高考数学一轮复习第九章直线和圆的方程圆的方程课件
高考总复习一轮数学精品课件 第九章 平面解析几何 第二节 两条直线的位置关系

与距离有关的问题
典例突破
例4.(1)若两条平行直线l1:x-2y+m=0(m>0)与l2:x+ny-3=0之间的距离是√5 ,
则m+n=(
)
A.0
C.-2
B.1
D.-1
(2)已知点P(4,a)到直线4x-3y-1=0的距离不大于3,则实数a的取值范围
为
.
答案 (1)A
解析
(2)[0,10]
1
(1)由两直线平行,得1
)
记 P 的轨迹为 E,则(
A.E 是一个半径为√5的圆
B.E 是一条与 l 相交的直线
C.E 上的点到 l 的距离均为√5
D.E 是两条平行直线
答案 (1)C
(2) C
解析(1)因为直线 x-y-m=0 与直线 mx+y-4=0 平行,所以
m≠0,且 1
=
1
-1
≠
-4
,解
-
得 m=-1,即两直线为直线 x-y+1=0 与直线 x-y+4=0,所以它们之间的距离为
式.
2 -1
提示
· = -1,
2 -1
1 +2
2
=
1 +2
·
+ .
2
常用结论
1.两种求直线方程的设法
(1)与直线Ax+By+C=0(A2+B2≠0)垂直的直线可设为Bx-Ay+m=0.
(2)与直线Ax+By+C=0(A2+B2≠0)平行的直线可设为Ax+By+n=0.
2.六种常见的对称点
(1)点(x,y)关于原点(0,0)的对称点为(-x,-y).
2023高考数学一轮总复习第九章平面解析几何第四节直线与圆圆与圆的位置关系pptx课件北师大版

第四节
直线与圆、圆与圆的位置关系
内
容
索
引
01
强基础 增分策略
02
增素能 精准突破
课标解读
衍生考点
核心素养
1.能根据给定直线、圆的方程,
判断直线与圆、圆与圆的位置 1.直线与圆的位置关系 直观想象
关系.
2.圆的切线与弦长问题 数学运算
2.能用直线和圆的方程解决一
3.圆与圆的位置关系
些简单的数学问题与实际问题.
设圆C1:x2+y2+D1x+E1y+F1=0,①
圆C2:x2+y2+D2x+E2y+F2=0,②
若两圆相交,则有一条公共弦,其公共弦所在直线的方程可由①-②得到,即
(D1-D2)x+(E1-E2)y+(F1-F2)=0.
(2)两个圆系方程
①过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方
典例突破
例1.(1)已知直线l:ax+by-r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法错误的
是(
)
A.若点A在圆C上,则直线l与圆C相切
B.若点A在圆C内,则直线l与圆C相离
C.若点A在圆C外,则直线l与圆C相离
D.若点A在直线l上,则直线l与圆C相切
(2)(2021北京人大附中模拟)已知圆C过点(-1,0)和(1,0),且与直线y=x-1只有
对点演练
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)若两圆的圆心距小于两圆的半径之和,则两圆相交.( × )
高考总复习一轮数学精品课件 第九章 平面解析几何 指点迷津(八)

(2)定义法:利用曲线的定义,判断曲线类型,再由曲线的定义直接写出曲线
方程;
(3)代入法(相关点法):题中有两个动点,一个为所求,设为(x,y),另一个在已
知曲线上运动,设为(x0,y0),利用已知条件找出两个动点坐标的关系,用所求
表示已知,即
0 = (,),
将 x0,y0 代入已知曲线即得所求曲线方程;
0 = (,),
= (),
(4)参数法:引入参数 t,求出动点(x,y)与参数 t 之间的关系
消去参数即
= (),
得所求轨迹方程;
(5)交轨法:引入参数表示两动曲线的方程,将参数消去,得到两动曲线交点
的轨迹方程.
