人教A版数学高二选修2-3第一章《计数原理》本章高效整合试卷
人教A版数学高二选修2-3第一章《计数原理》综合检测

每班2个,有C 26种分法;(3)4个名额分给两个班级,其中一个班级1个,一个班级3个.由于分给一班1个,二班3个和一班3个、二班1个是不同的分法,因此是排列问题,共有A 26种分法;(4)分给三个班级,其中一个班级2个,其余两个班级每班1个,共有C 16·C 25种分法;(5)分给四个班,每班1个,共有C 46种分法.故共有N =C 16+C 26+A 26+C 16·C 25+C 46=126种分配方法. 解法二:该问题也可以从另外一个角度去考虑:因为是名额分配问题,名额之间无区别,所以可以把它们视作排成一排的10个相同的球,要把这10个球分开成6段(每段至少有一个球).这样,每一种分隔办法,对应着一种名额的分配方法.这10个球之间(不含两端)共有9个空位,现在要在这9个位子中放进5块隔板,共有N =C 59=126种放法.故共有126种分配方法. 22.(本题满分12分)已知⎝⎛⎭⎪⎫3a -3a n (n ∈N *)的展开式的各项系数之和等于⎝⎛⎭⎪⎫43b -15b 5的展开式中的常数项,求⎝ ⎛⎭⎪⎫3a -3a n的展开式中a -1项的二项式系数. 对于⎝⎛⎭⎪⎫43b -15b 5:T r +1=C r 5(43b )5-r ⎝⎛⎭⎫-15b r =C r 5·(-1)r ·45-r ·.若T r +1为常数项,则10-5r=0,所以r =2,此时得常数项为T 3=C 25·(-1)2·43·5-1=27.令a =1,得⎝⎛⎭⎪⎫3a -3a n展开式的各项系数之和为2n .由题意知2n =27,所以n =7.对于⎝⎛⎭⎪⎫3a -3a 7:T r +1=C r 7⎝⎛⎭⎫3a 7-r ·(-3a )r =C r 7·(-1)r ·.若T r +1为a -1项,则5r -216=-1,所以r =3.所以⎝ ⎛⎭⎪⎫3a -3a n 的展开式中a -1项的二项式系数为C 37=35.。
2021-2022学年高中数学 第一章 计数原理测评(含解析)新人教A版选修2-3

第一章测评(时间:120分钟满分:150分)一、选择题(本题共12小题,每小题5分,共60分)1.若A m4=18C m3,则m等于()A.9B.8C.7D.6,得m-3=3,m=6.A m4=m(m-1)(m-2)(m-3)=18·m(m-1)(m-2)3×2×12.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10B.11C.12D.15:分有两个对应位置、有一个对应位置及没有对应位置上的数字相同,可得N=C42+C41+1=11.3.若实数a=2-√2,则a10-2C101a9+22C102a8-…+210等于()A.32B.-32C.1 024D.512,得a10-2C101a9+22C102a8-…+210=C100(-2)0a10+C101(-2)1a9+C102(-2)2a8+…+C10(-2)10=(a-2)10=(-√2)10=25=32.104.分配4名水暖工去3户不同的居民家里检查暖气管道.要求4名水暖工都分配出去,且每户居民家都要有人去检查,那么分配的方案共有( ) A.A 43种B .A 33A 31种C .C 42A 33种D .C 41C 31A 33种4名水暖工选出2人分成一组,然后将三组水暖工分配到3户不同的居民家,故有C 42A 33种.5.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,位于第一、第二象限不同点的个数是( ) A.18B.16C.14D.10N 1=2×2+2×2=8(个),第二象限的不同点有N 2=1×2+2×2=6(个), 故N=N 1+N 2=14(个). 故答案为C .6.将A,B,C,D 四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球,且A,B 不能放入同一个盒子中,则不同的放法有( ) A.15种B.18种C.30种D.36种A,B 放入不同盒中,有3×2=6(种)放法,再放C,D,若C,D 在同一盒中,有1种放法;若C,D 在不同盒中,则有2×2=4(种)放法. 故共有6×(1+4)=30(种)放法.故答案为C .7.为支持地震灾区的灾后重建工作,某公司决定分四天每天各运送一批物资到A,B,C,D,E 五个受灾地点.由于A 地距离该公司较近,安排在第一天或最后一天送达;B,C 两地相邻,安排在同一天上午、下午分别送达(B 在上午、C 在下午与B 在下午、C 在上午为不同的运送顺序),且运往这两地的物资算作一批;D,E 两地可随意安排在其余两天送达.则安排这四天运送物资到五个受灾地点的不同运送顺序的种数为( ) A.72B.18C.36D.24.第1步,安排运送物资到受灾地点A,有C 21种方法;第2步,在余下的3天中任选1天,安排运送物资到受灾地点B,C,有C 31A 22种方法;第3步,在余下的2天中安排运送物资到受灾地点D,E,有A 22种方法.由分步乘法计数原理得,不同的运送顺序共有C 21·(C 31A 22)·A 22=24(种).8.将数字1,2,3,4,5,6排成一列,记第i 个数为a i (i=1,2,…,6),若a 1≠1,a 3≠3,a 5≠5,a 1<a 3<a 5,则不同的排列方法种数为( )A.30B.18C.36D.48a 1,a 3,a 5的大小顺序已定,且a 1≠1,a 3≠3,a 5≠5,所以a 1可取2,3,4,若a 1=2或3,则a 3可取4,5,当a 3=4时,a 5=6,当a 3=5时,a 5=6;若a 1=4,则a 3=5,a 5=6.而其他的三个数字可以任意排列,因而不同的排列方法共有(2×2+1)A 33=30(种).9.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排(这样就成为前排6人,后排6人),若其他人的相对顺序不变,则不同调整方法的总数是()A.6C82 B.720C82C.30C82 D.20C822人有C82种方法,再插空.由题意知先在4人形成的5个空当中插入1人,有5种方法,余下的1人要插入前排5人形成的6个空当中,有6种方法,即为30种方法.故共有30C82种调整方法.10.设(2-x)5=a0+a1x+a2x2+…+a5x5,那么a0+a2+a4a1+a3的值为()A.-122121B.-6160C.-244241D.-1x=1,可得a0+a1+a2+a3+a4+a5=1,再令x=-1可得a0-a1+a2-a3+a4-a5=35.两式相加除以2求得a0+a2+a4=122,两式相减除以2可得a1+a3+a5=-121.又由条件可知a5=-1,故a0+a2+a4a1+a3=-6160.11.形如45 132的数称为“波浪数”,即十位数字、千位数字均比与它们各自相邻的数字大,则由1,2,3,4,5可构成不重复的五位“波浪数”的个数为()A.20B.18C.16D.11,十位和千位数字只能是4,5或3,5,若十位和千位排4,5,则其他位置任意排1,2,3,这样的数有A 22A 33=12(个);若十位和千位排5,3,这时4只能排在5的一边且不能和其他数字相邻,1,2在其余位置上任意排列,这样的数有A 22A 22=4(个).综上,共有16个.故答案为C .12.若自然数n 使得竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n 为“可连数”.例如:32是“可连数”,因32+33+34不产生进位现象;23不是“可连数”,因23+24+25产生进位现象.则小于1 000的“可连数”的个数为( ) A.27 B.36C.39D.48,要构造小于1000的“可连数”,个位上的数字的最大值只能为2,即个位数字只能在0,1,2中取.十位数字只能在0,1,2,3中取;百位数字只能在1,2,3中取.当“可连数”为一位数时,有C 31=3(个);当“可连数”为两位数时,个位上的数字有0,1,2三种取法,十位上的数字有1,2,3三种取法,即有C 31C 31=9(个);当“可连数”为三位数时,有C 31C 41C 31=36(个);故共有3+9+36=48(个).二、填空题(本题共4小题,每小题5分,共20分)13.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 .(用数字作答).第1类,每级台阶只站一人,则有A 73种站法;第2类,若有一级台阶有2人,另一级有1人,则有C 31A 72种站法,因此共有不同的站法种数是A 73+C 31A 72=336.14.若(x +√x3)8的展开式中x 4的系数为7,则实数a= .(x √x 3)8的通项为C 8rx 8-r a r(x -13)r=C 8r a r x8-r x -r3=C 8r a r x8-43r,令8-43r=4,解得r=3. ∴C 83a 3=7,得a=12.15.6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答)个人排成一行,其中甲、乙两人不相邻的不同排法:先排列好除甲、乙两人外的4人,有A 44种方法,再把甲、乙两人插入4个人的5个空当,有A 52种方法,所以共有A 44·A 52=480(种).16.(1+sin x )6的二项展开式中,二项式系数最大的一项的值为52,则x 在[0,2π]内的值为 .,得T 4=C 63sin 3x=20sin 3x=52,∴sin x=12.∵x ∈[0,2π], ∴x=π6或x=5π6.5π6三、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)有6个除颜色外完全相同的球,其中3个黑球,红、白、蓝球各1个,现从中取出4个球排成一列,共有多少种不同的排法?.