2014北京市朝阳区高考数学(文)二模试题(附答案)
2014年高考真题——文科数学(北京卷)解析版 Word版含解析

课标文数【2014·北京文卷】一、选择题1.[2014•北京文卷]若集合{}0,1,2,4A =,{}1,2,3B =,则A B =I ( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}3 【答案】C【解析】{}{}{}2,13,2,14,2,1,0==I I B A . 2. [2014•北京文卷]下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.y x = C.ln y x = D.y x =【答案】B【解析】由定义域为R 排除选项C ,定义域单调递增排除选项A 、D. 3. [2014•北京文卷]已知向量()2,4a =r ,()1,1b =-r,则2a b -=r r ( )A.()5,7B.()5,9C.()3,7D.()3,9 【答案】A【解析】2a -b =()()()7,51,14,22=--. 4. [2014•北京文卷]执行如图所示的程序框图,输出的S 值为( )A.1B.3C.7D.15输出【答案】C【解析】7222210=++=S . 5. [2014•北京文卷]设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分不必要条件 【答案】D【解析】当0<⋅b a 时,由b a >推不出22b a >,反之也不成立. 6. [2014•北京文卷] 已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( ) A.()0,1 B.()1,2 C.()2,4 D.()4,+∞ 【答案】C 【解析】在同一坐标系中作函数()xx h 6=与()x x g 2log =的图象如图,可得()x f 零点所在区间为()4,2.7. [2014•北京文卷]已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=o ,则m 的最大值为( )A.7B.6C.5D.4 【答案】B【解析】由图可知当圆C 上存在点P 使O =∠90APB ,即圆C 与以AB 为直径的圆有公共点,∴143122+≤+≤-m m ,解之得64≤≤m .8. [2014•北京文卷]加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率 p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图 O 5430.80.70.5t p记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟 【答案】B【解析】由题意得⎪⎩⎪⎨⎧++=++=++=c b a c b a c b a 5255.04168.0397.0,解之得⎪⎩⎪⎨⎧-==-=25.12.0c b a ,∴()0625.075.32.025.12.022+--=-+-=t t t p ,即当75.3=t 时,P 有最大值.二、填空题9. [2014•北京文卷]若()()12x i i i x R +=-+∈,则x = . 【答案】2【解析】∵()i xi i i x 211+-=+-=+,∴2=x . 10. [2014•北京文卷]设双曲线C 的两个焦点为()2,0-,()2,0,一个顶点式()1,0,则C 的方程为.()0,m A -()0,m BP【答案】122=-y x【解析】由题意设双曲线方程1222=-by x ,又∵()2221=+b ,∴12=b即双曲线方程为122=-y x .11. [2014•北京文卷]某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为 .侧(左)视图正(主)视图11122【答案】 22【解析】三棱锥的直观图如图所示,并且ABC PB 面⊥,2=PB ,2,2===BC AC AB ,222222=+=PA ,()62222=+=PC .12. [2014•北京文卷]在ABC ∆中,1a =,2b =,1cos 4C =,则c = ;sin A = . 【答案】2、815PBAC【解析】由余弦定理得24112241cos 2222=⨯⨯⨯-+=-+=C ab b a c ,即2=c ; 872221442cos 222=⨯⨯-+=-+=bc a c b A ,∴815871sin 2=⎪⎭⎫⎝⎛-=A . 13. [2014•北京文卷]若x 、y 满足11010y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,则3z x y =+的最小值为 .【答案】1【解析】可行域如图,当目标函数线x y z 3+=过可行域内A 点时,z 有最小值,联立⎩⎨⎧=-+=011y x y ,解之得()1,0A ,11103min =⨯+⨯=Z .14. [2014•北京文卷] 【答案】42【解析】交货期最短即少耽误工期,所以先让徒弟加工原料B ,交货期为4215216=++天. 顾客请一位工艺师把A 、B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这 项任务,每件颜料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都 完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序 时间 原料粗加工精加工原料A 9 15 原料B6 21则最短交货期为 工作日15. [2014•北京文卷]已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.1=y 01=--y x 01=-+y x xy 3-=A(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.【解析】⑴ 设等差数列{}n a 的公差为d ,由题意得41123333a a d --=== 所以()()11312n a a n d n n =+-==L ,,. 设等比数列{}n n b a -的公比为q ,由题意得·· 344112012843b a q b a --===--,解得2q =. 所以()11112n n n n b a b a q ---=-=. 从而()13212n n b n n -=+=L ,, ⑵ 由⑴知()13212n n b n n -=+=L ,,.数列{}3n 的前n 项和为()312n n +,数列{}12n -的前n 项和为1212112n n -=--×. 所以,数列{}n b 的前n 项和为()31212n n n ++-.16. [2012•北京文卷] 函数()3sin 26f x x π⎛⎫=+⎪⎝⎭的部分图象如图所示. (1)写出()f x 的最小正周期及图中0x 、0y 的值; (2)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值. 【解析】⑴ ()f x 的最小正周期为π07π6x =. 03y =⑵ 因为ππ212x ⎡⎤∈--⎢⎥⎣⎦,,所以π5π2066x ⎡⎤+∈-⎢⎥⎣⎦,.于是当π206x +=,即π12x =-时,()f x 取得最大值0;当ππ262x +=-,即π3x =-时,()f x 取得最小值3-. 17. [2014•北京文卷]如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,E 、F 分别为11A C 、BC 的中点.(1)求证:平面ABE ⊥平面11B BCC ; (2)求证:1//C F 平面ABE ; (3)求三棱锥E ABC -的体积.C 1B 1A 1FE CBA解:(Ⅰ)在三棱柱111ABC A B C -中,1BB ⊥底面ABC .所以1BB AB ⊥. 又因为AB BC ⊥.所以AB ⊥平面11B BCC .所以平面ABE ⊥平面11B BCC .(Ⅱ)取AB 中点G ,连结EG ,FG . 因为E ,F 分别是11A C ,BC 的中点,所以FG AC ∥,且12FG AC =.因为11AC A C ∥,且11AC A C =, 所以1FG EC ∥,且1FG EC =. 所以四边形1FGEC 为平行四边形. 所以1C F EG ∥.又因为EG ⊂平面ABE ,1C F ⊄平面ABE ,GC 1B 1A 1FE CBA所以1C F ∥平面ABE .(Ⅲ)因为12AA AC ==,1BC =,AB BC ⊥,所以AB ==. 所以三棱锥E ABC -的体积111112332ABC V S AA =⋅=⨯⨯=△. 18. [2014•北京文卷]从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论) 解:(Ⅰ)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有62210++=名,所以样本中的学生课外阅读时间少于12小时的频率是1010.9100-=. 