一、直接法求轨迹方程
例1.已知圆C:x2+y2+2x-4y+1=0,O为坐标原点,动点P在圆C外,过点P作圆C
=(x1-x,-y)=(0,-y).
因为=λ,所以(0,y-y1)=λ(0,-y),
所以 y-y1=-λy,即 y1=(1+λ)y.
因为点
2 2
P(x1,y1)在椭圆 4 +y =1
2
+(1+λ)2y2=1
4
21
上,所以 4
2
+ 12 =1,所以 4 +(1+λ)2y2=1,所以
第九章
指点迷津(八)
求曲线轨迹方程的方法
曲线C与方程F(x,y)=0满足两个条件:(1)曲线C上点的坐标都是方程
F(x,y)=0的解;(2)以方程F(x,y)=0的解为坐标的点都在曲线C上.则称曲线C
为方程F(x,y)=0的曲线,方程F(x,y)=0为曲线C的方程.求曲线方程的基本方
2025年高考数学一轮复习-9.4-直线与圆、圆与圆的位置关系【课件】

第四节
直线与圆、圆锥曲线
直线与圆、圆与圆的位置关系
必备知识·逐点夯实
核心考点·分类突破
【课标解读】
【课程标准】
1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.
2.能用直线和圆的方程解决一些简单的数学问题与实际问题.
【核心素养】
数学抽象、数学运算、逻辑推理.
【命题说明】
考向
考法
(3)若两圆外切,则两圆有且只有一个公共点,反之也成立.(
×
)
提示:(3)若两圆外切,则两圆有且只有一个公共点;若两圆有且只有一个公共点,则两
圆外切或内切,故(3)错误;
(4)若两圆有公共点,则|r1-r2|≤d≤r1+r2.(
√
)
提示:(4)若两圆有公共点,则两圆外切或相交或内切,所以|r1-r2|≤d≤r1+r2,故(4)正确.
2.当两圆外切时,两圆有一条内公切线,该公切线垂直于两圆圆心的连线;当两圆内
切时,两圆有一条外公切线,该公切线垂直于两圆圆心的连线.
3.两圆相交时公共弦的性质
圆C1:x2+y2+D1x+E1y+F1=0(12 +12 -4F1>0)与圆C2:x2+y2+D2x+E2y+F2 =0(22 +22 -
x= 或x+2 y-5 =0
______________________.
【解析】由圆C方程知:圆心C(0,1),半径r= 2;
当过P的直线斜率不存在,即直线方程为
x= 2时,直线与圆C相切;
设过P点且斜率存在的圆C的切线方程为y-2=k(x- 2),即kx-y- 2k+2=0,
高考数学一轮总复习课件:圆的方程及直线与

(2)(2021·辽宁大连模拟)在直线l:y=x-1上有两个点A, B,且A,B的中点坐标为(4,3),线段AB的长度|AB|=8,则过 A,B两点且与y轴相切的圆的方程为____(_x_-_4_)_2+__(y_-__3)_2=__1_6___
解析 (x+2m)2+(y-1)2=4m2-5m+1表示圆,则 4m2-5m+1>0,解得m<14或m>1.
3.(2021·成都七中月考)圆心在y轴上,且过点(3,1)的圆与
x轴相切,则该圆的方程是( B )
A.x2+y2+10y=0
B.x2+y2-10y=0
C.x2+y2+10x=0
D.x2+y2-10x=0
第3课时 圆的方程及直线与 圆的位置关系
[复习要求] 1.掌握确定圆的几何要素.2.掌握圆的标准方 程和一般方程.3.掌握直线与圆的位置关系.
课前自助餐
圆的定义 平面内到定点的距离__等_于__定_长___的点的集合(轨迹)是圆,定点 是圆心,定长是半径. 注:平面内动点 P 到两定点 A,B 距离的比值为 λ,即||PPAB||= λ, ①当 λ=1 时,P 点轨迹是线段 AB 的垂直平分线; ②当 λ≠1 时,P 点轨迹是圆.