(1)若取1个黑球,和另外3个球排成一列,不同的排法种数为A 44=24;(2)若取2个黑球,和从另外3个球中选的2个排成一列,2个黑球是相同的,所以不同的排法种数为C 32C 42A 22=36;(3)若取3个黑球,和从另外3个球中选的1个排成一列,不同的排法种数为C 31C 41=12.综上,不同的排法种数为24+36+12=72.18.(12分)一个口袋内有4个不同的红球,6个不同的白球. (1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?将取出的4个球分成三类:①取4个红球,没有白球,有C 44种;②取3个红球1个白球,有C 43C 61种;③取2个红球2个白球,有C 42C 62种,故有C 44+C 43C 61+C 42C 62=115(种).(2)设取x 个红球,y 个白球,则{x +y =5,2x +y ≥7,0≤x ≤4,0≤y ≤6,故{x =2,y =3或{x =3,y =2或{x =4,y =1.因此,符合题意的取法种数有C 42C 63+C 43C 62+C 44C 61=186(种).19.(12分)已知(x +2√x )n展开式中的前三项的系数成等差数列. (1)求n 的值;(2)求展开式中系数最大的项.由题意,得C n 0+14C n 2=2×12C n 1, 即n 2-9n+8=0,解得n=8或n=1(舍去).故n=8. (2)设第r+1项的系数最大,则{12r C 8r ≥12r+1C 8r+1,12r C 8r ≥12r -1C 8r -1, 即{18-r≥12(r+1),12r≥19-r.解得2≤r ≤3.∵r ∈N *,∴r=2或r=3.∴系数最大的项为T 3=7x 5,T 4=7x 72.20.(12分)设1+12x m =a 0+a 1x+a 2x 2+a 3x 3+…+a m x m,若a 0,a 1,a 2成等差数列. (1)求1+12x m 展开式的中间项;(2)求1+12x m展开式中所有含x 的奇次幂的系数和. 解(1)依题意a 0=1,a 1=m 2,a 2=C m2122.由2a 1=a 0+a 2,求得m=8或m=1(应舍去),所以1+12x m展开式的中间项是第五项, T 5=C 8412x 4=358x 4.(2)因为1+12x m =a 0+a 1x+a 2x 2+…+a m x m, 即1+12x 8=a 0+a 1x+a 2x 2+…+a 8x 8. 令x=1,则a 0+a 1+a 2+a 3+…+a 8=328, 令x=-1,则a 0-a 1+a 2-a 3+…+a 8=128,所以a 1+a 3+a 5+a 7=38-129=20516,所以展开式中所有含x 的奇次幂的系数和为20516.21.(12分)把n 个正整数全排列后得到的数叫做“再生数”,“再生数”中最大的数叫做最大再生数,最小的数叫做最小再生数.(1)求1,2,3,4的再生数的个数,以及其中的最大再生数和最小再生数; (2)试求任意5个正整数(可相同)的再生数的个数.的再生数的个数为A 44=24,其中最大再生数为4321,最小再生数为1234.(2)需要考查5个数中相同数的个数. 若5个数各不相同,有A 55=120(个);若有2个数相同,则有A 55A 22=60(个);若有3个数相同,则有A 55A 33=20(个);若有4个数相同,则有A 55A 44=5(个);若5个数全相同,则有1个.22.(12分)已知m ,n 是正整数,f (x )=(1+x )m +(1+x )n 的展开式中x 的系数为7. (1)对于使f (x )的x 2的系数为最小的m ,n ,求出此时x 3的系数; (2)利用上述结果,求f (0.003)的近似值;(精确到0.01)(3)已知(1+2x )8展开式的二项式系数的最大值为a ,系数的最大值为b ,求ba .根据题意得C m 1+C n 1=7,即m+n=7,①f (x )中的x 2的系数为C m 2+C n 2=m (m -1)2+n (n -1)2=m 2+n 2-m -n2.将①变形为n=7-m 代入上式得x 2的系数为m 2-7m+21=m-722+354, 故当m=3或m=4时,x 2的系数的最小值为9.当m=3,n=4时,x 3的系数为C 33+C 43=5;当m=4,n=3时,x 3的系数为C 43+C 33=5.(2)f (0.003)=(1+0.003)4+(1+0.003)3≈C 40+C 41×0.003+C 30+C 31×0.003≈2.02.(3)由题意可得a=C 84=70,再根据{C 8k ·2k≥C 8k+1·2k+1,C 8k ·2k ≥C 8k -1·2k -1,即{k ≥5,k ≤6, 求得k=5或6,此时,b=7×28,∴b a =1285.2021-2022学年高中数学第一章计数原理测评(含解析)新人教A版选修2-311 / 1111。
2016高中数学人教A版选修23第一章《计数原理》综合检测

【课堂新坐标】(教师用书)2013-2014学年高中数学第一章计数原理综合检测新人教A版选修2-3(时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分共50分,在每小题给出的四个选项中,只有一项就是符合题目要求的)1、(2012 •岳阳高二检测)有不同颜色的四件上衣与不同颜色的三件长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为()A、7B、64C、12D、81【解析】根据分步乘法计数原理,共有4X3=12种、【答案】C2、5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A、10 种B、20 种C、25 种D、32 种【解析】5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有25=32种、【答案】D3、(2013・大纲全国卷)(1+x)s(l+r)s的展开式中丘尹的系数就是()A、56B、84C、112D、168【解析】因为(1+x)啲通项为C错误!(l+y)°的通项为C错误!故(1 + 0 3(1+刃'的通项为C错误!C错误!旳/、令k=2, t=2,得xY的系数为C错误!C错误! = 16&【答案】D4、某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有()A、(C》A错误!个B、A错误!A错误!个C、(C错谋!尸10:个D、A错谋!10’个【解析】2个英文字母可重复,都有C', 种不同取法、4个不同数字有A错误!种不同排法、由分步乘法il•数原理知满足条件的牌照号码有C错谋!・C错课!・A错谋!= (C错谋!):・A错谋!个、【答案】A5、(2012 •郑州髙二检测)4爼男歌手与2名女歌手联合举行一场音乐会,出场顺序要求两名女歌手之间恰有一名男歌手,则共有出场方案的种数就是()A、6疋B、3A错误!C、2A3, 3D、A错误!A错误!A错误!【解析】先选一名男歌手排在两名女歌手之间,有A错误!种选法,这两名女歌手有A 错误!种排法,把这三人作为一个元素,与另外三名男歌手排列有A错误!种排法,根据分步乘法计数原理,有A错误!A错误!A错误!种出场方案、【答案】D6、一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5 个题目中的3个,则考生答题的不同选法的种数就是()A、40B、74C、84D、200【解析】分三类:第一类:前5个题目的3个,后4个题目的3个,第二类:前5个题目的4个,后4个题目的2个,第三类:前5个题目的5个,后4个题目的1个,由分类加法il•数原理得C错误!C错误! +C;C错误!+C错误! C错误!=74、【答案】B7、张、王两家夫妇各带1个小孩一起到动物园游玩,购票后排队依次入园、为安全起见, 首尾一泄要排两位爸爸,另外,两个小孩一左要排在一起,则这6人的入园顺序排法种数共有()A、12B、24C、36D、48【解析】第一步,将两位爸爸排在两端有2种排法;第二步,将两个小孩视作一人与两位妈妈任意排在中间的三个位置上有2A;种排法,故总的排法有2X2XA错误!=24种、【答案】B8、从正方体ABCD— 2CQ的8个顶点中选取4个作为四而体的顶点,可得到的不同四而体的个数为()A、C*, 3-12B、C错误!一8C、C错误! 一6D、C错误! 一4【解析】正方体中,6个而与6个对角而上的四个点不能构成四而体故共有C错误! 一12、【答案】A9、(2013 •陕西髙考)设函数f(Q =错误!则当力0时,(£]表达式的展开式中常数项为()A、-20 20C、—15 D. 15【解析】・・・f(x)=错误!・••当Q 0时,f (Q 错误!〈0,・・・f [心]=f (一错误!)=错误广=错课!:・•・展开式中常数项为C错误!(错误!):错误!'=-C错误! = 一20、【答案】A10、将二项式(错误!+错误!)'的展开式中所有项重新排成一列,有理式不相邻的排法有()种、A、A错误!B、A错谋!A错课!C、A错误!A错误!D、A错误!A错误!【解析】(错误! +错误!尸展开式的通项公式错误!•(错误!)"『・(错误!厂C召16=—2 ・r 4 , r=0, 1, 2, (8)当错误!为整数时,厂=0,4,8、・••展开式共有9项,英中有有理项3项,先排其余6项有A:种排法,再将有理项插入形成的7个空档中,有A错误!种方法、.•.共有A错误!A错误!种排法、【答案】C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)11、(2012 •吉安高二检测)C;+C错误!