从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9.(Ⅱ)课外阅读时间落在组[46),的有17人,频率为0.17,所以0.170.0852a ===频率组距. 课外阅读时间落在组[810),的有25人,频率为0.25, 所以0.250.1252b ===频率组距. (Ⅲ)样本中的100名学生课外阅读时间的平均数在第4组. 19. [2014•北京文卷] 已知椭圆C :2224x y +=. (1) 求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2y =,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值.解:(Ⅰ)由题意,椭圆C 的标准方程为22142x y +=.所以24a =,22b =,从而2222c a b =-=. 因此2a =,c =.故椭圆C的离心率c e a ==.(Ⅱ)设点A ,B 的坐标分别为()2t ,,()00x y ,,其中00x ≠.因为OA OB ⊥,所以0OA OB ⋅=u u u r u u u r, 即0020tx y +=,解得02y t x =-. 又220024x y +=,所以()()222002AB x t y =-+- ()22000022y x y x ⎛⎫=++- ⎪⎝⎭2220002044y x y x =+++()2202224442x x x x --=+++ ()22002084042x x x =++<≤. 因为()22002084042x x x +<≥≤,且当204x =时等号成立,所以28AB ≥. 故线段AB长度的最小值为 20. [2014•北京文卷] 已知函数3()23f x x x =-.(1)求()f x 在区间[2,1]-上的最大值;(2)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;(3)问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?(只需写出结论)解:(Ⅰ)由()323f x x x =-得()263f x x '=-.令()0f x '=,得x =或x =.因为()210f -=-,f ⎛= ⎝()11f f ==-所以()f x 在区间[]21-,上的最大值为f ⎛= ⎝ . (Ⅱ)设过点()1P t ,的直线与曲线()y f x =相切于点()00x y ,,则300023y x x =-,且切线斜率为2063k x =-,所以切线方程为()20063y y x -=-()0x x -,因此()()2000631t y x x -=-- . 整理得3204630x x t -++=. 设()32463g x x x t =-++,则“过点()1P t ,存在3条直线与曲线()y f x =相切”等价于“()g x 有3个不同零点”. ()()21212121g x x x x x '=-=-.()g x 与()g x '的情况如下:)当(0)30g t =+≤,即3t -≤时,此时()g x 在区间(]1-∞,和(1)+∞,上分别至多有1个零点,所以()g x 至多有2个零点.当(1)10g t =+≥,即1t -≥时,此时()g x 在区间(0)-∞,和[)0+∞,上分别至多有1个零点,所以()g x 至多有2个零点.当()00g >且()10g <,即31t -<<-时,因为()()1702110g t g t -=-<=+>,,所以()g x 分别在区间[)10-,,[)01,和[)12,上恰有1个零点.由于()g x 在区间()0-∞,和()1+∞,上单调,所以()g x 分别在区间()0-∞,和[)1-∞,上恰有1个零点.综上可知,当过点()1P t ,存在3条直线与曲线()y f x =相切时,t 的取值范围是()31--, .(Ⅲ)过点()12A -, 存在3条直线与曲线()y f x =相切;过点()210B ,存在2条直线与曲线()y f x =相切; 过点()02C , 存在1条直线与曲线()y f x =相切.:。
2014年北京高考文科数学试题含答案(Word版)(卷)

2014年普通高等学校招生全国统一考试北京卷文科数学本试卷共6页,150分。
考试时长120分钟,。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的4个选项中,选出符合题目要求的一项。
1.若集合{}0,1,2,4A =,{}1,2,3B =,则A B =( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}32.下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.y x = C.ln y x = D.y x =3.已知向量()2,4a =,()1,1b =-,则2a b -=( )A.()5,7B.()5,9C.()3,7D.()3,94.执行如图所示的程序框图,输出的S 值为( )A.1B.3C.7D.15 输出5.设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分不必要条件6.已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( ) A.()0,1 B.()1,2 C.()2,4 D.()4,+∞7.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点 P ,使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.48.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率p 与加工时间t (单位:分钟)学 科网满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图 记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟第2部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2014年北京高考数学真题及答案(文科)

绝密★启封并使用完毕前2014年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共6页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合{0,1,2,4}IB=,则A B=A=,{1,2,3}(A){0,1,2,3,4}(B){0,4}(C){1,2}(D){3}(2)下列函数中,定义域是R且为增函数的是(A)e xy x=y-=(B)3(C)lny x==(D)||y x(3)已知向量(2,4)a bb,则2-==-=a,(1,1)(A)(5,7)(B)(5,9)(C)(3,7)(D)(3,9)(4)执行如图所示的程序框图,输出的S值为Array(A)1(B)3(C)7(D)15数学(文)(北京卷)第1 页(共13 页)数学(文)(北京卷) 第 2 页(共 13 页)(5)设,a b 是实数,则“a b >”是“22a b >”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(6)已知函数26()log f x x x =-.在下列区间中,包含()f x 零点的区间是 (A )(0,1) (B )(1,2) (C )(2,4)(D )(4,)+∞(7)已知圆22:(3)(4)1C x y -+-=和两点(,0),(,0)A m B m - (0m >).若圆C 上存在点P ,使得90APB ∠=°,则m 的最大值为 (A )7 (B )6 (C )5(D )4(8)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系2p at bt c =++(,,a b c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为 (A )3.50分钟 (B )3.75分钟 (C )4.00分钟 (D )4.25分钟数学(文)(北京卷) 第 3 页(共 13 页)第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2014年北京高考文科数学试题及答案(Word版)

2014 年一般高等学校招生全国一致考试北京卷文科数学本试卷共 6 页, 150 分。
考试时长120 分钟,。
考生务势必答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8 小题,每题 5 分,共 40 分。
在每题列出的 4 个选项中,选出切合题目要求的一项。