A=B≠0,
__D_2+__E_2_-_4_A_F_>_0.
圆的参数方程 圆心为(a,b),半径为 r 的圆的参数方程为xy==ab++rrcsoinsθθ,(θ 为参数).
确定圆的方程的方法和步骤 确定圆的方程的主要方法是待定系数法,大致步骤为: (1)根据题意,选择标准方程或一般方程; (2)根据条件列出关于 a,b,r 或 D,E,F 的方程组; (3)解出 a,b,r 或 D,E,F 代入标准方程或一般方程.
2020版高考数学大一轮复习第九章平面解析几何第11讲定点、定值、探索性问题课件理新人教A版

所以1λ+μ1=1-1yM+1-1yN =(kx-1-1)1 x1+(kx-2-1)1 x2 =k-1 1·2x1x2-x(1xx21+x2) =k-1 1·k22+21kk-2 4=2.
k2
所以1λ+μ1为定值.
圆锥曲线中的定值问题的常见类型及解题策略 (1)求代数式为定值:依题意设条件,得出与代数式参数有关的 等式,代入代数式、化简即可得出定值; (2)求点到直线的距离为定值:利用点到直线的距离公式得出距 离的解析式,再利用题设条件化简、变形求得; (3)求某线段长度为定值:利用长度公式求得解析式,再依据条 件对解析式进行化简、变形即可求得.
设
MN
的中点为
E,则点
E
的坐标为0,-
k2,则以
MN
为直
径的圆的方程为
x2+y+
k22=2(1+k22k2),即
x2+y2+2
k
2 y
=4.
令 y=0 得 x=2 或 x=-2,即以 MN 为直径的圆经过两定点
P1(-2,0),P2(2,0).
圆锥曲线中的探索性问题 [典例引领]
【解】 (1)由于 P3,P4 两点关于 y 轴对称,故由题设知 C 经过 P3,P4 两点. 又由a12+b12>a12+43b2知,C 不经过点 P1,所以点 P2 在 C 上. 因此ba1122= +413b,2=1,解得ab22= =41, . 故 C 的方程为x42+y2=1. (2)证明:设直线 P2A 与直线 P2B 的斜率分别为 k1,k2. 如果 l 与 x 轴垂直,设 l:x=t,由题设知 t≠0,且|t|<2,可得 A,B 的坐标分别为t, 42-t2,t,- 42-t2.
2024年高考数学一轮复习(新高考版)《圆的方程》课件ppt

设动点P的坐标为(x,y), 因为 M(1,0),N(2,0),且|PN|= 2|PM|, 所以 x-22+y2= 2· x-12+y2,
整理得x2+y2=2, 所以动点P的轨迹C的方程为x2+y2=2.
(2)已知点B(6,0),点A在轨迹C上运动,求线段AB上靠近点B的三等分点Q 的轨迹方程.
(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B
=0,D2+E2-4AF>0.( √ )
(4)若点 M(x0,y0)在圆 x2+y2+Dx+Ey+F=0 外,则 x20+y20+Dx0+Ey0+
F>0.( √ )
教材改编题
1.圆心为(1,1)且过原点的圆的方程是 A.(x-1)2+(y-1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2
若过(0,0),(4,0),(4,2),
F=0,
则16+4D+F=0, 16+4+4D+2E+F=0,
F=0,
解得D=-4, E=-2,
满足 D2+E2-4F>0,
所以圆的方程为x2+y2-4x-2y=0,
即(x-2)2+(y-1)2=5;
若过(0,0),(4,2),(-1,1),
F=0,
则1+1-D+E+F=0, 16+4+4D+2E+F=0,
方法二 设 AB 的中点为 D,由中点坐标公式得 D(1,0),由直角三角 形的性质知|CD|=12|AB|=2.由圆的定义知,动点 C 的轨迹是以 D(1,0) 为圆心,2 为半径的圆(由于 A,B,C 三点不共线,所以应除去与 x 轴 的交点). 所以直角顶点C的轨迹方程为(x-1)2+y2=4(y≠0).
