>++=+<∑=n n n k S nk n,就放过“度”了!②根据所证不等式的结构特征来选取所需要的重要不等式,这里 na a na a a a a a n nnn n n22111111++≤++≤≤++其中,3,2=n 等的各式及其变式公式均可供选用。

用放缩法证明数列中的不等式上课用非常经典ppt课件

用放缩法证明数列中的不等式上课用非常经典ppt课件

i 1
i 1
一. 放缩目标模型——可求和
n
(一)形如 a k (k为常数) i
i 1
例1 求证:1 1 1 1 1 (n N)
ቤተ መጻሕፍቲ ባይዱ
2 22 23
2n
变式1
求证:1 2
2 22
3 23
n 2n
2
(n N)
变式2
求证: 2
1
1
1 22
1
1 23
1
1 2n
1
1
(n N)
变式3 求证: 1 2 3 n 2 (n N)
1
1 4
(1
1) 2
(1 2
1) 3
(
1 n 1
1n )
1
1 4
(1
1 n
)
1
1 4
5 4
n 2
当n = 1时,不等式显然也成立.
(08·辽宁卷)已知:an n(n 1), bn (n 1)2
1
1
15
求证:a1 b1 a2 b2 an bn 12 .
1
1
1 1 (1 1 )
1 32
1 n2
5 3
(n N)
分析 变式3的结论比变式2更强,要达目的,须将
变式2放缩的“度”进一步修正,如何修正?
思路一 将变式2思路二中通项从第三项才开始放缩.
1 n2
1 n2 1
1( 1 1 ) 2 n 1 n 1
(n 3)
保留前两项, 从第三项开
始放缩
左边
1
1 22
1 2
( 12
1) 4
1 1 1 1 7 1 7 (n 3) 42n 4n 4

放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳) 教师版

放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳) 教师版

放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材.这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩.一、放缩技巧(1)1n2=44n2<44n2-1=212n-1-12n+1(2)1C1n+1C2n=2(n+1)n(n-1)=1n(n-1)-1n(n+1)(3)T r+1=C r n⋅1n r=n!r!(n-r)!⋅1n r<1r!<1r(r-1)=1r-1-1r(r≥2)(4)1+1 nn<1+1+12×1+13×2+⋯+1n(n-1)<3(5)12n(2n-1)=12n-1-12n(6)1n+2<n+2-n(7)2(n+1-n)<1n<2(n-n-1)(8)22n+1-12n+3⋅12n=1(2n+1)⋅2n-1-1(2n+3)⋅2n(9)1k(n+1-k)=1n+1-k+1k1n+1,1n(n+1+k)=1k+11n-1n+1+k(10)n(n+1)!=1n!-1(n+1)!(11)1n<2(2n+1-2n-1)=222n+1+2n-1=2n+12+n-12(11)2n(2n-1)2=2n(2n-1)(2n-1)<2n(2n-1)(2n-2)=2n-1(2n-1)(2n-1-1)=12n-1-1-12n-1(n≥2)(12)1n3=1n⋅n2<1n(n-1)(n+1)=1n(n-1)-1n(n+1)⋅1n+1-n-1=1n-1-1n+1⋅n+1+n-12n <1n-1-1n+1(13)2n +1=2⋅2n=(3-1)⋅2n>3⇒3(2n-1)>2n⇒2n-1>2n 3⇒12n -1<2n3(14)k +2k !+(k +1)!+(k +2)!=1(k +1)!-1(k +2)!(15)1n (n +1)<n -n -1(n ≥2)(16)i 2+1-j 2+1i -j =i 2-j 2(i -j )(i 2+1+j 2+1)=i +j i 2+1+j 2+1<1二、经典试题解析(一)、经典试题01、裂项放缩1.(1)求∑nk =124k 2-1的值;(2)求证:∑nk =11k2<53.【分析】(1)根据裂项相消求和即可;(2)根据1n 2<1n 2-14放缩再求和即可【详解】(1)因为24n 2-1=2(2n -1)(2n +1)=12n -1-12n +1,所以∑nk =124k 2-1=11-13+13-15+...+12n -1-12n +1=2n2n +1(2)因为1n 2<1n 2-14=44n 2-1=212n -1-12n +1 ,所以∑nk =11k2≤1+213-15+⋯+12n -1-12n +1 <1+23=532.求证:1+132+152+⋯+1(2n -1)2>76-12(2n -1)(n ≥2).【分析】根据1(2n -1)2>1(2n -1)(2n +1)放缩后利用裂项相消求和即可【详解】因为1(2n -1)2>1(2n -1)(2n +1)=1212n -1-12n +1 ,(n ≥2)故∑nk =11(2k -1)2>1+1213-15+...+12n -1-12n +1 =1+1213-12n +1 =76-122n -1,故1+132+152+⋯+1(2n -1)2>76-12(2n -1)(n ≥2)3.求证:14+116+136+⋯+14n2<12-14n .【详解】由14+116+136+⋯+14n 2=141+122+⋯+1n 2<141+1-1n =12-14n 根据1n 2<1n ⋅n -1 得122+⋯+1n 2<1-12+12-13+⋯1n -1-1n =1-1n 所以141+122+⋯+1n2<141+1-1n =12-14n 4.求证:12+1⋅32⋅4+1⋅3⋅52⋅4⋅6+⋯+1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n<2n +1-1【分析】利用分式放缩法证明出1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n<12n +1,进而利用数学归纳法证明13+15+⋯+12n +1<2n +1-1即可.【详解】由1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n 2<12⋅23⋅34⋯2n -12n ⋅2n 2n +1=12n +1,得1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n<12n +1,所以12+1⋅32⋅4+⋯+1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n <13+15+⋯+12n +1,要证12+1⋅32⋅4+⋯+1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n <2n +1-1,只需证13+15+⋯+12n +1<2n +1-1,下面利用数学归纳法证明:当n =1时,左边=13,右边=3-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