1.若会合A 0,1,2,4 , B 1,2,3 ,则A B ()A. 0,1,2,3,4B. 0,4C. 1,2D. 32.以下函数中,定义域是R 且为增函数的是()A. y e xB. y xC. y ln xD. y x3.已知向量a 2,4 , b 1,1 ,则 2a b ()A. 5,7B. 5,9C. 3,7D. 3,94.履行以下图的程序框图,输出的S 值为()A. 1B. 3C. 7D. 15开始否是输出结束5.设a、b是实数,则“ a b ”是“ a2 b2”的()A. 充分而不用要条件B. 必需而不用要条件C.充分必需条件D. 既不充分不用要条件6.已知函数f x 6log 2 x ,在以下区间中,包括 f x 零点的区间是()xA. 0,1 1,2 2,4 D. 4,B. C.7.已知圆C : x2 21和两点A m,0 , B m,0 m 0 ,若圆C上存在点3 y 4P ,使得 APB 90 ,则 m 的最大值为()A. 7B. 6C. 5D. 48.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”at 2 . 咋特定条件下,可食用率p 与加工时间t(单位:分钟)学科网知足的函数关系 p bt c ( a 、b、 c 是常数),以下图记录了三次实验的数据. 依据上述函数模型和实验数据,能够获得最正确加工时间为()A. 3.50分钟B. 3.75分钟C. 4.00分钟D. 4.25分钟p0.80.70.5O 3 4 5 t第 2 部分(非选择题共 110 分)二、填空题共 6 小题,每题 5 分,共 30 分。
2014年北京市数学(文)高考真题含答案带解析(超完美word版)

2014年普通高等学校招生全国统一考试北京卷文科数学一、选择题共8小题,每小题5分,共40分。
在每小题列出的4个选项中,选出符合题目要求的一项。
1.若集合{}0,1,2,4A =,{}1,2,3B =,则A B = ( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}3 2.下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.y x =C.ln y x =D.y x =3.已知向量()2,4a = ,()1,1b =-,则2a b -= ( )A.()5,7B.()5,9C.()3,7D.()3,9 4.执行如图所示的程序框图,输出的S 值为( )A.1B.3C.7D.155.设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分不必要条件 6.已知函数()26log f x x x=-,在下列区间中, 包含()f x 零点的区间是( ) A.()0,1B.()1,2C.()2,4D.()4,+∞7.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P , 使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.4 8.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”. 在特定条件下,可食用率p 与加工时间t (单位:分钟) 满足的函数关系2p at bt c =++(a 、b 、c 是常数), 图中记录了三次实验的数据.根据上述函数模型和实验数据, 可以得到最佳加工时间为( )A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟二、填空题共6小题,每小题5分,共30分。
9.若()()12x i i i x R +=-+∈,则x = . 10.设双曲线C的两个焦点为(),),一个顶点式()1,0,则C 的方程为.11.某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为.侧(左)视图正(主)视图12.在ABC ∆中,1a =,2b =,1cos 4C =,则c = ;sin A = . 13.若x 、y 满足11010y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,则z y +的最小值为 .14.顾客请一位工艺师把A 、B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这 项任务,每件颜料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都 完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:则最短交货期为 工作日.三、解答题共6小题,共80分。
数学_2014年某校高考数学二模试卷(文科)(含答案)

2014年某校高考数学二模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合P ={3, 4, 5},Q ={6, 7},定义P ∗Q ={(a, b)|a ∈P, b ∈Q},则P ∗Q 的子集个数为( )A 7B 12C 32D 64 2. 已知复数a−2i i=b +i (a ,b ∈R ,i 为虚数单位),则a −2b =( )A 1B 2C 3D 43. “p 或q 为真命题”是“p 且q 为真命题”的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件 4. 一个几何体的三视图如图所示,则该几何体的体积是( )A 6B 8C 10D 12 5. 已知数阵[a 11a 12a 13a 21a 22a 23a 31a 32a 33]中,每行的3个数依次成等差数列,每列的3个数也依次成等差数列,若a 22=8,则这9个数的和为( ) A 16 B 32 C 36 D 726. 如图所示的程序框图,它的输出结果是( )A 3B 4C 5D 67. 已知三个实数2,m ,8构成一个等比数列,则圆锥曲线x 2m +y 22=1的离心率为( )A √22 B √3 C √22或√3 D √22或√628. 若a ≥0,b ≥0,且当{x ≥0y ≥0x +y ≤1时,恒有ax +by ≤1,则以a ,b 为坐标的点P(a, b)所形成的平面区域的面积是( ) A 12B π4C 1D π29. 在平行四边形ABCD 中,AD =1,∠BAD =60∘,E 为CD 的中点.若AD →⋅BE →=12,则AB的长为( )A 12B 1C 32D 210. 过抛物线y 2=2px(p >0)的焦点F ,斜率为43的直线交抛物线于A ,B 两点,若AF →=λFB →(λ>1),则λ的值为( ) A 5 B 4 C 43 D 5211. 已知函数f(x)对定义域R 内的任意x 都有f(x)=f(4−x),且当x ≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a <4则( )A f(2a )<f(3)<f(log 2a)B f(3)<f(log 2a)<f(2a )C f(log 2a)<f(3)<f(2a )D f(log 2a)<f(2a )<f(3)12. 函数f(x)={1−|x −1|,x ∈[0,2]12f(x −2),x ∈(2,+∞),则下列说法中正确命题的个数是( )①函数y =f(x)−ln(x +1)有3个零点;②若x >0时,函数f(x)≤kx 恒成立,则实数k 的取值范围是[32, +∞);③函数f(x)的极大值中一定存在最小值;④f(x)=2k f(x +2k),(k ∈N),对于一切x ∈[0, +∞)恒成立. A 1 B 2 C 3 D 4二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题纸的相应位置. 13. 若非零向量a →、b →,满足|a →|=|b →|,且(2a →+b →)⋅b →=0,则a →与b →的夹角大小为________. 14. 函数f(x)=sinx +cosx ,在各项均为正数的数列{a n }中对任意的n ∈N ∗都有f(a n +x)=f(a n −x)成立,则数列{a n }的通项公式可以为(写一个你认为正确的)________. 15. 将一颗骰子先后投掷两次分别得到点数a ,b ,则直线ax +by =0与圆(x −2)2+y 2=2有公共点的概率为________.16. 已知四棱柱ABCD −A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AA 1=2,底面ABCD 的边长均大于2,且∠DAB =45∘,点P 在底面ABCD 内运动且在AB ,AD 上的射影分别为M ,N ,若|PA|=2,则三棱锥P −D 1MN 体积的最大值为________.三、解答题:本大题共6个小题,共70分.解答应写文字说明、证明过程或演算步骤 17. 在△ABC 中,已知角A 、B 、C 所对的边分别为a 、b 、c ,直l 1:ax +y +1=0与直线l 2:(b 2+c 2−bc)x +ay +4=0互相平行(其中a ≠4) (1)求角A 的值,(2)若B ∈[π2,2π3),求sin 2A+C 2+cos2B 的取值范围.18. 