+C错误!+C错误!+C错误!的值为_____ 、【解析】C\ 6+C错误!+C错误!+C错误!+C错误!=2—C错误!一C错误!=62、【答案】6212、(2012 -广东髙考)2+丄)6的展开式中#的系数为_________ 、(用数字作答)x【解析】设第r+1项为含空的项,则错误!厂之错误!》皿,令12 — 3r=3,得r=3,・•・£的系数为C', 6=20、【答案】2013、若(2f+错误!)•'的展开式中含有常数项,则最小的正整数刀等于_______ 、【解析】气错误!)’为常数项,则弘-错谋!r=0,即错谋!”,而心、・•」为7的整数倍,即最小的正数n等于7、【答案】714、(2012 •武汉高二检测)某车队有7辆车,现要调出4辆按一沱顺序出去执行任务、要求甲、乙两车必须参加,且甲车要先于乙车开岀有_________ 种不同的调度方法(填数字)【解析】先从除甲、乙外的5辆车任选2辆有C错误!种选法,连同甲、乙共4辆车, 排列在一起,先从4个位置中选两个位置安排甲、乙,甲在乙前共有C:种,最后,安排其她两辆车共有A c,;种方法,.••不同的调度方法为C错误!・C错误!・A错误! = 120科|、【答案】120三、解答题(本大题共4小题,共50分、解答应写出文字说明,证明过程或演算步骤)15、(本小题满分12分)某单位职工义务献血,在体检合格的人中,0型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的有3人、(1)从中任选1人去献血,有多少种不同的选法?(2)从四种I血型的人中各选1人去献血,有多少种不同的选法?【解】从0型血的人中选1人有28种不同的选法,从A型血的人中选1人有7种不同的选法,从B型血的人中选1人有9种不同的选法,从AB型血的人中选1人有3种不同的选法、(1)任选1人去献血,即无论选哪种血型的哪一个人,这件“任选1人去献血”的事情都能完成,所以由分类加法计数原理,共有28+7+9 + 3=47种不同的选法、(2)要从四种血型的人中各选1人,即要在每种血型的人中依次选出1人后,这件'‘各选1人去献血"的事情才完成,所以用分步乘法计数原理,共有28X7X9X3=5 292种不同的选法、16、(本小题满分12 分)(2012 •深圳高二检测)设(2x— 1)10=+SiX-h«fcx34-• • •+a^x0, 求下列各式的值:(1)ao+a: + a::+"・ + a:o;(2)直、【解】(1)令x= 1 ♦得<2o + ai + a:+…+ aw= (2―1)10 = 1;(2)头即为含#项的系数,(2x)心・(-1) '=C错课! (一1)护•严, 所以当r=4 时,%=C错误!(一1)少/=13 440/,即戲=13 440、17、(本小题满分12分)如图1有4个编号为1、2、3、4的小三角形,要在每一个小三角形中涂上红、黄、蓝、白、黑五种颜色中的一种,并且相邻的小三角形颜色不同,共有多少种不同的涂色方法?图1【解】分为两类:第一类:若1、3同色,则1有5种涂法,2有4种涂法,3有1种涂法(与1相同),4有4种涂法、故A;=5X4X1X4=8O.第二类:若1、3不同色,则1有5种涂法,2有4种涂法,3有3种涂法,4有3种涂法、故用=5X4X3X3 = 180、综上可知不同的涂法共有*=\;+用=80+180=260种、18、(本小题满分14分)学校组织篮球比赛,共24个班参加,第一轮比赛就是先分四组进行单循环赛,然后各组取前两名再进行第二轮单循环赛(在第一轮中已相遇过的两队不再进行比赛),问共要进行多少场比赛?【解】第一轮每组6个队进行单循环赛,共有C错误!场比赛,4个组共计赛4C错误!场、第二轮每组取2名,共计8个队,本应赛C错误!场,由于第一轮分在同一组的两队不再进行比赛,故应减去4场,共赛C错谋! 一4场、综上,两轮比赛总共需比赛4C错误! +C错误! 一4 = 84场、。
人教版数学高二A版选修2-3单元测试第一章计数原理

第一章过关检测(时间90分钟,满分100分)一、选择题(每小题4分,共40分) 1.若A 3m =6C 4m ,则m 等于( )A.9B.8C.7D.62.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A.2人或3人B.3人或4人C.3人D.4人3.若100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是( )A.C 16C 294B.C 16C 299C.C 3100-C 394D.C 3100-C 2944.从5位男教师和4名女教师中选出3位教师,派到3个班担任班主任(每班一位班主任),要求这三位班主任中男女教师都有,则不同的选派方案共有( ) A.210种 B.420种 C.630种 D.840种5.现有6个人分乘两辆不同的出租车,每辆车最多乘4人(不含司机),则不同的乘车方案的种数是( )A.50B.60C.70D.806.在10)3( x 的展开式中,x 6的系数为( )A.-27C 610B.27C 410C.-9C 610D.9C 4107.把1,2,3,4,5,6,7,8,9这9个数字填入图中的表格,从上到下,从左到右,依次增大.当3、4固定在图中位置,余下的数的填法有( )A.6种B.12种C.18种D.24种8.把4个不同的小球全部放入3个不同的盒子里,使得每个盒子都不空的放法总数是( )A.C 13A 33B.C 34A 22C.C 24A 33D.C 14C 34C 229.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( ) A.10种 B.20种 C.36种 D.52种10.已知(1-3x)9=a 0+a 1x +a 2x 2+…+a 9x 9,则|a 0|+|a 1|+|a 2|+…+|a 9|等于( ) A.29 B.49 C.39 D.1 二、填空题(每小题4分,共16分)11. 8次投篮中,投中3次,其中恰有2次连续命中的情形有______种.12.四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案的总数是_______.13.某药品研究所研制了5种消炎药a 1,a 2,a 3,a 4,a 54种退烧药b 1,b 2,b 3,b 4,现从中取出两种消炎药和一种退烧药同时使用进行疗效实验,但又知a 1,a 2两种药必须同时使用,且a 3,b 4两种药不能同时使用,则不同的方案有_______种.14.若nx x )(13-+展开式中,第5项是常数,问中间项是第_______项.三、解答题(共44分)15.(10分)如右图,若灯不亮,则元件R 1,R 2,R 3断路的情况共有多少种?16.(10分)解关于n 的不等式:C 4n >C 6n .17.(12分)求84)21(xx +展开式中系数最大的项.18.(12分)“十一”国庆期间,公司从网络部抽4名人员、人事部抽3名人员(两个部门的主任都在内),从10月1号至7号,安排每人值班一天,分别回答下列问题: (1)两个部门的主任不能安排在1号和7号;(2)若各部门的人员安排不能连续(即同部门的人员相间安排); (3)若人事部因工作需要,他们的值班必须安排在连续三天; (4)网络部主任比人事部主任先值班.参考答案1解析:由m(m -1)(m -2)=1234)3)(2)(1(6⨯⨯⨯---•m m m m ,解得m =7. 答案:C2解析:设女生有x 人,则30128=•-C C x x ,即302)7)(8(=•--x x x .解得x =2或3. 答案:A3 解析:不考虑限制条件,从100件产品中任取3件,有C 3100种取法,然后减去3件全是正品的取法C 394,故有C 3100-C 394种取法. 答案:C4解析:分两类:第一类2男1女,则不同的选派方案有C 25C 14A 33=240种. 第二类1男2女,则不同的选派方案有C 15C 24A 33=180种. 由分类加法计数原理得:共有240+180=420种不同的选派方案. 答案:B5解析:分三类:第一辆车乘2人,第二辆车乘4人,有C 26种乘法;第一、二辆车各乘3人,有C 36种乘法;第一辆车乘4人,第二辆车乘2人,有C 46种乘法,由分类加法计数原理,共有C 26+C 36+C 46=50种. 答案:A6 解析:T5=C410x10-4·(-3)4=9·C410 x6.答案:D7解析:左上角格必须填1,右下角格必须填9,第二行最左端格必须填2,如图.A、B从余下的5,6,7,8四个数中任选两个,从左到右依次增大填入,有C24种.剩余的两个数由上到下,依次增大填入C、D即可.故共有C24=6种不同的填法.答案:A8解析:选2个小球捆在一起看成1个元素,有C24种选法.把3个元素放入3个不同的盒中,有A33种放法.故共有C24·A33种不同的放法.答案:C9 解析:分两类:第一类2号盒内放2个球,有C24种放法(剩余的球放入1号盒内即可);第二类,2号盒内放3个小球,有C34种放法(剩余的球放入1号盒内即可).由分类加法计数原理,共有C24+C34=10种不同的放法.答案:A10解析:由展开式可知a1,a3,a5,a7,a9都小于0,a0,a2,a4,a6,a8都大于0,故|a0|+|a1|+|a2|+…+|a9|=a0-a1+a2-a3+a4-a5+a6-a7+a8-a9,只需令x=-1即可得:(1+3)9=a0-a1+a2-a3+a4-a5+a6-a7+a8-a9=49.答案:B11解析:将2次连续命中当作一个整体,和另一次命中插入另外5次不命中留下的6个空档里进行排列有A26种.答案:3012 解析:将其中两名学生视为一个元素,其余二名同学分别视为一个元素,然后将三个元素分配到三所学校,所以不同的保送方案的总数为C 24A 33=36. 