设圆心坐标为(a,-2a+3),则圆的半径 r= a-02+-2a+3-02
高考数学大一轮复习 第九章 平面解析几何 9.3 圆的方程试题 理 北师大版-北师大版高三全册数学试

第九章平面解析几何 9.3 圆的方程试题理北师大版圆的定义与方程定义在平面内,到定点的距离等于定长的点的集合叫作圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心(a,b)半径为r一般x2+y2+Dx+Ey+F=0充要条件:D2+E2-4F>0圆心坐标:(-D2,-E2)半径r=12D2+E2-4F【知识拓展】1.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤为(1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a,b,r或D、E、F的方程组;(3)解出a、b、r或D、E、F代入标准方程或一般方程.2.点与圆的位置关系点和圆的位置关系有三种.圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2<r2.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( √ )(2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( √ )(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( √ )(4)方程x 2+2ax +y 2=0一定表示圆.( × )(5)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( √ )1.(教材改编)将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0 B .x +y +3=0 C .x -y +1=0 D .x -y +3=0 答案 C解析 圆心是(1,2),所以将圆心坐标代入检验选项C 满足.2.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m ,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( ) A .7 B .6 C .5 D .4 答案 B解析 根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m . 因为∠APB =90°,连接OP , 易知|OP |=12|AB |=m .要求m 的最大值,即求圆C上的点P到原点O的最大距离.因为|OC|=32+42=5,所以|OP|max=|OC|+r=6,即m的最大值为6.3.(2015·)圆心为(1,1)且过原点的圆的方程是( )A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2答案 D解析圆的半径r=12+12=2,∴圆的方程为(x-1)2+(y-1)2=2.4.(教材改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为______________.答案(x-2)2+y2=10解析设圆心坐标为C(a,0),∵点A(-1,1)和B(1,3)在圆C上,∴|CA|=|CB|,即a+12+1=a-12+9,解得a=2,∴圆心为C(2,0),半径|CA|=2+12+1=10,∴圆C的方程为(x-2)2+y2=10.5.(2016·某某)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是______,半径是______.答案(-2,-4) 5解析由已知方程表示圆,则a2=a+2,解得a=2或a=-1.当a=2时,方程不满足表示圆的条件,故舍去.当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,半径为5的圆.题型一 求圆的方程例1 (1)(2016·某某)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________________.(2)(2015·课标全国Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.答案 (1)(x -2)2+y 2=9 (2)⎝ ⎛⎭⎪⎫x -322+y 2=254解析 (1)因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0, 所以圆心到直线2x -y =0的距离d =2a5=455,解得a =2,所以圆C 的半径r =|CM |=4+5=3, 所以圆C 的方程为(x -2)2+y 2=9.(2)由题意知圆过(4,0),(0,2),(0,-2)三点, (4,0),(0,-2)两点的垂直平分线方程为y +1=-2(x -2),令y =0,解得x =32,圆心为⎝ ⎛⎭⎪⎫32,0,半径为52.思维升华 (1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D 、E 、F 的方程组,进而求出D 、E 、F 的值.(2016·某某八校联考)已知圆C 关于y 轴对称,经过点A (1,0),且被x 轴分成两段弧,弧长之比为1∶2,则圆C 的标准方程为________________. 