从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[155, 160),第二组[160, 165),…,第八组[190, 195],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人. (1)求第七组的频率;(2)估计该校的800名男生的身高的中位数以及身高在180cm 以上(含180cm )的人数; (3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x ,y ,事件E ={|x −y|≤5},事件F ={|x −y|>15},求P(E ∪F).19. 如图,四边形ABCD 中,AB ⊥AD ,AD // BC ,AD =6,BC =4,AB =2,E 、F 分别在BC 、AD 上,EF // AB .现将四边形ABEF 沿EF 折起,使得平面ABEF ⊥平面EFDC .(1)当BE =1,是否在折叠后的AD 上存在一点P ,且AP →=λPD →,使得CP // 平面ABEF ?若存在,求出λ的值;若不存在,说明理由;(2)设BE =x ,问当x 为何值时,三棱锥A −CDF 的体积有最大值?并求出这个最大值. 20. 已知函数f(x)=e x ,若函数g(x)满足f(x)≥g(x)恒成立,则称g(x)为函数f(x)的下界函数.(1)若函数g(x)=kx 是f(x)的下界函数,求实数k 的取值范围;(2)证明:对任意的m ≤2,函数ℎ(x)=m +lnx 都是f(x)的下界函数.21. 已知F 1、F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,O 为坐标原点,点P(−1, √22)在椭圆上,线段PF 2与y 轴的交点M 满足PM →+F 2M →=0→.(1)求椭圆的标准方程;(2)圆O 是以F 1F 2为直径的圆,一直线l:y =kx +m 与圆O 相切,并与椭圆交于不同的两点A 、B ,当OA →⋅OB →=λ且满足23≤λ≤34时,求△OAB 的面积S 的取值范围.四、选做题:请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分【选修4-1:几何证明选讲】22. 选修4一1:几何证明选讲如图,C是以AB为直径的半圆O上的一点,过C的直线交直线AB于E,交过A点的切线于D,BC // OD.(1)求证:DE是圆O的切线;(2)如果AD=AB=2,求EB.【选修4-4:坐标系与参数方程】23. 在极坐标系内,已知曲线C1的方程为ρ2−2ρ(cosθ−2sinθ)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为{5x=1−4t5y=18+3t(t为参数).(1)求曲线C1的直角坐标方程以及曲线C2的普通方程;(2)设点P为曲线C2上的动点,过点P作曲线C1的两条切线,求这两条切线所成角余弦的最小值.【选修4-5:不等式选讲】24. 设函数f(x)=|2x+1|−|x−4|.(1)求不等式f(x)>2的解集;(2)求函数f(x)的最小值.2014年某校高考数学二模试卷(文科)答案1. D2. C3. B4. D5. D6. C7. C8. C9. D10. B11. C12. B13. 120∘14. a n=(n−34)π(n∈Z)15. 71216. 13(√2−1)17. 解:(1)l1 // l2,得a2=b2+c2−bc(a≠4)即b2+c2−a2=bc…∴ cosA=b2+c2−a22bc =bc2bc=12∵ A∈(0, π),∴ A=π3.…(2)sin2A+C2+cos2B=cos2B2+2cos2B−1=cosB+12+2cos2B−1=2cos2B+12cosB−1 2=2(cosB+18)2−1732…∵ B∈[π2,2π3), ∴ cosB∈(−12,0]…∴ 2(cosB+18)2−1732∈[−1732,−14)…即sin2A+C2+cos2B的取值范围为[−1732,−14)…18. 解:(1)第六组的频率为450=0.08,所以第七组的频率为1−0.08−5×(0.008×2+0.016+0.04×2+0.06)=0.06;(2)身高在第一组[155, 160)的频率为0.008×5=0.04,身高在第二组[160, 165)的频率为0.016×5=0.08,身高在第三组[165, 170)的频率为0.04×5=0.2,身高在第四组[170, 175)的频率为0.04×5=0.2,由于0.04+0.08+0.2=0.32<0.5,0.04+0.08+0.2+0.2=0.52>0.5估计这所学校的800名男生的身高的中位数为m,则170<m<175由0.04+0.08+0.2+(m−170)×0.04=0.5得m=174.5所以可估计这所学校的800名男生的身高的中位数为174.5由直方图得后三组频率为0.06+0.08+0.008×5=0.18,所以身高在180cm以上(含180cm)的人数为0.18×800=144人.(3)第六组[180, 185)的人数为4人,设为a,b,c,d,第八组[190, 195]的人数为2人,设为A,B,则有ab,ac,ad,bc,bd,cd,aA,bA,cA,dA,aB,bB,cB,dB,AB共15种情况,因事件E={|x−y|≤5}发生当且仅当随机抽取的两名男生在同一组,所以事件E包含的基本事件为ab,ac,ad,bc,bd,cd,AB共7种情况,故P(E)=715.由于|x−y|max=195−180=15,所以事件F={|x−y|>15}是不可能事件,P(F)=0由于事件E和事件F是互斥事件,所以P(E∪F)=P(E)+P(F)=715.19. CP // 平面ABEF成立.(2)∵ 平面ABEF⊥平面EFDC,ABEF∩平面EFDC=EF,AF⊥EF,∴ AF⊥平面EFDC,∵ BE=x,∴ AF=x,(0<x<4),FD=6−x,故三棱锥A−CDF的体积V=13×12×2×(6−x)x=13[−(x−3)2+9]=−13(x−3)2+3,∴ x =3时,三棱锥A −CDF 的体积V 有最大值,最大值为3. 20. 解:(1)若g(x)=kx 为f(x)=e x 的下界函数,易知k <0不成立,而k =0必然成立. 当k >0时,若g(x)=kx 为f(x)=e x 的下界函数,则f(x)≥g(x)恒成立, 即e x −kx ≥0恒成立.令ϕ(x)=e x −kx ,则ϕ′(x)=e x −k .易知函数ϕ(x)在(−∞, lnk)单调递减,在(lnk, +∞)上单调递增.由ϕ(x)≥0恒成立得ϕ(x)min =ϕ(lnk)=k −klnk ≥0,解得0<k ≤e . 综上知0≤k ≤e .(2)由(1)知函数G(x)=ex 是f(x)=e x 的下界函数,即f(x)≥G(x)恒成立. 由于 m ≤2,构造函数F(x)=ex −lnx −m(x >0), 则 F′(x)=e −1x =ex−1x,易知F(x)min =F(1e )=2−m ≥0,即ℎ(x)=m +lnx 是G(x)=ex 的下界函数, 即G(x)≥ℎ(x)恒成立.所以f(x)≥G(x)≥ℎ(x)恒成立,即m ≤2时,ℎ(x)=m +lnx 是f(x)=e x 的下界函数. 21. 解:(1)∵ PM →+F 2M →=0→, ∴ 点M 是线段PF 2的中点, ∴ OM 是△PF 1F 2的中位线, 又OM ⊥F 1F 2, ∴ PF 1⊥F 1F 2,∴ {c =11a 2+12b 2=1a 2=b 2+c 2,解得a 2=2,b 2=1,c 2=1, ∴ 椭圆的标准方程为x 22+y 2=1. (2)∵ 圆O 与直线l 相切, ∴√k 2+1=1,即m 2=k 2+1,由{x 22+y 2=1y =kx +m,消去y , 得:(1+2k 2)x 2+4kmx +2m 2−2=0, ∵ 直线l 与椭圆交于两个不同点, ∴ Δ>0,∴ k 2>0,设A(x 1, y 1),B(x 2, y 2), 则x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−21+2k 2,y 1y 2=(kx 1+m)(kx 2+m) =k 2x 1x 2+km(x 1+x 2)+m 2 =m 2−2k 21+2k 2,OA →⋅OB →=x 1x 2+y 1y 2=1+k 21+2k 2=λ,∵ 23≤λ≤34,∴ 23≤1+k 21+2k 2≤34,解得:12≤k 2≤1, S =S △AOB =12|AB|⋅1=12√1+k 2√(−4km 1+2k 2)2−42m 2−21+2k 2 =√2(k 4+k 2)4(k 4+k 2)+1,设μ=k 4+k 2,则34≤μ≤2,S =√2μ4μ+1=√24+1μ,μ∈[34,2],∴ S 关于μ在[34,2]上单调递增, S(34)=√64,S(2)=23.∴√64≤S ≤23.22. (1)证:连接AC ,AB 是直径,则BC ⊥AC由BC // OD ⇒OD ⊥AC则OD 是AC 的中垂线⇒∠OCA =∠OAC ,∠DCA =∠DAC ,⇒∠OCD =∠OCA +∠DCA =∠OAC +∠DAC =∠DAO =90∘. ⇒OC ⊥DE ,所以DE 是圆O 的切线.(2) BC // OD ⇒∠CBA =∠DOA ,∠BCA =∠DAO ⇒△ABC ∽△AOD ⇒BC OA =AB OD ⇒BC =OA ⋅AB OD =1×2√5=2√55⇒BC OD =25⇒BE OE =25⇒BE OB =23 ⇒BE =2323. 解:(1)对于曲线C 1的方程为ρ2−2ρ(cosθ−2sinθ)+4=0,可化为直角坐标方程x 2+y 2−2x +4y +4=0,即(x −1)2+(y +2)2=1; 对于曲线C 2的参数方程为{5x =1−4t5y =18+3t(t 为参数),可化为普通方程3x +4y −15=0.(2)过圆心(1, −2)点作直线3x +4y −15=0的垂线,此时两切线成角θ最大,即余弦值最小.则由点到直线的距离公式可知,d =√32+42=4,则sin θ2=14,因此,cosθ=1−2sin 2θ2=78,因此两条切线所成角的余弦值的最小值是78.24. ①由{−x −5>2x <−12 ,解得x <−7; ②{3x −3>2−12≤x ≤4 ,解得53<x ≤4;③{x +5>2x >4,解得x >4;综上可知不等式的解集为{x|x <−7或x >53}.如图可知f(x)min =−92.。