答案:3613解析:分3类:当取a 1,a 2时,再取退烧药有C 14种方案;取a 3时,取另一种消炎药的方法有C 12种,再取退烧药有C 13种,共有C 12C 13种方案;取a 4,a 5时,再取退烧药有C 14种方案.故共有C 14+C 12C 13+C 14=14种不同的实验方案. 答案:1414解析:由通项公式可得第5项3164434414---+==n n n nxx xT C C,即n =16,所以中间项是第9项. 答案:915解:每个元件都有通或断两种可能,以m,n,p 表示元件的通断,m,n,p 可取值均为0(表示断),1(表示通),故所有可能情况为(m,n,p)的可能情况共有2×2×2=8种.因为是串联电路,所以一断则断,只要排除全通的情况(m =1,n =1,p =1)即可,所以若灯不亮,则元件R 1,R 2,R 3断路的情况共有8-1=7种. 16解:因为C 4n >C 6n ,所以⎪⎩⎪⎨⎧≥->-,6,)!6(!6!)!4(!4!n n n n n即⎩⎨⎧≥<--.6,01092n n n 所以6≤n <10. 又因为n ∈N *,所以满足不等式的n 的取值为{6,7,8,9}. 17 解:记第r 项系数为T r ,设第k 项系数最大,则有⎩⎨⎧≥≥+-.,11k k k k T T T T 又1182+--•=r r r C T ,那么有⎪⎩⎪⎨⎧•≥••≥•-+--+--+--,22,228118228118kk k k k k k k C C C C 即⎪⎪⎩⎪⎪⎨⎧-•≥⨯-•-⨯-•-≥-•-,)!8(!!82)!9()!1(!8,2)!10()!2(!8)!9()!1(!8k k k k k k k k所以⎪⎩⎪⎨⎧≥--≥-.192,10211kk k k 解得3≤k≤4.所以系数最大的项为第3项257x 和第4项477x .18解:(1)第一步,在2号至6号五天中安排两名主任,有A 25种排法;第二步,剩下五人安排在剩下的五天有A 55种排法,故共有A 25·A 55=2 400种排法.(2)两个部门的人员相间安排,先排4名网络部人员,有A 44种;然后在他们的三个空档中插入三名人事部人员,有A 33种,故共有A 44·A 33=144种排法.(3)把人事部三个人看成一个人,再与网络部4人,有A 55种排法;人事部三个人的内部排列,有A 33种,故共有A 55·A 33=720种排法.(4)不考虑任何限制的排法有A 77,两人中排谁先值班的可能性相同,故有52022177=A种排法.。
【高考调研】高中数学(人教a版)选修2-3:第一章-计数原理+单元测试题x

【高考调研】高中数学(人教a版)选修2-3:第一章-计数原理+单元测试题x第一章综合测试题一、选择题1.设东、西、南、北四面通往山顶的路各有?2、3、3、4?条路,只从一面上山,而从任意一面下山的走法最多,应( )A.从东边上山C.从南边上山B.从西边上山D.从北边上山2.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为?y=x2,值域为{1,4}的“同族函数”共有( )A.7?个B.8?个?C.9?个D.10?个3.5?名学生相约第二天去春游,本着自愿的原则,规定任何人可以“去”或“不去”,则第二天可能出现的不同情况的种数为( )2A.C5 B.25C.52 D.A2524.6?个人分乘两辆不同的汽车,每辆车最多坐?4?人,则不同的乘车方法数为( )A.40 B.50 C.60 D.705.在航天员进行的一项太空实验中,先后要实施?6?个程序,其中程序 A?只能出现在第一步或最后一步,程序?B?和?C?实施时必须相邻,请问实验顺序的编排方法共有( )A.24?种B.48?种C.96?种D.144?种6.有甲、乙、丙三项任务,甲需?2?人承担,乙、丙各需?1?人承担,从?10?人中选派?4?人承担这三项任务,不同的选法有( )A.2?520 B.2?025 C.1?260 D.5?0408?10.已知?x-x展开式中常数项为?1120,其中实数8?10.已知?x-x展开式中常数项为?1120,其中实数?a?是常数,则展在第?3?道上,货车?B?不能停在第?1?道上,则?5?列火车的停车方法共有 ( )A.78?种B.72?种C.120?种D.96?种8.已知(1+x)n=a0+a1x+a2x2+…+anxn,若?a0+a1+a2+…+an =16,则自然数?n?等于( )A.6 B.5 C.4 D.39.6?个人排队,其中甲、乙、丙?3?人两两不相邻的排法有( )A.30?种B.144?种?C.5?种D.4?种? a?? ?开式中各项系数的和是( )A.28?B.38?C.1?或?38 D.1?或?2811.有?A、B、C、D、E、F?共?6?个集装箱,准备用甲、乙、丙三辆卡车运送,每台卡车一次运两个,若卡车甲不能运?A?箱,卡车乙不能运B?箱,此外无其他任何限制;要把这?6?个集装箱分配给这?3?台卡车运送,则不同的分配方案的种数为( )A.168 B.84 C.56 D.4212.从?2?名女教师和?5?名男教师中选出三位教师参加?20xx?年高考某考场的监考工作.要求一女教师在室内流动监考,另外两位教师固定在室内监考,问不同的安排方案种数为( )A.30 B.180?C.630 D.1?08013.已知(x+2)n?的展开式中共有?5?项,则?n=________,展开式中的常数项为________.(用数字作答)14.5?个人排成一排,要求甲、乙两人之间至少有一人,则不同的排法有____种.15.已知(x+1)6(ax-1)2?的展开式中含?x3?项的系数是?20,则?a?的值等于________.16.用数字?2,3?组成四位数,且数字?2,3?至少都出现一次,这样的四位数共有________个.(用数字作答)17.某书店有?11?种杂志,2?元?1?本的?8?种,1?元?1?本的?3?种,小张用10?元钱买杂志(每种至多买一本,10?元钱刚好用完),求不同的买法有多少种(用数字作答).18.4?个相同的红球和?6?个相同的白球放入袋中,现从袋中取出?4?个球;若取出的红球个数不少于白球个数,则有多少种不同的取法?9(12?分)从?1?到?6?的六个数字中取两个偶数和两个奇数组成没有重复数字的四位数.试问:(1)能组成多少个不同的四位数?(2)四位数中,两个偶数排在一起的有几个?(3)两个偶数不相邻的四位数有几个?(所有结果均用数值表示)20?已知(1+2?x)n?的展开式中,某一项的系数恰好是它的前一项系数5的?2?倍,而且是它的后一项系数的6,试求展开式中二项式系数最大的项.21?某单位有三个科室,为实现减负增效,每科室抽调2?人,去参加再就业培训,培训后这?6?人中有?2?人返回原单位,但不回到原科室工作,且每科室至多安排?1?人,问共有多少种不同的安排方法.22.10?件不同厂生产的同类产品:(1)在商品评选会上,有?2?件商品不能参加评选,要选出?4?件商品,并排定选出的?4?件商品的名次,有多少种不同的选法?(2)若要选?6?件商品放在不同的位置上陈列,且必须将获金质奖章的两件商品放上,有多少种不同的布置方法?1,D2,由题意,问题的关键在于确定函数定义域的个数:第一步,先确定函数值?1?的原象:因为?y=x2,当?y=1?时,x=1?或?x=-1,为此有三种情况:即{1},{-1},{1,-1};第二步,确定函数值?4?的原象,因为?y=4?时,x=2?或?x=-2,为此也有三种情况:{2},{-2},{2,-2}.由分步计数原理,得到:3×3=9?个.选?C.3,B,4B44 22 85C?当?A?出现在第一步时,再排?A,B,C?以外的三个程序,有?A33种,A?与?A,B44 22 8成?4?个可以排列程序?B、C?的空档,此时共有?A33A1A2种排法;当?A?出现在最后一步时的排法与此相同,故共有?2A33A1A2=96?种编排方法.6A?先从?10?人中选出?2?人承担甲任务有?C10种选法,再从剩下的?8?人中选出2?人分别承担乙、丙任务,有?A28种选法,由分步乘法计数原理共有?C10A2=2?520?种不同的选法.故选?A.7不考虑不能停靠的车道,5?辆车共有?5!=120?种停法.A?停在?3?道上的停法:4!=24(种);B?种停在?1?道上的停法:4!=24(种);A、B?分别停在?3?道、1?道上的停法:3!=6(种).故符合题意的停法:120-24-24+6=78(种).故选?A.令?x=1,得?2n=16,则?n=4.故选?C.4分两步完成:第一步,其余?3?人排列有?A33种排法;第二步,从?4?个可插空档中任选?3?个给甲、乙、丙?3?人4站有?A34种插法.由分步乘法计数原理可知,一共有?A3A3=144?种.B r 810,CTr+1=(-a)rC8x8-2r,令?8-2r=0 r=4.∴T5=C4(-a)4=1?120,∴a=±2.当?a=2?时,和为?1;当?ar 8时,和为?38.4 4 4 311,D 分两类:①甲运?B?箱,有?C1·?C2·?C2种;②甲不运?B?箱,有?C2·?C4 4 4 34 4 4 3∴不同的分配方案共有?C1·?C2·?C2+C2·?C2·?C24 4 4 3,A?分两类进行:第一类,在两名女教师中选出一名,从?5?名男教师中选出两名,且该女教师只能在室2 5 5内流动监考,有?C1·?C2种选法;第二类,选两名女教师和一名男教师有?C2·2 5 55 2 2 5 5 2教师中选一名作为室内流动监考人员,即有?C2·?C1·?C1共?10?种选法,∴共有?C1·?C2+C2·?5 2 2 5 5 2A13.4 16 ∵展开式共有?5?项,∴n=4,常数项为?C4424=16.414. 甲、乙两人之间至少有一人,就是甲、乙两人不相邻,则有?A3·?A2=72(种).15. 