人教版五年级上册数学-梯形的面积教案

合集下载

五年级上册数学教案-《梯形的面积》人教版

五年级上册数学教案-《梯形的面积》人教版
-感知梯形面积与其他几何图形面积计算的联系和区别。
举例:通过展示梯形的实物模型或图片,强调梯形的结构特征,使学生能够快速识别梯形并理解其基本性质。
2.教学难点
-理解梯形面积公式的推导过程,特别是如何将梯形分割成两个三角形和一个矩形,然后重新组合成矩形进行面积计算。
-解决实际问题中梯形的高不易直接得出的问题,学会通过添加辅助线、使用相似三角形等几何方法来求解。
3.重点难点解析:在讲授过程中,我会特别强调梯形面积计算公式和公式的推导过程这两个重点。对于难点部分,比如如何确定梯形的高,我会通过举例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与梯形面积相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如剪纸和拼图,来演示梯形面积的计算过程。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《梯形的面积》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算梯形面积的情况?”比如,我们学校的花坛就是梯形状的,如果我们想知道它有多大,就需要用到梯形面积的计算方法。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索梯形面积的奥秘。
二、核心素养目标
《梯形的面积》核心பைடு நூலகம்养目标:
1.培养学生几何直观和空间想象能力,通过观察梯形实物和图形,形成对梯形特征的理解和认识;
2.发展学生逻辑推理和数学抽象素养,通过探索梯形面积计算方法,理解数学公式背后的逻辑关系;
3.增强学生问题解决和数学应用能力,将梯形面积的计算应用于解决现实生活中的问题,体会数学的实用价值;

梯形的面积(教案)人教版五年级上册数学

梯形的面积(教案)人教版五年级上册数学

梯形的面积(教案)人教版五年级上册数学我今天要上的课程是人教版五年级上册数学的“梯形的面积”。

一、教学内容我们的教材第81页,讲述了梯形的面积的计算方法。

学生们将会学习到,梯形的面积可以通过底边之和乘以高,再除以2来计算。

二、教学目标我希望学生们能够理解梯形面积的计算方法,并能够运用这个方法来解决实际问题。

三、教学难点与重点重点是梯形面积的计算方法,难点是理解为什么需要乘以高,再除以2。

四、教具与学具准备我已经准备好了梯形模型和计算器,学生们需要准备一张纸和一支笔。

五、教学过程我会用一个实践情景引入,比如说,一个农场是一个梯形形状,学生们需要计算这个农场的面积。

然后,我会带领学生们一起学习梯形面积的计算方法,我会用模型和图示来帮助学生们理解。

接着,我会给学生们一些例题,让他们独立解答。

我会组织一个随堂练习,让学生们应用他们所学到的知识。

六、板书设计我会板书梯形面积的计算公式,以及解题的步骤。

七、作业设计作业题目:计算下面梯形的面积。

答案:八、课后反思及拓展延伸课后,我会反思学生们在课堂上的表现,以及他们对梯形面积的理解程度。

对于那些还没有完全理解的学生,我会考虑给予额外的辅导。

同时,我也会鼓励学生们在日常生活中,寻找梯形形状的物体,尝试计算它们的面积,以此来延伸他们的学习。

这就是我今天要上的“梯形的面积”。

我希望通过这个课程,学生们能够理解和掌握梯形面积的计算方法,并且能够应用到实际问题中。

重点和难点解析在上述的教学过程中,有几个重点和难点是我认为需要特别关注的。

实践情景的引入。

我选择了一个与学生们生活密切相关的农场作为梯形形状的实例,这样可以帮助他们更好地理解梯形的概念,并且能够将数学知识应用到实际问题中。

这个实践情景的引入,不仅能够激发学生的兴趣,还能够帮助他们建立起数学与现实生活的联系。

梯形面积的计算方法。

这是本节课的核心内容,学生们需要理解并掌握如何通过底边之和乘以高,再除以2来计算梯形的面积。

人教版五年级上册数学《梯形的面积》集体备课教案

人教版五年级上册数学《梯形的面积》集体备课教案

人教版五年级上册数学《梯形的面积》集体备课教案一. 教材分析人教版五年级上册数学《梯形的面积》是小学数学课程中的一部分,主要让学生掌握梯形面积的计算方法。

本节课的内容是在学生已经掌握了三角形、四边形面积计算的基础上进行学习的,通过本节课的学习,让学生能够运用梯形面积的计算方法解决实际问题。

二. 学情分析五年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对图形面积的概念和计算方法有一定的了解。