2014年普通高等学校招生全国统一考试北京卷文科数学及答案

2014年普通高等学校招生全国统一考试(北京卷)数 学(文史类)本试卷共6页,150分。
考试时长120分钟,。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的4个选项中,选出符合题目要求的一项。
1.若集合{}0,1,2,4A =,{}1,2,3B =,则AB =( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}3 2.下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.y x = C.ln y x = D.y x = 3.已知向量()2,4a =,()1,1b =-,则2a b -=( )A.()5,7B.()5,9C.()3,7D.()3,9 4.执行如图所示的程序框图,输出的S 值为( )A.1B.3C.7D.15输出5.设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分 不必要条件 6.已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( )A.()0,1B.()1,2C.()2,4D.()4,+∞ 7.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.4 8.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率p 与加工时间t (单位:分钟)学 科网满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟第2部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市朝阳2014届高三二模文科数学试卷(带解析)

北京市朝阳2014届高三二模文科数学试卷(带解析)1.若全集{},,,U a b c d =,{},A a b =,{}B c =,则集合{}d 等于( )(A )()U A B ð (B )A B (C )A B (D )()U AB ð 【答案】A 【解析】 试题分析:因为{,,}A B a b c =,所以()U A B ð{}.d =而A B .φ=()U AB ð.U =所以选A.考点:集合运算2.下列函数中,既是奇函数又在区间0,+∞()上单调递增的函数为( )(A )sin y x = (B )ln y x = (C )3y x = (D )2x y = 【答案】C【解析】试题分析:sin y x =是奇函数但在区间0,+∞()上不是单调函数.ln y x =在区间0,+∞()上单调递增但不是奇函数,3y x =既是奇函数又在区间0,+∞()上单调递增的函数,2xy =在区间0,+∞()上单调递增但不是奇函数.考点:函数奇偶性及单调性3.已知抛物线22x y =,则它的焦点坐标是( )(A )1,04⎛⎫ ⎪⎝⎭ (B )10,2⎛⎫ ⎪⎝⎭ (C )10,4⎛⎫ ⎪⎝⎭ (D )1,02⎛⎫ ⎪⎝⎭ 【答案】B【解析】试题分析:因为抛物线22(0)x py p =>的焦点坐标为(0,),2p 所以抛物线22x y =的焦点坐标是10,2⎛⎫⎪⎝⎭.考点:抛物线焦点4.执行如图所示的程序框图.若输入3a =,则输出i 的值是( )(A )2 (B ) 3 (C ) 4 (D ) 5 【答案】C 【解析】试题分析:第一次循环,9,1,a i ==第二次循环,21,2,a i ==第三次循环,45,3,a i ==第四次循环,93,4,a i ==结束循环,输出 4.i = 考点:循环结构流程图5.由直线10x y -+=,50x y +-=和10x -=所围成的三角形区域(包括边界)用不等式组可表示为( ) (A )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩ (B )10,50,1.x y x y x -+≥⎧⎪+-≤⎨⎪≥⎩ (C )10,50,1.x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩ (D )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≤⎩【答案】A 【解析】试题分析: 由题意得:所围成的三角形区域在直线10x y -+=的上方,直线50x y +-=的下方,及直线10x -=的右侧,所以10x y -+≤,50x y +-≤,10.x -≥ 考点:不等式组表示平面区域6.在区间ππ[-,]上随机取一个实数x ,则事件:“cos 0x ≥”的概率为( )(A )14 (B ) 34 (C )23 (D )12【答案】D 【解析】试题分析:由cos 0x ≥,x ∈ππ[-,]得:[,]22x ππ∈-,所以事件:“cos 0x ≥”的概率为()122.()2ππππ--=-- 考点:几何概型概率7.设等差数列{}n a 的公差为d ,前n 项和为n S .若11a d ==,则8n n S a +的最小值为( ) (A )10 (B )92 (C )72 (D)12+【答案】B 【解析】试题分析:由题意得:(1),2n n n n a n S +==,所以8n n S a+1819.222n n +=+≥+=当且仅当4n =时取等号.因此8n n S a +的最小值为92.考点:基本不等式求最值8.已知平面上点{2200(,)()()16,P x y x x y y ∈-+-=其中}22004x y +=,当0x ,0y 变化时,则满足条件的点P 在平面上所组成图形的面积是( )(A )4π (B )16π ( C )32π (D )36π 【答案】C 【解析】试题分析:圆心00(,)x y 在圆224x y +=上运动 一周,点P 在平面上所组成图形为以坐标原点为圆心,6为半径的实心圆减去以坐标原点为圆心,2为半径的实心圆的一个圆环,面积是226232πππ-=.考点:圆的方程,动点轨迹9.计算12i1i +=- . 【答案】13i 22-+【解析】 试题分析:12i (12i)(1+i)13.1i (1i)(1+i)2i++-+==-- 考点:复数运算10.已知两点()1,1A ,()1,2B -,若12BC BA =,则C 点的坐标是 . 【答案】30,2⎛⎫ ⎪⎝⎭【解析】试题分析:设C 点的坐标是(,)x y ,则由12BC BA =得1(1,2)(11,12),2x y +-=+-即30,.2x y ==C 点的坐标是30,2⎛⎫⎪⎝⎭.考点:向量坐标运算11.圆心在x 轴上,半径长是4,且与直线5x =相切的圆的方程是 .【答案】()22116x y -+=和()22916x y -+=【解析】试题分析:设圆心为(),a b ,因为与直线5x =相切,所以|5|4,1a r a -===或9.a =因此圆的方程是()22116x y -+=和()22916x y -+=考点:圆的标准方程12.由两个四棱锥组合而成的空间几何体的三视图如图所示,则其体积是 ;表面积是 .【答案】3, 【解析】2的正方形.因此体积为21223⨯=表面积为8个全等的边长为2的等边三角形面积之和,即282= 考点:三视图 13.设一列匀速行驶的火车,通过长860m 的隧道时,整个车身都在隧道里的时间是22s .该列车以同样的速度穿过长790m 的铁桥时,从车头上桥,到车尾下桥,共用时33s ,则这列火车的长度为___m . 【答案】200 【解析】试题分析:设这列火车的长度为xm ,则由题意得:860790,200.2233x xx -+==.考点:实际问题应用题14.在如图所示的棱长为2的正方体1111ABCD A BC D -中,作与平面1ACD 平行的截面,则截得的三角形中,面积最大的值是___;截得的平面图形中,面积最大的值是___.AC【答案】【解析】试题分析:截得的三角形中,面积最大的是三角形11ACB ,面积为2=的平面图形中,面积最大的是正六边形,如图,面积为26=考点:空间想象15.