答案 x 2+(y ±33)2=43解析 ∵圆C 关于y 轴对称,∴可设C (0,b ),设圆C 的半径为r ,则圆C 的标准方程为x 2+(y -b )2=r 2,依题意,得⎩⎪⎨⎪⎧12+-b2=r 2,|b |=12r ,解得⎩⎪⎨⎪⎧r 2=43,b =±33,于是圆C 的标准方程为x 2+(y ±33)2=43. 题型二 与圆有关的最值问题例2 已知点(x ,y )在圆(x -2)2+(y +3)2=1上.求x +y 的最大值和最小值. 解 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 在y 轴上的截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时在y 轴上的截距.由直线与圆相切得圆心到直线的距离等于半径, 即|2+-3-t |2=1,解得t =2-1或t =-2-1.∴x +y 的最大值为2-1,最小值为-2-1. 引申探究1.在本例的条件下,求y x的最大值和最小值.解 y x 可视为点(x ,y )与原点连线的斜率,y x的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y =kx ,由直线与圆相切得圆心到直线的距离等于半径,即|2k +3|k 2+1=1,解得k =-2+233或k =-2-233.所以y x 的最大值为-2+233,最小值为-2-233.2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值.解x 2+y 2+2x -4y +5=x +12+y -22,求它的最值可视为求点(x ,y )到定点(-1, 2)的距离的最值,可转化为圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为34,所以x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1. 思维升华 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题.已知实数x ,y 满足方程x 2+y 2-4x +1=0.求:(1)y x的最大值和最小值; (2)y -x 的最小值;(3)x 2+y 2的最大值和最小值.解 (1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆.设y x=k ,即y =kx ,则圆心(2,0)到直线y =kx 的距离为半径,即直线与圆相切时,斜率取得最大值、最小值. 由|2k -0|k 2+1=3,解得k 2=3, ∴k max =3,k min =- 3. (2)设y -x =b ,则y =x +b ,当且仅当直线y=x+b与圆切于第四象限时,在y轴上的截距b取最小值,由点到直线的距离公式,得|2-0+b|2=3,即b=-2±6,故(y-x)min=-2- 6.(3)x2+y2是圆上的点与原点的距离的平方,故连接OC,与圆交于B点,并延长交圆于C′,则(x2+y2)max=|OC′|2=(2+3)2=7+43,(x2+y2)min=|OB|2=(2-3)2=7-4 3.题型三与圆有关的轨迹问题例3 (2016·潍坊模拟)已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.解(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4,故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y),在Rt△PBQ中,|PN|=|BN|.设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.思维升华求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法(1)直接法,直接根据题目提供的条件列出方程;(2)定义法,根据圆、直线等定义列方程; (3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.(2016·某某模拟)设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON为两边作平行四边形MONP ,求点P 的轨迹. 解 如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y 2,线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42,从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4. 因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在直线OM 上的情况).21.利用几何性质巧设方程求半径典例 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.思想方法指导 本题可采用两种方法解答,即代数法和几何法.(1)一般解法(代数法):可以求出曲线y =x 2-6x +1与坐标轴的三个交点,设圆的方程为一般式,代入点的坐标求解析式.(2)巧妙解法(几何法):利用圆的性质,知道圆心一定在圆上两点连线的垂直平分线上,从而设圆的方程为标准式,简化计算,显然几何法比代数法的计算量小,因此平时训练多采用几何法解题. 