<
<
<
+
=
(n ∈ N*).
(n ∈ N*)
类型二:构造放缩函数
1.求证
:ln22
+
ln3 3
+
ln4 4
+

+
ln3n 3n
<
3n

5n+6 6
(n

N
*).
解析:先构造函数有
lnx

x

1

lnx x

1

x1 ,
从而
ln2 2
+
ln3 3
+
ln4 4
+

+
ln3n 3n
<
3n

1

(
1 2
+
1 3
1 2n + 3

1 2n
=
1 (2n + 1) ⋅ 2n − 1

1 (2n + 3) ⋅ 2n
(9) 1 = k(n + 1 − k)
1 n+1−k
+
1 k
1 n+1
,
1 n(n + 1 + k)
=
1 k+1
1 n

1 n+1+k
(10)
n (n + 1)!
=
1 n!

1 (n + 1)!
南京零模考点回归 2:函数与数列放缩
零模引例:
22.(本小题满分 12 分)
已知函数 f (x)=kx-xlnx,k ∈ R.
(1)当 k=2 时,求函数 f (x)的单调区间;
(2)当 0<x ≤ 1 时,f (x)≤ k 恒成立,求 k 的取值范围;
(3)设
n

N*
,求证
:ln21
+
ln2 3
+

Tn
=
c1
+
c2
+

+cn
>
0
+
1
+
2
+

n
-
1
=
nn-1 2

所以
Tn
>
nn-1 2
.
2.求证:
+
+
+…+
<
证明:记 f(x)=
,则 f′(x)=

令 f′(x)=0,可知 x=e,
∴ f(x)在(0,e)上为增函数、在(e,+∞)上为减函数,
∴ f(x)的最大值为 f(e)=
=,

+
+
+…+
+

+
31n )
cause
1 2
+
1 3
+

+
1 3n
=
1 2
+
1 3
+
1 4
+
1 5
+
1 6
+
1 7
+
1 8
+
1 9
1 2n
+
1 2n + 1
+

+
1 3n
>
5 6
+
3 6
+
3 9
+
9 18
+
9 27
+⋯+
3n−1 2 ⋅ 3n − 1
+
3n −1 3n
=
5n 6
所以
ln2 2
+
ln3 3

1 n2
<
1

1 n(n + 1)
,求和后可以得到答案
函数构造形式: lnx ≤ x − 1, lnnα ≤ nα − 1(α ≥ 2)
3.已知函数 f(x)=ax(a>0,a ≠ 1).


数列{bn}满足

求证:

答案: 即
, ,
所以
类型三:裂项放缩
常见裂项放缩结构
(1)
1 n2
=
4 4n2
+
ln4 4
+

+
ln3n 3n
<
3n

1

5n 6
=
3n

5n+6 6
+⋯+
2..求证:(1)
α

2,
ln2α 2α
+
ln3α 3α
+

+
lnnα nα
<
2n2−n−1 2(n + 1)
(n

2)
解析:构造函数
f
(x)
=
lnx x
,得到
lnnα nα

lnn2 n2
,
再进行裂项
lnn2 n2

1
(11)
2n (2n − 1)2
=
2n (2n − 1) (2n − 1)
<
2n (2n − 1) (2n − 2)
=
2n− 1 (2n − 1) (2n − 1 − 1)
=
1 2n − 1 − 1

1 2n − 1
(
n
≥ 2)
(12) 1 = 1 < 1 = 1 − 1 ⋅ 1
n3 n ⋅ n2 n(n − 1) (n + 1)
ln3 4
…+
lnn n+1

n(n+1) 4

知识点回归: 多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩
类型一:剪“枝”留干,抓住主要特征
1(. 吉林高考模拟(理))已知数列 an 满足 a1 = 32 ,an + 1 = 3an - 1n ∈ N ∗ .
若数列 cn
1 k2
<
53 .
因为
1 n2
<
1
n2

1 4
=
4 4n2 − 1
=
2
1 2n − 1

1 2n + 1
,
所以
n
k=1
1 k2
<
1
+
2
1 3

1 5
+

+2n1−1

1 2n + 1
<
1
+
2 3
=
5 3
2.求证:
6n (n + 1) (2n + 1)

1
+
1 4
+
1 9
+

+
1 n2
<
5 3
解析 :
一 方 面 :
因为
1 n2
<
1
n2

1 4
=
4 4n2 − 1
=
2
1 2n − 1

1 2n + 1
,所以
n
k=1
1 k2
<
1
+
2
1 3

1 5
+

+2n1−1

1 2n + 1
<
1
+
2 3
=
5 3
另一方面:
1
+
1 4
+
1 9
+

+
1 n2
>
1
+
1 2×3
+
1 3×4
+

+1 n(n + 1)

1 r
(r

2)
(4)
(1
+
1 n
)n
<
1
+
1
+
1 2×1
+
1 3×2
+

+1 n(n − 1)
<
5 2
(5)
1 2n(2n − 1)
=
1 2n − 1

1 2n
(6)
1
<
n + 2

n
n + 2
(7)
2( n + 1

n)
<
1
<
2( n

n − 1)
n
(8)
2 2n + 1

<
4 4n2 − 1
=
2
1 2n − 1

1 2n + 1
(2)
1 Cn1 + 1Cn2
=
2 (n + 1)n(n − 1)
=
1 n(n − 1)

1 n(n + 1)
(3)
T r+1
=
C
相关文档
最新文档