在ABC ∆中,a ,b ,c 分别是角A B C ,,的对边.已知a =π3A =. (1)若b =C 的大小; (2)若2c =,求边b 的长. 【答案】(1),125π(2)4b =. 【解析】 试题分析:(1)解三角形问题,一般利用正余弦定理进行边角转化. 由正弦定理由于B 为三角形内角,b a <,则4B π=,所以3412C ππ5π=π--=.(2)由余弦定理222cos 2b c a A bc +-=得2141224b b +-=整理得2280b b --=,又0b >,所以4b =.本题也可由正弦定理sin sin a c A C =2sin C=,解得1sin 2C =.由于a c >,所以π6C =.由π3A =,得π2B =. 由勾股定理222b c a =+,解得4b =.(1由于B 为三角形内角,b a <,则4B π=,所以3412C ππ5π=π--=. 6分(2)依题意,222cos 2b c a A bc+-=,即2141224b b +-=.整理得2280b b --=,又0b >,所以4b =. 13分另解: 由于sin sin a c A C =2sin C=,解得1sin 2C =.由于a c >,所以π6C =. 由π3A =,得π2B =. 由勾股定理222b c a =+,解得4b =. 13分考点:正余弦定理16.某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段75,80),80,85),[85,90),[90,95),[95,100][[(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.【答案】(Ⅰ)6,(Ⅱ)7.15【解析】 试题分析:(Ⅰ)根据频率分布直方图中小长方形面积为频率,而频数为总数与频率之积. 因此参加社区服务在时间段[90,95)的学生人数为200.0454⨯⨯=(人),参加社区服务在时间段[95,100]的学生人数为200.0252⨯⨯=(人).所以参加社区服务时间不少于90小时的学生人数为 4+26=(人).(Ⅱ)解概率应用题,要注意“设、列、解、答”. 设所选学生的参加服务时间在同一时间段内为事件A .由(Ⅰ)可知,参加社区服务在时间段,95)[90的学生有4人,记为,,,a b c d ;参加社区服务在时间段5,100[9]的学生有2人,记为,A B .从这6人中任意选取2人有,,,,,,,,a b ac ad a A a B b c b d b A b B c d共15种情况.事件A 包括,,,,,,a b a c a d b c b d c d AB 共7种情况.所以所选学生的服务时间在同一时间段内的概率7()15P A =. 解:(Ⅰ)由题意可知,参加社区服务在时间段[90,95)的学生人数为200.0454⨯⨯=(人), 参加社区服务在时间段[95,100]的学生人数为200.0252⨯⨯=(人).所以参加社区服务时间不少于90小时的学生人数为 4+26=(人). 5分 (Ⅱ)设所选学生的参加服务时间在同一时间段内为事件A . 由(Ⅰ)可知,参加社区服务在时间段,95)[90的学生有4人,记为,,,a b c d ; 参加社区服务在时间段5,100[9]的学生有2人,记为,A B .从这6人中任意选取2人有,,,,,,,,,,,,,,ab ac ad aA aB bc bd bA bB cd cA cB dA dB AB 共15种情况.事件A 包括,,,,,,ab ac ad bc bd cd AB 共7种情况. 所以所选学生的服务时间在同一时间段内的概率7()15P A =. 13分 考点:频率分布直方图,古典概型概率17.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD . (Ⅰ)若E ,F 分别为PC ,BD 中点,求证:EF ∥平面PAD ; (Ⅱ)求证:PA ⊥CD ;(Ⅲ)若2PA PD AD ==,求证:平面PAB ⊥平面PCD .A【答案】(Ⅰ)详见解析,(Ⅱ)详见解析,(Ⅲ)详见解析. 【解析】 试题分析:(Ⅰ)证明线面平行,关键在于找出线线平行.本题条件含中点,故从中位线上找线线平行. E ,F 分别为PC ,BD 中点,在△PAC 中,E 是PC 中点,F 是AC 中点,所以EF ∥PA .又因为EF ⊄平面PBC ,PA ⊂平面BC P ,所以EF ∥平面PAD .(Ⅱ)由面面垂直性质定理可得线面垂直,因为平面PAD ⊥底面ABCD ,且平面PAD 平面=ABCD AD ,又CD AD ⊥,CD ⊂平面ABCD , 所以CD ⊥面PAD .又因为PA ⊂平面PAD ,所以CD PA ⊥.即PA ⊥CD .(Ⅲ)证明面面垂直,关键找出线面垂直. 在△PAD中,因为2PA PD AD ==,所以PA PD ⊥.由(Ⅱ)可知PA ⊥CD ,且=C D P D D , 所以PA ⊥平面PCD .又因为PA ⊂平面PAB ,所以平面PAB ⊥平面PCD . 证明:(Ⅰ)如图,连结AC . 因为底面ABCD 是正方形,所以AC 与BD 互相平分. 又因为F 是BD 中点, 所以F 是AC 中点.在△PAC 中,E 是PC 中点,F 是AC 中点, 所以EF ∥PA .又因为EF ⊄平面PAD ,PA ⊂平面PAD ,所以EF ∥平面PAD . 4分 (Ⅱ)因为平面PAD ⊥底面ABCD ,且平面PAD 平面=ABCD AD , 又CD AD ⊥,CD ⊂平面ABCD , 所以CD ⊥面PAD . 又因为PA ⊂平面PAD ,所以CD PA ⊥.即PA ⊥CD . 9分(Ⅲ)在△PAD 中,因为PA PD AD ==, 所以PA PD ⊥. 由(Ⅱ)可知PA ⊥CD ,且=CD PD D ,所以PA ⊥平面PCD . 又因为PA ⊂平面PAB ,所以平面PAB ⊥平面PCD . 14分 考点:线面平行判定定理,面面垂直性质定理与判定定理18.已知函数e ()xa f x x⋅=(a ∈R ,0a ≠).(Ⅰ)当1a =时,求曲线()y f x =在点()1,(1)f 处切线的方程; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)当()0,x ∈+∞时,()f x 1≥恒成立,求a 的取值范围.【答案】(Ⅰ)e y =,(Ⅱ)0a >时,函数()f x 的单调增区间为()1,+∞;单调减区间为(),0-∞,()0,1.0a <时, 函数()f x 的单调增区间为(),0-∞,()0,1;单调减区间为()1,+∞.(Ⅲ)1ea ≥ 【解析】试题分析:(Ⅰ))利用导数的几何意义,在1x =处切线的斜率为0即为(1).f '因为22e e e (1)()x x x ax a a x f x x x ⋅--'==,所以当1a =时,2e (1)()x x f x x -'=.(1)0f '=,又(1)e f =,则曲线()f x 在1x =处切线的方程为e y =. (Ⅱ)利用导数求函数单调区间,需明确定义域{}0x x ≠,再导数值的符号确定单调区间. (1)若0a >,当()0f x '>,即1x >时,函数()f x 为增函数;当()0f x '<,即0x <和01x <<时,函数()f x 为减函数.若0a <,当()0f x '>,即0x <和01x <<时,函数()f x 为增函数;当()0f x '<,即1x >时,函数()f x 为减函数.(Ⅲ)不等式恒成立问题,一般利用变量分离转化为最值问题. 当()0,x ∈+∞时,要使()f x =e 1x a x ⋅≥恒成立,即使e x xa ≥在()0,x ∈+∞时恒成立. 设()e xx g x =,易得max 1()(1)e g x g ==,从而1ea ≥. (Ⅰ)22e e e (1)()x x x ax a a x f x x x ⋅--'==,0x ≠. 当1a =时,2e (1)()x x f x x -'=.依题意(1)0f '=,即在1x =处切线的斜率为0.把1x =代入e ()xf x x=中,得(1)e f =.则曲线()f x 在1x =处切线的方程为e y =. .4分 (Ⅱ)函数()f x 的定义域为{}0x x ≠.22e e e (1)()x x x ax a a x f x x x ⋅--'==.(1)若0a >,当()0f x '>,即1x >时,函数()f x 为增函数;当()0f x '<,即0x <和01x <<时,函数()f x 为减函数. (2)若0a <,当()0f x '>,即0x <和01x <<时,函数()f x 为增函数;当()0f x '<,即1x >时,函数()f x 为减函数.综上所述,0a >时,函数()f x 的单调增区间为()1,+∞;单调减区间为(),0-∞,()0,1. 0a <时, 函数()f x 的单调增区间为(),0-∞,()0,1;单调减区间为()1,+∞. .9分(Ⅲ)当()0,x ∈+∞时,要使()f x =e 1x a x⋅≥恒成立,即使e x x a ≥在()0,x ∈+∞时恒成立. 设()e x x g x =,则1()ex x g x -'=.可知在01x <<时,()0g x '>,()g x 为增函数; 1x >时,()0g x '<,()g x 为减函数.