规X 解答解 一般解法 (代数法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0),设圆的方程是x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎨⎧1+E +F =0,3+222+D3+22+F =0,3-222+D3-22+F =0,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1,故圆的方程是x 2+y 2-6x -2y +1=0.巧妙解法 (几何法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0). 故可设C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1. 则圆C 的半径为32+t -12=3,所以圆C 的方程为(x -3)2+(y -1)2=9.1.(2016·某某检测)圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A .x 2+y 2+10y =0 B .x 2+y 2-10y =0 C .x 2+y 2+10x =0 D .x 2+y 2-10x =0 答案 B解析 根据题意,设圆心坐标为(0,r ),半径为r ,则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0.2.(2016·某某一模)方程|x |-1=1-y -12所表示的曲线是( )A .一个圆B .两个圆C .半个圆D .两个半圆 答案 D解析 由题意得⎩⎪⎨⎪⎧|x |-12+y -12=1,|x |-1≥0,即⎩⎪⎨⎪⎧x -12+y -12=1,x ≥1,或⎩⎪⎨⎪⎧x +12+y -12=1,x ≤-1.故原方程表示两个半圆.3.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为( )A .1B .5C .4 2D .3+2 2 答案 D解析 由题意知圆心C (2,1)在直线ax +2by -2=0上, ∴2a +2b -2=0,整理得a +b =1, ∴1a +2b =(1a +2b )(a +b )=3+b a +2a b≥3+2b a ×2ab =3+22, 当且仅当b a =2ab,即b =2-2,a =2-1时,等号成立.∴1a +2b的最小值为3+2 2.4.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1 答案 A解析 设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ),则⎩⎪⎨⎪⎧2x =x 0+42y =y 0-2⇒⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2,代入x 20+y 20=4中得(x -2)2+(y +1)2=1.5.(2016·某某诊断)圆C 的圆心在y 轴正半轴上,且与x 轴相切,被双曲线x 2-y 23=1的渐近线截得的弦长为3,则圆C 的方程为( )A .x 2+(y -1)2=1B .x 2+(y -3)2=3C .x 2+(y +1)2=1D .x 2+(y +3)2=3答案 A解析 依题意,得题中的双曲线的一条渐近线的斜率为3,倾斜角为60°,结合图形(图略)可知,所求的圆C 的圆心坐标是(0,1)、半径是1,因此其方程是x 2+(y -1)2=1.6.(2016·某某模拟)已知P 是直线l :3x -4y +11=0上的动点,PA ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线(A ,B 是切点),C 是圆心,那么四边形PACB 的面积的最小值是( ) A. 2 B .2 2 C. 3 D .2 3答案 C解析 圆的方程可化为(x -1)2+(y -1)2=1,则C (1,1),当|PC |最小时,四边形PACB 的面积最小,|PC |min =|3-4+11|32+42=2,此时|PA |=|PB |= 3. 所以四边形PACB 的面积S =2×12×3×1=3,故选C. 7.(2016·某某模拟)若圆C 经过坐标原点与点(4,0),且与直线y =1相切,则圆C 的方程是______________. 答案 (x -2)2+(y +32)2=254解析 因为圆的弦的垂直平分线必过圆心且圆经过点(0,0)和(4,0),所以设圆心为(2,m ). 又因为圆与直线y =1相切,所以22+m 2=|1-m |,解之得m =-32. 所以圆C 的方程为(x -2)2+(y +32)2=254. 8.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为______________.答案 x +y -2=0 解析 当圆心与点P 的连线和过点P 的直线垂直时,符合条件.圆心O 与点P 连线的斜率k =1,所求直线方程为y -1=-(x -1),即x +y -2=0.9.已知D 是由不等式组⎩⎪⎨⎪⎧ x -2y ≥0, x +3y ≥0所确定的平面区域,则圆x 2+y 2=4在区域D 内的弧长为________.答案 π2解析 作出可行域D 及圆x 2+y 2=4,如图所示,图中阴影部分所在圆心角θ=α-β所对的弧长即为所求.易知图中两直线的斜率分别为12、-13,得tan α=12,tan β=-13, tan θ=tan(α-β)=12+131-12×13=1, 得θ=π4,得弧长l =θ·R =π4×2=π2(R 为圆的半径). 10.(2016·某某模拟)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.