0?或?5 16,14?因4为四位数的每个数位上都有两种可能性,其中四个数字全是?2?或?3?的情况不合题意,所以适合题意的四位数有?24-2=14?个.17.解析分两类:第一类,买?5?本?2?元的有?C58?种;第二类,买?4?本?2?元的和?2?本?1?元的有?C48×C23种.故共有?C58+C48×C23=266?种不同的买法种数.18.解析依题意知,取出有?4?个球中至少有?2?个红球,可分三类:①取出的全是红球有?C44种方法;②20.解析? 由题意知展开式中第?k+1?项系数是第?k?项系数的?2?倍,是第?k+2?项系数的,6 4 6取出的?4?个球中有20.解析? 由题意知展开式中第?k+1?项系数是第?k?项系数的?2?倍,是第?k+2?项系数的,6 4 64 6 4 6理,共有?C4+C3·?C1+C2·?C4 6 4 6319.解析(1)四位数共有?C23C2A4=216?个.333 3(2)上述四位数中,偶数排在一起的有?C23C2A3A2=10833 3(3)两个偶数不相邻的四位数有?C23C2A2A2=108?个.56∴Ckn2k=6Ckn+1·?2k+ ∴?Ckn2k=6Ckn+1·?2k+1, ? k k5解得?n=7.∴展开式中二项式系数最大两项是:37T4=C37(2?x)3=280x2与?T5=C4(2?x)4=560x2.721. 6?人中有?2?人返回原单位,可分两类:2(1)2?人来自同科室:C13C1=6?种;23 2 2 3 2 2(2)2?人来自不同科室:C2C1C1,然后?2?人分别回到科室,但不回原科室有?3?种方法,故有?3 2 2 3 2 236?种.由分类计数原理共有?6+36=42?种方法22.解析(1)10?件商品,除去不能参加评选的?2?件商品,剩下?8?件,从中选出?4?件进行排列,有?A48=1?680(或8C4·?A4)(种).8(2)分步完成.先将获金质奖章的两件商品布置在?6?个位置中的两个位置上,有?A26种方法,再从剩下的8 6 8 88?件商品中选出?4?件,布置在剩下的?4?个位置上,有?A4种方法,共有?A2·?A4=50?400(或?C4·?8 6 8 8。
[精品]新人教A版选修2-3高中数学第一章计数原理1.1-第1分层测评和答案
![[精品]新人教A版选修2-3高中数学第一章计数原理1.1-第1分层测评和答案](https://img.taocdn.com/s3/m/ff7f4dfcd15abe23492f4d26.png)
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.如图111所示为一个电路图,从左到右可通电的线路共有( )图11 1A.6条B.5条C.9条 D.4条【解析】从左到右通电线路可分为两类:从上面有3条;从下面有2条.由分类加法计数原理知,从左到右通电的线路共有3+2=5条.【答案】 B2.有5列火车停在某车站并排的5条轨道上,若火车A不能停在第1道上,则5列火车的停车方法共有( )A.96种 B.24种 C.120种D.12种【解析】先排第1道,有4种排法,第2,3,4,5道各有4,3,2,1种,由分步乘法计数原理知共有4×4×3×2×1=96种.【答案】 A3.将5封信投入3个邮筒,不同的投法共有( )A.53种B.35种C.8种D.15种【解析】每封信均有3种不同的投法,所以依次把5封信投完,共有3×3×3×3×3=35种投法.4.如果x,y∈N,且1≤x≤3,x+y<7,则满足条件的不同的有序自然数对的个数是( )A.15 B.12C.5 D.4【解析】利用分类加法计数原理.当x=1时,y=0,1,2,3,4,5,有6个;当x=2时,y=0,1,2,3,4,有5个;当x=3时,y=0,1,2,3,有4个.据分类加法计数原理可得,共有6+5+4=15个.【答案】 A5.从集合{1,2,3,4,5}中任取2个不同的数,作为方程Ax+By=0的系数A,B的值,则形成的不同直线有( ) 【导学号:97270002】A.18条B.20条C.25条D.10条【解析】第一步,取A的值,有5种取法;第二步,取B的值,有4种取法,其中当A=1,B=2时与A=2,B=4时是相同的方程;当A=2,B=1时与A=4,B=2时是相同的方程,故共有5×4-2=18条.【答案】 A二、填空题6.椭圆x2m+y2n=1的焦点在y轴上,且m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},则满足题意的椭圆的个数为________.【解析】因为焦点在y轴上,所以0<m<n,考虑m依次取1,2,3,4,5时,符合条件的n值分别有6,5,4,3,2个,由分类加法计数原理知,满足题意的椭圆的个数为6+5+4+3+2=20个.7.某班2016年元旦晚会原定的5个节目已排成节目单,开演前又增加了2个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为______.【解析】将第一个新节目插入5个节目排成的节目单中有6种插入方法,再将第二个新节目插入到刚排好的6个节目排成的节目单中有7种插入方法,利用分步乘法计数原理,共有插入方法:6×7=42(种).【答案】428.如图112,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点B向结点A传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为________.图11 2【解析】依题意,首先找出B到A的路线,一共有4条,分别是BCDA,信息量最大为3;BEDA,信息量最大为4;BFGA,信息量最大为6;BHGA,信息量最大为6.由分类加法计数原理,单位时间内传递的最大信息量为3+4+6+6=19.【答案】19三、解答题9.有不同的红球8个,不同的白球7个.(1)从中任意取出一个球,有多少种不同的取法?(2)从中任意取出两个不同颜色的球,有多少种不同的取法?【解】(1)由分类加法计数原理,从中任取一个球共有8+7=15(种).(2)由分步乘法计数原理,从中任取两个不同颜色的球共有8×7=56(种).10.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法;(2)从四种血型的人中各选1人去献血,有多少种不同的选法?【解】从O型血的人中选1人有28种不同的选法;从A型血的人中选1人有7种不同的选法;从B型血的人中选1人有9种不同的选法;从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理.有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理.有28×7×9×3=5 292种不同的选法.[能力提升]1.一植物园参观路径如图113所示,若要全部参观并且路线不重复,则不同的参观路线种数共有( )图11 3A.6种B.8种C.36种D.48种【解析】由题意知在A点可先参观区域1,也可先参观区域2或3,每种选法中可以按逆时针参观,也可以按顺时针参观,所以第一步可以从6个路口任选一个,有6种走法,参观完第一个区域后,选择下一步走法,有4种走法,参观完第二个区域后,只剩下最后一个区域,有2种走法,根据分步乘法计数原理,共有6×4×2=48种不同的参观路线.【答案】 D2.某市汽车牌照号码(由4个数字和1个字母组成)可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复).某车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码所有可能的情况有( ) 【导学号:97270003】A.180种B.360种C.720种D.960种【解析】分五步完成,第i步取第i个号码(i=1,2,3,4,5).由分步乘法计数原理,可得车牌号码共有5×3×4×4×4=960种.【答案】 D3.直线方程Ax+By=0,若从0,1,3,5,7,8这6个数字中每次取两个不同的数作为A,B的值,则可表示________条不同的直线.【解析】若A或B中有一个为零时,有2条;当AB≠0时有5×4=20条,故共有20+2=22条不同的直线.【答案】224.已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),(1)P可以表示平面上的多少个不同点?(2)P可以表示平面上的多少个第二象限的点?(3)P可以表示多少个不在直线y=x上的点?【解】(1)完成这件事分为两个步骤:a的取法有6种,b的取法有6种.由分步乘法计数原理知,P可以表示平面上的6×6=36(个)不同点.(2)根据条件需满足a<0,b>0.完成这件事分两个步骤:a的取法有3种,b的取法有2种,由分步乘法计数原理知,P可以表示平面上的3×2=6(个)第二象限的点.(3)因为点P不在直线y=x上,所以第一步a的取法有6种,第二步b的取法有5种,根据分步乘法计数原理可知,P可以表示6×5=30(个)不在直线y=x上的点.。
人教A版高中数学选修2-3全册同步练习及单元检测含答案