则max 1()(1)e g x g ==.从而1ea ≥. 另解:(1)当0a <时,()e 1a f a =<,所以()f x 1≥不恒成立.(2)当0a >且()0,x ∈+∞时,由(Ⅰ)知,函数()f x 的单调增区间为()1,+∞,单调减区间为()0,1.所以函数()f x 的最小值为(1)e f a =,依题意(1)e 1f a =≥,解得1ea ≥. 综上所述,1ea ≥. .13分 考点:利用导数求切线,利用导数求单调区间,利用导数求最值 19.已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为12,右焦点到右顶点的距离为1. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l 10mx y ++=与椭圆C 交于,A B 两点,是否存在实数m ,使O A O B O A O B +=-成立?若存在,求m 的值;若不存在,请说明理由.【答案】(Ⅰ)22143x y +=,(Ⅱ)不存在. 【解析】试题分析:(Ⅰ)求椭圆标准方程,关键利用待定系数法求出a,b. 由..及1a c -=,解得1c =,2a =.所以2223b a c =-=.所以椭圆C 的标准方程是22143x y +=.(Ⅱ)存在性问题,一般从假设存在出发,建立等量关系,有解就存在,否则不存在. 条件22OA OB OA OB +=-的实质是垂直关系,即0OA OB ⋅=.所以12120x x y y +=.1212()()0x x kx m kx m +++=,221212(1)()0k x x km x x m ++++=把1y mx =--代入椭圆C:223412x y +=中,整理得22(34)880m x mx ++-=.整理得2512m =-,矛盾. (Ⅰ)设椭圆C 的方程为22221x y a b+=()0a b >>,半焦距为c . 依题意1,21.c e a a c ⎧==⎪⎨⎪-=⎩ 解得1c =,2a =,所以2223b a c =-=.所以椭圆C 的标准方程是22143x y +=. .4分 (Ⅱ)不存在实数m ,使||||OA OB OA OB +=-,证明如下:把1y mx =--代入椭圆C:223412x y +=中,整理得22(34)880m x mx ++-=. 由于直线l 恒过椭圆内定点()0,1-,所以判别式0∆>.设1122(,),(,)A x y B x y ,则122843m x x m +=-+,122843x x m -⋅=+. 依题意,若||||OA OB OA OB +=-,平方得0OA OB ⋅=.即12121212(1)(1)0x x y y x x mx mx +=+--⋅--=,整理得21212(1)()10m x x m x x ++++=,所以2(1)m +2843m -+2281043m m -+=+, 整理得2512m =-,矛盾. 所以不存在实数m ,使||||OA OB OA OB +=-. .14分考点:椭圆标准方程,直线与椭圆位置关系20.已知函数()f x 对任意,x y ∈R 都满足()()()1f x y f x f y +=++,且1()02f =,数列{}n a 满足:()n a f n =,*n ∈N .(Ⅰ)求(0)f 及(1)f 的值;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若311()()42n n a a n b +=-,试问数列{}n b 是否存在最大项和最小项?若存在,求出最大项和最小项;若不存在,请说明理由.【答案】(Ⅰ)(0)1f =-,(1)1f =,(Ⅱ)21na n =-,(Ⅲ)当12t =,即1n =时,{}nb 的最大项为1316b =.当132t =,即3n =时,{}n b 的最小项为331024b =-.【解析】试题分析:(Ⅰ)对应抽象函数,一般方法为赋值法. 在()()()1f x y f x f y +=++中,取0x y ==,得(0)1f =-,在()()()1f x y f x f y +=++中,取12x y ==,得(1)1f =,(Ⅱ)在()()()1f x y f x f y +=++中,令x n =,1y =,得(1)()2f n f n +=+,即12n n a a +-=.所以{}n a 是等差数列,公差为2,又首项1(1)1a f ==,所以21n a n =-,*n ∈N .(Ⅲ)研究数列{}nb 是否存在最大项和最小项,关键看通项公式的特征.令2111()()22n a n t -==,则22111()816256n b t t t =-=--,显然102t <≤,又因为N n *∈,所以当12t =,即1n =时,{}n b 的最大项为1316b =.当132t =,即3n =时,{}n b 的最小项为331024b =-解:(Ⅰ)在()()()1f x y f x f y +=++中,取0x y ==,得(0)1f =-,在()()()1f x y f x f y +=++中,取12x y ==,得(1)1f =, 2分(Ⅱ)在()()()1f x y f x f y +=++中,令x n =,1y =,得(1)()2f n f n +=+,即12n n a a +-=. 所以{}n a 是等差数列,公差为2,又首项1(1)1a f ==,所以21n a n =-,*n ∈N . 6分(Ⅲ)数列{}n b 存在最大项和最小项令2111()()22na nt-==,则22111()816256nb t t t=-=--,显然12t<≤,又因为Nn*∈,所以当12t=,即1n=时,{}n b的最大项为1316b=.当132t=,即3n=时,{}n b的最小项为331024b=-. 13分考点:等差数列,赋值法研究抽象函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市朝阳区高三年级第二次综合练习数学学科测试(文史类)2014.5 (考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分 第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. (1)若全集{},,,U a b c d =,{},A a b =,{}B c =,则集合{}d 等于(A )()U A B ð (B )A B (C )A B (D )()U AB ð (2)下列函数中,既是奇函数又在区间0,+∞()上单调递增的函数为(A ) sin y x = (B )ln y x = (C )3y x = (D ) 2x y =(3)已知抛物线22x y =,则它的焦点坐标是(A )1,04⎛⎫ ⎪⎝⎭ (B )10,2⎛⎫ ⎪⎝⎭ (C )10,4⎛⎫ ⎪⎝⎭ (D )1,02⎛⎫ ⎪⎝⎭(4)执行如图所示的程序框图.若输入3a =,则输出i 的值是(A )2 (B ) 3 (C ) 4 (D ) 5 (5)由直线10x y -+=,50x y +-=和10x -=所围成的三角形区域(包括边界) 用不等式组可表示为(A )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩(B )10,50,1.x y x y x -+≥⎧⎪+-≤⎨⎪≥⎩(C )10,50,1.x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩(D )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≤⎩(6)在区间ππ[-,]上随机取一个数x ,则事件:“cos 0x ≥”的概率为(A )14 (B ) 34 (C )23 (D )12(7)设等差数列{}n a 的公差为d ,前n 项和为n S .若11a d ==,则8n n S a +的最小值为 (A )10 (B )92 (C )72 (D )12+( 8 )已知平面上点{2200(,)()()16,P x y x x y y ∈-+-=其中}22004x y +=,当0x ,0y 变化时,则满足条件的点P 在平面上所组成图形的面积是(A) 4π (B) 16π( C) 32π (D )36π第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.计算12i1i+=-.10.已知两点()1,1A ,()1,2B -,若12BC BA =,则C 点坐标是 .11.圆心在x 轴上,半径长是4,且与直线5x =相切的圆的方程是 .12.由两个四棱锥组合而成的空间几何体的三视图如图所示,其体积是 ;表面积是 .13.设一列匀速行驶的火车,通过长860m 的隧道时,整个车身都在隧道里的时间是22s .该列车以同样的速度穿过长790m 的铁桥时,从车头上桥,到车尾下桥,共用时33s ,则这列火车的长度为___m . 14.在如图所示的棱长为2的正方体1111ABCD A B C D -中,作与平面1ACD 平行的截面,则截得的三角形中面积最大的值是___;截得的平面图形中面积最大的值是___.