答案 7+1解析 设D (x ,y ),由CD →=(x -3,y )及|CD →|=1知(x -3)2+y 2=1,即动点D 的轨迹为以点C 为圆心的单位圆,又OA →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x-1,y +3),∴|OA →+OB →+OD →|=x -12+y +32. 问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)间距离的最大值.∵圆心C (3,0)与点P (1,-3)之间的距离为3-12+0+32=7, ∴x -12+y +32的最大值为7+1.11.已知圆C 经过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段的长为43,半径小于5.(1)求直线PQ 与圆C 的方程;(2)若直线l ∥PQ ,且l 与圆C 交于点A ,B ,且以线段AB 为直径的圆经过坐标原点,求直线l 的方程.解 (1)由题意知直线PQ 的方程为x +y -2=0.设圆心C (a ,b ),半径为r ,由于线段PQ 的垂直平分线的方程是y -12=x -32, 即y =x -1,所以b =a -1.①由圆C 在y 轴上截得的线段的长为43,知r 2=12+a 2,可得(a +1)2+(b -3)2=12+a 2,②由①②得a =1,b =0或a =5,b =4.当a =1,b =0时,r 2=13,满足题意,当a =5,b =4时,r 2=37,不满足题意.故圆C 的方程为(x -1)2+y 2=13.(2)设直线l 的方程为y =-x +m (m ≠2), A (x 1,m -x 1),B (x 2,m -x 2).由题意可知OA ⊥OB ,即OA →·OB →=0,∴x 1x 2+(m -x 1)(m -x 2)=0,化简得2x 1x 2-m (x 1+x 2)+m 2=0.③由⎩⎪⎨⎪⎧ y =-x +m ,x -12+y 2=13得 2x 2-2(m +1)x +m 2-12=0,∴x 1+x 2=m +1,x 1x 2=m 2-122,代入③,得m 2-12-m ·(1+m )+m 2=0,∴m =4或m =-3,经检验都满足题意,∴直线l 的方程为x +y -4=0或x +y +3=0.12.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得的线段长为22,在y 轴上截得的线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解 (1)设P (x ,y ),圆P 的半径为r .则y 2+2=r 2,x 2+3=r 2.∴y 2+2=x 2+3,即y 2-x 2=1.∴P 点的轨迹方程为y 2-x 2=1.(2)设P 点的坐标为(x 0,y 0),则|x 0-y 0|2=22,即|x 0-y 0|=1. ∴y 0-x 0=±1,即y 0=x 0±1.①当y 0=x 0+1时,由y 20-x 20=1,得(x 0+1)2-x 20=1.∴⎩⎪⎨⎪⎧ x 0=0,y 0=1,∴r 2=3.∴圆P 的方程为x 2+(y -1)2=3.②当y 0=x 0-1时,由y 20-x 20=1,得(x 0-1)2-x 20=1.∴⎩⎪⎨⎪⎧ x 0=0,y 0=-1,∴r 2=3.∴圆P 的方程为x 2+(y +1)2=3.综上所述,圆P 的方程为x 2+(y ±1)2=3.13.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值;(2)若M (m ,n ),求n -3m +2的最大值和最小值.解 (1)由圆C :x 2+y 2-4x -14y +45=0, 可得(x -2)2+(y -7)2=8,所以圆心C 的坐标为(2,7),半径r =2 2. 又|QC |=2+22+7-32=4 2. 所以|MQ |max =42+22=62, |MQ |min =42-22=2 2.(2)可知n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0,则n -3m +2=k . 由直线MQ 与圆C 有交点,所以|2k -7+2k +3|1+k2≤22, 可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析 设圆心的坐标为x,41x2,据题意得14x2+1=-x,解得 x=-2,此时圆心的坐标为(-2,1),圆 的半径为 2,故所求圆的方程是(x+2)2+(y-1)2=4.
9 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
3.直线 y=x-1 上的点到圆 x2+y2+4x-2y+4=0 的最近距离为( )
解法二:从形的角度,AB 为圆的弦,由平面几何知识知,圆心 P 应在 AB 中垂线 x=4 上,则由
2x-y-3=0, x=4,
得圆心 P(4,5).
∴半径 r=|PA|= 10. ∴圆的标准方程为(x-4)2+(y-5)2=10.
13 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
第九章 直线和圆的方程
1 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
第2讲 圆的方程及点、线、圆的位置关系
2 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
3 撬点·基础点 重难点
注意点 圆的标准方程与一般方程的关系 圆的标准方程展开整理即可得到圆的一般方程,而圆的一般方程通过配方亦可转化为圆的标准方程, 二者只是形式的不同,没有本质区别.