⼈教A版⾼中数学选修2-3全册同步练习及单元检测含答案⼈教版⾼中数学选修2~3 全册章节同步检测试题⽬录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3⼆项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2⼆项分布及其应⽤第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应⽤第3章练习 3.2独⽴性检验的基本思想及其初步应⽤第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题1.⼀件⼯作可以⽤2种⽅法完成,有3⼈会⽤第1种⽅法完成,另外5⼈会⽤第2种⽅法完成,从中选出1⼈来完成这件⼯作,不同选法的种数是()A.8 B.15C.16 D.30答案:A2.从甲地去⼄地有3班⽕车,从⼄地去丙地有2班轮船,则从甲地去丙地可选择的旅⾏⽅式有()A.5种B.6种C.7种D.8种答案:B3.如图所⽰为⼀电路图,从A 到B 共有()条不同的线路可通电()A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成⽆重复数字的两位数的个数是()A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜⾊的衬⾐,3件不同花样的裙⼦,另有两套不同样式的连⾐裙.“五⼀”节需选择⼀套服装参加歌舞演出,则李芳有()种不同的选择⽅式()A.24 B.14 C.10 D.9答案:B 6.设A ,B 是两个⾮空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是()A.4 B.7 C.12 D.16答案:C⼆、填空题7.商店⾥有15种上⾐,18种裤⼦,某⼈要买⼀件上⾐或⼀条裤⼦,共有种不同的选法;要买上⾐,裤⼦各⼀件,共有种不同的选法.答案:33,2708.⼗字路⼝来往的车辆,如果不允许回头,共有种⾏车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则⽅程22()()25x a y b -+-=表⽰不同的圆的个数是.答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有项.答案:1011.如图,从A →C ,有种不同⾛法.答案:612.将三封信投⼊4个邮箱,不同的投法有种.答案:34三、解答题 13.⼀个⼝袋内装有5个⼩球,另⼀个⼝袋内装有4个⼩球,所有这些⼩球的颜⾊互不相同.(1)从两个⼝袋内任取⼀个⼩球,有多少种不同的取法?(2)从两个⼝袋内各取⼀个⼩球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =?=种.14.某校学⽣会由⾼⼀年级5⼈,⾼⼆年级6⼈,⾼三年级4⼈组成.(1)选其中1⼈为学⽣会主席,有多少种不同的选法?(2)若每年级选1⼈为校学⽣会常委,有多少种不同的选法?(3)若要选出不同年级的两⼈参加市⾥组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =??=种;(3)56644574N =?+?+?=种15.已知集合{}321012()M P a b =---,,,,,,,是平⾯上的点,a b M ∈,.(1)()P a b ,可表⽰平⾯上多少个不同的点?(2)()P a b ,可表⽰多少个坐标轴上的点?解:(1)完成这件事分为两个步骤:a 的取法有6种,b 的取法也有6种,∴P 点个数为N =6×6=36(个);(2)根据分类加法计数原理,分为三类:①x 轴上(不含原点)有5个点;②y 轴上(不含原点)有5个点;③既在x 轴,⼜在y 轴上的点,即原点也适合,∴共有N =5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题 1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有() A .30个 B .42个 C .36个 D .35个答案:C2.把10个苹果分成三堆,要求每堆⾄少1个,⾄多5个,则不同的分法共有() A .4种 B .5种 C .6种 D .7种答案:A3.如图,⽤4种不同的颜⾊涂⼊图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂⾊不同,则不同的涂法有() A .72种 B .48种 C .24种 D .12种答案:A4.教学⼤楼共有五层,每层均有两个楼梯,由⼀层到五层的⾛法有() A .10种 B .52种C.25种D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的⼦集的个数是()A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最⼤边长为11的三⾓形的个数为()A.25 B.26 C.36 D.37答案:C⼆、填空题7.平⾯内有7个点,其中有5个点在⼀条直线上,此外⽆三点共线,经过这7个点可连成不同直线的条数是.答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直⾓三⾓形的个数为.答案:2(1)n n -9.电⼦计算机的输⼊纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产⽣种不同的信息.答案:25610.椭圆221x y m n+=的焦点在y 轴上,且{}{}123451234567m n ∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:20 11.已知集合{}123A ,,ü,且A 中⾄少有⼀个奇数,则满⾜条件的集合A 分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题 13.⽤0,1,2,3,4,5六个数字组成⽆重复数字的四位数,⽐3410⼤的四位数有多少个?解:本题可以从⾼位到低位进⾏分类.(1)千位数字⽐3⼤.(2)千位数字为3:①百位数字⽐4⼤;②百位数字为4: 1°⼗位数字⽐1⼤;2°⼗位数字为1→个位数字⽐0⼤.所以⽐3410⼤的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜⾊旗⼦各(3)n n >⾯,任取其中三⾯,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗⼦中不允许有三⾯相同颜⾊的旗⼦,可以有多少种不同的信号?若所升旗⼦颜⾊各不相同,有多少种不同的信号?解: 1N =3×3×3=27种; 227324N =-=种; 33216N =??= 种.15.某出版社的7名⼯⼈中,有3⼈只会排版,2⼈只会印刷,还有2⼈既会排版⼜会印刷,现从7⼈中安排2⼈排版,2⼈印刷,有⼏种不同的安排⽅法.解:⾸先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版⼜会印刷”中的⼀个作为分类的标准.下⾯选择“既会排版⼜会印刷”作为分类的标准,按照被选出的⼈数,可将问题分为三类:第⼀类:2⼈全不被选出,即从只会排版的3⼈中选2⼈,有3种选法;只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第⼆类:2⼈中被选出⼀⼈,有2种选法.若此⼈去排版,则再从会排版的3⼈中选1⼈,有3种选法,只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此⼈去印刷,则再从会印刷的2⼈中选1⼈,有2种选法,从会排版的3⼈中选2⼈,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2⼈全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷⼀.选择题:1.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种2.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出语⽂、数学、英语各⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种3.某商业⼤厦有东南西3个⼤门,楼内东西两侧各有2个楼梯,从楼外到⼆楼的不同⾛法种数是()(A ) 5 (B )7 (C )10 (D )124.⽤1、2、3、4四个数字可以排成不含重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个5.⽤1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个6.3科⽼师都布置了作业,在同⼀时刻4名学⽣都做作业的可能情况有()(A )43种(B )34种(C )4×3×2种(D ) 1×2×3种7.把4张同样的参观券分给5个代表,每⼈最多分⼀张,参观券全部分完,则不同的分法共有()(A )120种(B )1024种(C )625种(D )5种8.已知集合M={l ,-2,3},N={-4,5,6,7},从两个集合中各取⼀个元素作为点的坐标,则这样的坐标在直⾓坐标系中可表⽰第⼀、⼆象限内不同的点的个数是()(A )18 (B )17 (C )16 (D )109.三边长均为整数,且最⼤边为11的三⾓形的个数为()(A )25 (B )36 (C )26 (D )3710.如图,某城市中,M 、N 两地有整齐的道路⽹,若规定只能向东或向北两个⽅向沿途中路线前进,则从M 到N 不同的⾛法共有()(A )25 (B )15 (C)13 (D )10 ⼆.填空题:11.某书店有不同年级的语⽂、数学、英语练习册各10本,买其中⼀种有种⽅法;买其中两种有种⽅法.12.⼤⼩不等的两个正⽅形玩具,分别在各⾯上标有数字1,2,3,4,5,6,则向上的⾯标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正⼋边形的三个顶点组成的三⾓形中,与正⼋边形有公共边的有个.15.