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)在ABC 中,a ,b ,c 分别是角A B C ,,的对边.已知a =,π3A =.(Ⅰ)若b =C 的大小; (Ⅱ)若2c =,求边b 的长.16. (本小题满分13分)某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段75,80),80,85),[85,90),[90,95),[95,100][[(单位:小时)进行统计,其频率分布直方图如图所示. (Ⅰ)求抽取的20人中,参加社区服务时间不少A 22俯视图侧视图正视图(第12题图)于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率. 17. (本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD . (Ⅰ)若E ,F 分别为PC ,BD 中点,求证:EF ∥平面PAD ;(Ⅱ)求证:PA ⊥CD ;(Ⅲ)若PA PD AD==,求证:平面PAB ⊥平面PCD . 18.(本小题满分13分)已知函数e ()xa f x x ⋅=(a ∈R ,0a ≠). (Ⅰ)当1a =时,求曲线()f x 在点()1,(1)f 处切线的方程;(Ⅱ)求函数()f x 的单调区间; (Ⅲ)当()0,x ∈+∞时,若()f x 1≥恒成立,求a 的取值范围.19.(本小题满分14分)已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为12,右焦点到右顶点的距离为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l 10mx y ++=与椭圆C 交于,A B 两点,是否存在实数m ,使O A O B O A O B+=-成立?若存在,求m 的值;若不存在,请说明理由.20.(本小题满分13分)已知函数()f x 对任意,x y ∈R 都满足()()()1f x y f x f y +=++,且1()02f =,数列{}na 满足:()n a f n =,*n ∈N .(Ⅰ)求(0)f 及(1)f 的值;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若311()()42n na a nb +=-,试问数列{}n b 是否存在最大项和最小项?若存在,求出最大项和最小项;若不存在,请说明理由.北京市朝阳区高三年级第二次综合练习数学学科测试文史类答案2014.5 一、选择题(满分40分)三、解答题(满分80分) 15. (本小题满分13分)(Ⅰ)解:由正弦定理sin sin a b A B =,得=,解得sin 2B =. 由于B 为三角形内角,b a <,则4B π=,所以3412C ππ5π=π--=. ………6分 (Ⅱ)依题意,222cos 2b c a A bc +-=,即2141224b b +-=.整理得2280b b --=,又0b >,所以4b =. ………13分 另解:由于sin sin a c A C =,所以2sin C=,解得1sin 2C =. 由于a c >,所以π6C =.由π3A =,得π2B =.由勾股定理222b c a =+,解得4b =. ………13分 16.(本小题满分13分)解:(Ⅰ)由题意可知,参加社区服务在时间段[90,95)的学生人数为200.0454⨯⨯=(人),参加社区服务在时间段[95,100]的学生人数为200.0252⨯⨯=(人).所以参加社区服务时间不少于90小时的学生人数为4+26=(人).………5分(Ⅱ)设所选学生的服务时间在同一时间段内为事件A.由(Ⅰ)可知,参加社区服务在时间段,95)[90的学生有4人,记为,,,a b c d;参加社区服务在时间段5,100[9]的学生有2人,记为,A B.从这6人中任意选取2人有,,,,,,,,,,,,,,ab ac ad aA aB bc bd bA bB cd cA cB dA dB AB共15种情况.事件A包括,,,,,,ab ac ad bc bd cd AB共7种情况.所以所选学生的服务时间在同一时间段内的概率7()15P A=.………13分17. (本小题满分14分)证明:(Ⅰ)如图,连结AC.因为底面ABCD是正方形,所以AC与BD互相平分.又因为F是BD中点,所以F是AC中点.在△PAC中,E是PC中点,F是AC中点,所以EF∥PA.又因为EF⊄平面PAD,PA⊂平面PAD,所以EF∥平面PAD.………4分(Ⅱ)因为平面PAD⊥底面ABCD,且平面PAD平面=ABCD AD,又CD AD⊥,所以CD⊥面PAD.又因为PA⊂平面PAD,所以CD PA⊥.即PA⊥CD.………9分(Ⅲ)在△PAD中,因为2PA PD AD==,所以PA PD⊥.A由(Ⅱ)可知PA ⊥CD ,且=CD PD D ,所以PA ⊥平面PCD .又因为PA ⊂平面PAB ,所以面PAB ⊥平面PCD . ………14分 18. (本小题满分13分)(Ⅰ)22e e e (1)()x x x ax a a xf x x x ⋅--'==,0x ≠.当1a =时,2e (1)()x x f x x -'=. 依题意(1)0f '=,即在1x =处切线的斜率为0.把1x =代入e ()xf x x =中,得(1)e f =. 则曲线()f x 在1x =处切线的方程为e y =. ………………….4分 (Ⅱ)函数()f x 的定义域为{}0x x ≠.由于22e e e (1)()x x x ax a a x f x x x ⋅--'==.(1)若0a >,当()0f x '>,即1x >时,函数()f x 为增函数;当()0f x '<,即0x <和01x <<时,函数()f x 为减函数.(2)若0a <,当()0f x '>,即0x <和01x <<时,函数()f x 为增函数; 当()0f x '<,即1x >时,函数()f x 为减函数.综上所述,0a >时,函数()f x 的单调增区间为()1,+∞;单调减区间为(),0-∞,()0,1.0a <时, 函数()f x 的单调增区间为(),0-∞,()0,1;单调减区间为()1,+∞.…….9分(Ⅲ)当()0,x ∈+∞时,要使()f x =e 1xa x ⋅≥恒成立,即使e x x a ≥在()0,x ∈+∞时恒成立. 设()e x x g x =,则1()e x xg x -'=.可知在01x <<时,()0g x '>,()g x 为增函数;1x >时,()0g x '<,()g x 为减函数.则max 1()(1)e g x g ==.从而1e a ≥.另解:(1)当0a <时,()e 1af a =<,所以()f x 1≥不恒成立.(2)当0a >且()0,x ∈+∞时,由(Ⅰ)知,函数()f x 的单调增区间为()1,+∞,单调减区间为()0,1.所以函数()f x 的最小值为(1)e f a =,依题意(1)e 1f a =≥,解得1e a ≥.综上所述,1e a ≥. ………………….13分19. (本小题满分14分)(Ⅰ)设椭圆C 的方程为22221x y ab +=()0a b >>,半焦距为c . 依题意1,21.c e a a c ⎧==⎪⎨⎪-=⎩ 解得1c =,2a =,所以2223b a c =-=. 所以椭圆C 的标准方程是22143x y +=. ………………….4分(Ⅱ)不存在实数m ,使||||OA OB OA OB +=-,证明如下:把1y mx =--代入椭圆C:223412x y +=中,整理得22(34)880m x mx ++-=. 由于直线l 恒过椭圆内定点()0,1-,所以判别式0∆>.设1122(,),(,)A x y B x y ,则122843m x x m +=-+,122843x x m -⋅=+.依题意,若||||OA OB OA OB +=-,平方得0OA OB ⋅=. 即12121212(1)(1)0x x y y x x mx mx +=+--⋅--=,整理得21212(1)()10m x x m x x ++++=, 所以2(1)m +2843m -+2281043m m -+=+,整理得2512m =-,矛盾.所以不存在实数m ,使||||OA OB OA OB +=-.…….14分20. (本小题满分13分)解:(Ⅰ)在()()()1f x y f x f y +=++中,取0x y ==,得(0)1f =-,在()()()1f x y f x f y +=++中,取12x y ==,得(1)1f =,…………2分(Ⅱ)在()()()1f x y f x f y+=++中,令x n=,1y=,得(1)()2f n f n+=+,即12n na a+-=.所以{}na是等差数列,公差为2,又首项1(1)1a f==,所以21na n=-,*n∈N.…………6分(Ⅲ){}nb存在最大项和最小项令2111()()22na nt-==,则22111()816256nb t t t=-=--,显然12t<≤,又因为Nn*∈,所以当12t=,即1n=时,{}n b的最大项为1316b=.当132t=,即3n=时,{}n b的最小项为331024b=-.…………13分。