7 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
1.思维辨析 (1)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为 t 的一个圆.( × ) (2)方程 x2+y2+ax+2ay+2a2+a-1=0 表示圆心为-a2,-a,半径为12 -3a2-4a+4的圆.( × ) (3)方程 Ax2+Bxy+Cy2+Dx+Ey+F=0 表示圆的充要条件是 A=C≠0,B=0,D2+E2-4AF>0.( √ ) (4)若点 M(x0,y0)在圆 x2+y2+Dx+Ey+F=0 外,则 x20+y20+Dx0+Ey0+F>0.( √ ) (5)已知点 A(x1,y1),B(x2,y2),则以 AB 为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.( √ )
8 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
2.圆心在曲线 y=14x2(x<0)上,并且与直线 y=-1 及 y 轴都相切的圆的方程是(
)
A.(x+2)2+(y-2)2=2
B.(x-1)2+(y-2)2=4
C.(x-2)2+(y-1)2=4
D.(x+2)2+(y-1)2=4
[解析] (1)设圆心坐标为(a,0)(a<0),因为圆与直线 x+2y=0 相切,所以 5=|a+25×0|,解得 a=-5, 因此圆的方程为(x+5)2+y2=5.
12 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
(2)求经过 A(5,2),B(3,2),圆心在直线 2x-y-3=0 上的圆的方程.
.
6 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
2 点与圆的位置关系 圆的标准方程(x-a)2+(y-b)2=r2,点 M(x0,y0). (1)(x0-a)2+(y0-b)2=r2⇔点 M 在 圆上 ; (2)(x0-a)2+(y0-b)2>r2⇔点 M 在 圆外 ; (3)(x0-a)2+(y0-b)2<r2⇔点 M 在 圆内 .
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
[考法综述] 求圆的方程是考查圆的方程中的一个基本点,一般涉及圆的性质,直线与圆的位置关 系等.主要依据圆的标准方程、一般方程、直线与圆的几何性质,运用代数方法和几何方法解决问题.
命题法 1 求圆的方程 典例 1 (1)若圆心在 x 轴上、半径为 5的圆 O′位于 y 轴左侧,且与直线 x+2y=0 相切,则圆 O′的 方程是( ) A.(x-5)2+y2=5 或(x+5)2+y2=5 B.(x+ 5)2+y2=5 C.(x-5)2+y2=5 D.(x+5)2+y2=5
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
考点一 圆的方程
4 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
撬点·基础点 重难点
5 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
[解析] (2)解法一:从数的角度,若选用一般式:设圆的方程为 x2+y2+Dx+Ey+F=0,则圆心
-D2 ,-E2.
52+22+5D+2E+F=0, ∴32+22+3D+2E+F=0,
2×-D2 --E2-3=0.
D=-8, 解之,得E=-10,
F=31.
∴圆的一般方程为 x2+y2-8x-10y+31=0.
学霸团 ·撬分法 ·高考数学·理
【解题法】 用待定系数法求圆的方程的一般步骤 (1)选用圆的方程两种形式中的一种,若知圆上三个点的坐标,通常选用一般方程;若给出圆心的特殊 位置或圆心与两坐标轴间的关系,通常选用标准方程. (2)根据所给条件,列出关于 D,E,F 或 a,b,r 的方程组. (3)解方程组,求出 D,E,F 或 a,b,r 的值,并把它们代入所设的方程中,得到所求圆的方程.
1 圆的方程
(1)圆的标准方程与一般方程
名称
圆的标准方程
方程 (x-a)2+(y-b)2=r2(r>0)
圆心
(a,b)
半径
r
圆的一般方程
x2+y2+Dx+Ey+F=0(D2+E2-4F>0) -D2 ,-E2
1 2
D2+E2-4F
(2)A(x1,y1),B(x2,y2),以 AB 为直径的圆的方程为 (x-x1)(x-x2)+(y-y1)(y-y2)=0A.2 2B 2-1C.2 2-1
D.1
解析 圆心(-2,1)到已知直线的距离为 d=2 2,圆的半径为 r=1,故所求距离 dmin=2 2-1.
10 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
撬法·命题法 解题法
11 撬点·基础点 重难点
撬法·命题法 解题法