某班宣传⼩组要出⼀期向英雄学习的专刊,现有红、黄、⽩、绿、蓝五种颜⾊的粉笔供选⽤,要求在⿊板中A 、B 、C 、D 每⼀部分只写⼀种颜⾊,如图所⽰,相邻两块颜⾊不同,则不同颜⾊的书写⽅法共有种.三.解答题:16.现由某校⾼⼀年级四个班学⽣34⼈,其中⼀、⼆、三、四班分别为7⼈、8⼈、9⼈、10⼈,他们⾃愿组成数学课外⼩组.(1)选其中⼀⼈为负责⼈,有多少种不同的选法?(2)每班选⼀名组长,有多少种不同的选法?(3)推选⼆⼈做中⼼发⾔,这⼆⼈需来⾃不同的班级,有多少种不同的选法?17.4名同学分别报名参加⾜球队,蓝球队、乒乓球队,每⼈限报其中⼀个运动队,不同的报名⽅法有⼏种?[探究与提⾼]1.甲、⼄两个正整数的最⼤公约数为60,求甲、⼄两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线⽅程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第⼀象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节⽬中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,⼄信箱中有20封.现由主持⼈抽奖确定幸运观众,若先确定⼀名幸运之星,再从两信箱中各确定⼀名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、排列综合卷1.90×9l ×92×……×100=()(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是()(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于()(A )827n A - (B )2734nn A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是()(A )0 (B )3 (C )5 (D )85.⽤1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A )24个(B )30个(C )40个(D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有()(A )20个(B )19个(C )25个(D )30个7.甲、⼄、丙、丁四种不同的种⼦,在三块不同⼟地上试种,其中种⼦甲必须试种,那么不同的试种⽅法共有()(A )12种(B )18种(C )24种(D )96种8.某天上午要排语⽂、数学、体育、计算机四节课,其中体育不排在第⼀节,那么这天上午课程表的不同排法共有()(A )6种(B )9种(C )18种(D )24种9.有四位司机、四个售票员组成四个⼩组,每组有⼀位司机和⼀位售票员,则不同的分组⽅案共有()(A )88A 种(B )48A 种(C )44A ·44A 种(D )44A 种10.有4位学⽣和3位⽼师站在⼀排拍照,任何两位⽼师不站在⼀起的不同排法共有()(A )(4!)2种(B )4!·3!种(C )34A ·4!种(D )3 5A ·4!种11.把5件不同的商品在货架上排成⼀排,其中a ,b 两种必须排在⼀起,⽽c ,d 两种不能排在⼀起,则不同排法共有()(A )12种(B )20种(C )24种(D )48种⼆.填空题::12.6个⼈站⼀排,甲不在排头,共有种不同排法.13.6个⼈站⼀排,甲不在排头,⼄不在排尾,共有种不同排法.14.五男⼆⼥排成⼀排,若男⽣甲必须排在排头或排尾,⼆⼥必须排在⼀起,不同的排法共有种.15.将红、黄、蓝、⽩、⿊5种颜⾊的⼩球,分别放⼊红、黄、蓝、⽩、⿊5种颜⾊的⼝袋中,但红⼝袋不能装⼊红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每⼈各⼀本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每⼈各⼀本,共有种不同的送法.三、解答题:17.⼀场晚会有5个唱歌节⽬和3个舞蹈节⽬,要求排出⼀个节⽬单(1)前4个节⽬中要有舞蹈,有多少种排法?(2)3个舞蹈节⽬要排在⼀起,有多少种排法?(3)3个舞蹈节⽬彼此要隔开,有多少种排法?18.三个⼥⽣和五个男⽣排成⼀排.(1)如果⼥⽣必须全排在⼀起,有多少种不同的排法?(2)如果⼥⽣必须全分开,有多少种不同的排法?(3)如果两端都不能排⼥⽣,有多少种不同的排法?(4)如果两端不能都排⼥⽣,有多少种不同的排法?(5)如果三个⼥⽣站在前排,五个男⽣站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合综合卷⼀、选择题:1.下列等式不正确的是()(A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=- (C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是()(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11 111m m m m n n n n C C C C --+--=++3.⽅程2551616x x x C C --=的解共有()(A )1个(B )2个(C )3个(D )4个4.若372345n n n C A ---=,则n 的值是()(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男⽣中挑选3⼈,4名⼥⽣中挑选2⼈,组成⼀个⼩组,不同的挑选⽅法共有()(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男⽣,3个⼥⽣中挑选4⼈参加智⼒竞赛,要求⾄少有⼀个⼥⽣参加的选法共有()(A )12种(B )34种(C )35种(D )340种8.平⾯上有7个点,除某三点在⼀直线上外,再⽆其它三点共线,若过其中两点作⼀直线,则可作成不同的直线()(A )18条(B )19条(C )20条(D )21条9.在9件产品中,有⼀级品4件,⼆级品3件,三级品2件,现抽取4个检查,⾄少有两件⼀级品的抽法共有()(A )60种(B )81种(C )100种(D )126种10.某电⼦元件电路有⼀个由三节电阻串联组成的回路,共有6个焊点,若其中某⼀焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有()(A )5种(B )6种(C )63种(D )64种⼆.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每⼈教两个班,分配⽅案共有种。
人教A版选修2-3单元测评(一)计数原理(A卷).docx

高中数学学习材料鼎尚图文*整理制作单元测评(一)计数原理(A卷)(时间:90分钟满分:120分)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有()A.70种B.112种C.140种D.168种解析:方法一(直接法):分类完成:第1类,甲参加或乙参加,有C12C38种挑选方法;第2类,甲、乙都参加,有C22C28种挑选方法.所以不同的挑选方法共有C12C38+C22C28=140种.方法二(间接法):从甲、乙等10人中挑选4人共有C410种挑选方法,甲、乙两人都不参加挑选方法有C48种,所以甲、乙两人中至少有1人参加的不同的挑选方法有C410-C48=140种.答案:C2.五本不同的书在书架上排成一排,其中甲,乙两本必须连排,而丙,丁两本不能连排,则不同的排法共有( )A .12种B .20种C .24种D .48种解析:甲,乙看作一本,除去丙,丁后排列,再将丙,丁插入,共有A 22A 23A 22=2×3×2×2=24种.答案:C3.在二项式⎝ ⎛⎭⎪⎫x 2-1x 5的展开式中,含x 4的项的系数是( )A .-5B .5C .-10D .10解析:T k +1=C k 5·(x 2)5-k ·⎝⎛⎭⎪⎫-1x k =C k 5·x 10-2k ·⎝ ⎛⎭⎪⎫1x k ·(-1)k =C k 5·x 10-3k ·(-1)k. 由10-3k =4知k =2,即含x 4的项的系数为C 25(-1)2=10.答案:D4.如图,要给①,②,③,④四块区域分别涂上五种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方法种数为( )A .320B .160C .96D .60解析:按③→①→②→④的顺序涂色,有C 15×C 14×C 14×C 14=5×4×4×4=320种不同的方法.答案:A5.一次考试中,要求考生从试卷上的9个题目中选出6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是() A.40 B.74C.84 D.200解析:可按包括前5个题的个数分类,共有不同的选法C35C34+C45C24+C55C14=74种.答案:B6.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24 B.18C.12 D.6解析:若选0,则0只能在十位,此时组成的奇数的个数是A23=6;若选2,则2只能在十位或百位,此时组成的奇数的个数是2×A23=12,根据分类加法计数原理得总个数为6+12=18.答案:B7.若(2x+3)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为()A.1 B.-1C.0 D.2解析:(a0+a2+a4)2-(a1+a3)2=(a0+a1+a2+a3+a4)(a0-a1+a2-a3+a4)=(2+3)4×(-2+3)4=1.答案:A8.4名男歌手和2名女歌手联合举行一场音乐会,出场的顺序要求两名女歌手之间恰有一名男歌手,共有出场方案的种数是()A .6A 33B .3A 33 C .2A 33D .A 22A 14A 44解析:先选一名男歌手排在两名女歌手之间,有A 14种选法,这两名女歌手有A 22种排法,把这三人作为一个元素,与另外三名男歌手排列有A 44种排法,根据分步乘法计数原理,有A 14A 22A 44种出场方案.答案:D9.有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,则不同的站法有( )A .24种B .36种C .60种D .66种解析:先排甲、乙外的3人,有A 33种排法,再插入甲、乙两人,有A 24种方法,又甲排在乙的左边和甲排在乙的右边各占12,故所求不同的站法有12A 33A 24=36(种).答案:B10.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )A .72B .96C .108D .144解析:从2,4,6三个偶数中选一个数放在个位,有C 13种方法,将其余两个偶数全排列,有A 22种排法,当1,3不相邻且不与5相邻时有A 33种方法,当1,3相邻且不与5相邻时有A 22·A 23种方法,故满足题意的偶数个数有C 13·A 22(A 33+A 22·A 23)=108个. 答案:C第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.从甲、乙、丙、丁四名同学中选出三名同学,分别参加三个不同科目的竞赛,其中甲同学必须参赛,则不同的参赛方案共有__________种.解析:从除甲外的乙,丙,丁三名同学中选出两人有C 23种选法,再将3人安排到三个科目,有A 33种不同排法,因此共有C 23A 33=18种不同方案.答案:1812.⎝ ⎛⎭⎪⎫x 2+1x +25的展开式中的常数项为__________(用数字作答). 解析:(化简三项为二项):原式=⎝ ⎛⎭⎪⎫x 2+22x +22x 5=132x 5·[(x +2)2]5=132x5·(x +2)10. 求原式的展开式中的常数项,转化为求(x +2)10的展开式中含x 5项的系数,即C 510·(2)5. 所以所求的常数项为C 510·(2)532=6322.答案:632213.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有__________种不同的方法(用数字作答).解析:只需找到不同颜色的球所在的位置即可,有C 29C 37C 44=1 260种.答案:1 26014.某校邀请6位学生的父母共12人,请这12位家长中的4位介绍其对子女的教育情况,如果这4位家长中恰有一对是夫妻,那么不同的选择方法有__________种.解析:先从6对夫妻中任选出一对,有C 16种不同的选法,再从其余的10人中任选出2人,有C 210种选法,其中这2人恰好是一对夫妻的选法有C 15种,所以共有C 16(C 210-C 15)=240种不同选法.答案:240三、解答题:本大题共4小题,满分50分.15.(12分)已知二项式⎝⎛⎭⎪⎫5x -1x n 展开式中各项系数之和比各二项式系数之和大240,(1)求n ;(2)求展开式中含x 项的系数; (3)求展开式中所有含x 的有理项.解:(1)由已知得:4n -2n =240,2n =16,n =4. (2分)(2)二项展开式的通项为:C r 4(5x )4-r ⎝⎛⎭⎪⎫-1x r =C r 454-r (-1)rx 4-32r ,令4-32r =1⇒r =2所以含x 项的系数:C 2452(-1)2=150.(7分) (3)由(2)得:4-32r ∈Z ,(r =0,1,2,3,4), 即r =0,2,4.所以展开式中所有含x 的有理项为: 第1项625x 4,第3项150x ,第5项x -2. (12分)16.(12分)一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,求满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况的种数.解:由题意知需要分两类:第1类,甲上7楼,乙和丙在2,3,4,5,6层楼每个人有5种下法,共有52种;(5分)第2类,甲不上7楼,则甲有4种下法,乙和丙选一人上7楼,另一人有5种下法,共有4×2×5种.(10分)根据分类加法计数原理知,共有52+4×2×5=65种可能情况.(12分) 17.(12分)现有0、1、2、3、4、5、6、7、8、9共十个数字.(1)可以组成多少个无重复数字的三位数?(2)组成无重复数字的三位数中,315是从小到大排列的第几个数?(3)可以组成多少个无重复数字的四位偶数?(4)选出一个偶数和三个奇数,组成无重复数字的四位数,这样的四位数共有多少个?(5)如果一个数各个数位上的数字从左到右按由大到小的顺序排列,则称此正整数为“渐减数”,那么由这十个数字组成的所有“渐减数”共有多少个?解:(1)可以组成无重复数字的三位数A19A29=648(个);(2分)(2)组成无重复数字的三位数中,315是从小到大排列的第A12A29+A18+A14=156(个);(4分)(3)可以组成无重复数字的四位偶数A39+A14A18A28=2 296(个).(分0占个位和0不占个位两种情况).(6分)(4)选出一个偶数和三个奇数,组成无重复数字的四位数,这样的四位数有A13A35+C14C35A44=1 140(个).(分选出的偶数是0和不是0两种情况)(9分)(5)由这十个数字组成的所有“渐减数”共有C210+C310+C410+…+C1010=210-C010-C110=1 013(个).(12分)18.(14分)10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求出现如下结果时,各有多少种情况?(1)4只鞋子没有成双的;(2)4只鞋子恰成两双;(3)4只鞋子有2只成双,另两只不成双.解:(1)从10双鞋子中选取4双,有C410种不同的选法,每双鞋子各取一只,分别有2种取法,根据分步乘法计数原理,选取种数为N=C410·24=3 360(种).(4分)(2)从10双鞋子中选取2双有C210种取法,即45种不同取法.(8分)(3)先选取一双有C110种选法,再从9双鞋子中选取2双鞋有C29种选法,每双鞋只取一只各有2种取法,根据分步乘法计数原理,不同取法为N=C110C29·22=1 440(种).(14分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章《计数原理》本章高效整合试卷
(本栏目内容,在学生用书中以活页形式分册装订)
(考试时间90分钟,满分120分)
一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数( )
A .40
B .74
C .84
D .200
解析: 分三类:
第一类,前5个题目的3个,后4个题目的3个, 第二类,前5个题目的4个,后4个题目的2个, 第三类,前5个题目的5个,后4个题目的1个, 由分类加法计数原理得C 53C 43+C 54C 42+C 55C 41=74. 答案: B
2.在⎝
⎛⎭⎪⎫
x +13x 24
的展开式中,x 的幂指数是整数的项共有( )
A .3项
B .4项
C .5项
D .6项
解析: T r +1=C 24r ⎝⎛⎭⎫x 1224-r ⎝⎛⎭⎫x -13r =C 24r x 12-5
6r ,所求x 的幂指数是整数的项必须满足5
6
r 为整数且0≤r ≤24,故r =0,6,12,18,24,所求项共有5项. 答案: C
3.某次文艺汇演,要将A 、B 、C 、D 、E 、F 这六个不同节目编排成节目单,如下表:
序号 1 2 3 4 5 6 节目
如果A 、B 两个节目要相邻,且都不排在第3号位置,那么节目单上不同的排序方式有( )
解析: 把质点沿网格线从点A 到点B 的最短路径分为七步,其中四步向右,三步向下,不同走法的区别在于哪三步向下,因此,本题的结论是:C 73=35.
答案: 35
14.(x +1)3+(x -2)8=a 0+a 1(x -1)+a 2(x -1)2+…+a 8(x -1)8则a 6=________. 解析: ∵(x +1)3+(x -2)8=[(x -1)+2]3+[(x -1)-1]8 ∴a 6(x -1)6=C 82(x -1)6(-1)2=28(x -1)6 ∴a 6=28. 答案: 28
三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)
15.(本小题满分12分)某班有男生28名、女生20名,从该班选出学生代表参加校学代会.
(1)若学校分配给该班1名代表,则有多少种不同的选法?
(2)若学校分配给该班2名代表,且男、女生代表各1名,则有多少种不同的选法? 解析: (1)选出1名代表,可以选男生,也可以选女生,因此完成“选1名代表”这件事分2类:
第1类,从男生中选出1名代表,有28种不同方法; 第2类,从女生中选出1名代表,有20种不同方法. 根据分类加法计数原理,共有28+20=48种不同的选法. (2)完成“选出男、女生代表各1名”这件事,可以分2步完成: 第1步,选1名男生代表,有28种不同方法; 第2步,选1名女生代表,有20种不同方法.
根据分步乘法计数原理,共有28×20=560种不同的选法.
16.(本小题满分12分)若⎝⎛⎭⎫x +1
3x 2n 的第5项的二项式系数与第3项的二项式系数的比是14∶3,求展开式中的常数项.。