但是,对于梯形面积的计算方法,学生可能还需要进一步的理解和掌握。

因此,在教学过程中,教师需要结合学生的实际情况,采用生动形象的教学手段,引导学生理解和掌握梯形面积的计算方法。

三. 教学目标1.让学生掌握梯形面积的计算方法。

2.培养学生运用梯形面积的计算方法解决实际问题的能力。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.梯形面积的计算方法的推导过程。

2.运用梯形面积的计算方法解决实际问题。

五. 教学方法1.采用直观演示法,让学生直观地理解梯形面积的计算方法。

2.采用小组合作探究法,培养学生的合作意识和团队精神。

3.采用问题驱动法,引导学生主动思考和探索。

六. 教学准备1.准备一些梯形的实物模型,用于直观演示。

2.准备一些梯形面积的计算题目,用于巩固和拓展。

七. 教学过程导入(5分钟)教师通过展示一些梯形的实物模型,让学生观察和描述梯形的特征,引导学生思考梯形面积的计算方法。

呈现(10分钟)教师通过PPT或者黑板,呈现梯形面积的计算公式,并解释公式的推导过程。

同时,教师可以通过动画或者实物演示,让学生直观地理解梯形面积的计算方法。

操练(10分钟)教师给学生发放一些梯形面积的计算题目,让学生独立完成。

教师可以通过巡回指导,帮助学生解决计算过程中遇到的问题。

巩固(10分钟)教师可以通过一些梯形面积的实际问题,让学生运用所学的计算方法进行解决。

教师可以学生进行小组讨论,共同解决问题。

拓展(10分钟)教师可以给学生发放一些综合性的梯形面积计算题目,让学生进行挑战性的练习。

五年级上册数学教案-《梯形的面积》人教新课标

五年级上册数学教案-《梯形的面积》人教新课标

五年级上册数学教案-《梯形的面积》人教新课标一、教学目标1. 让学生理解梯形的面积公式,并能运用公式计算梯形的面积。

2. 培养学生的观察能力、动手操作能力和解决问题的能力。

3. 培养学生合作学习、交流分享的良好学习习惯。

二、教学内容1. 梯形的面积公式:梯形的面积 = (上底下底) × 高÷ 22. 梯形的面积公式的推导过程。

3. 运用梯形的面积公式解决实际问题。

三、教学重点与难点1. 教学重点:梯形的面积公式的推导和应用。

2. 教学难点:理解梯形的面积公式,并能熟练运用公式解决实际问题。

四、教学过程1. 导入新课通过复习平行四边形和三角形的面积公式,引导学生思考:梯形的面积该如何计算呢?2. 探究梯形的面积公式(1)引导学生观察梯形的特点,发现梯形可以分解成两个三角形和一个平行四边形。

(2)引导学生推导梯形的面积公式:梯形的面积 = (上底下底) × 高÷ 2(3)通过实例验证梯形的面积公式,如:一个梯形的上底为5厘米,下底为8厘米,高为6厘米,求其面积。

3. 巩固练习(1)计算给定梯形的面积。

(2)解决实际问题:如计算梯形花坛的面积,需要先测量梯形的上底、下底和高。

4. 课堂小结引导学生回顾本节课所学内容,总结梯形的面积公式及其应用。

5. 布置作业(1)完成课后练习题。

(2)观察生活中的梯形,并测量其上底、下底和高,计算其面积。

五、教学反思本节课通过引导学生观察、思考和动手操作,使学生掌握了梯形的面积公式,并能运用公式解决实际问题。

在教学过程中,要注意关注学生的学习反馈,及时调整教学方法,提高教学效果。

同时,要注重培养学生的合作意识和交流能力,让学生在合作学习中共同进步。

需要重点关注的细节是“探究梯形的面积公式”部分。

这个环节是本节课的核心,涉及到梯形面积公式的推导和应用,是学生理解和掌握梯形面积计算方法的关键步骤。

对于这个重点细节,以下进行详细的补充和说明:1. 引导学生观察梯形的特点,发现梯形可以分解成两个三角形和一个平行四边形。

人教版数学五年级上册梯形的面积说课稿(精选3篇)

人教版数学五年级上册梯形的面积说课稿(精选3篇)

人教版数学五年级上册梯形的面积说课稿(精选3篇)〖人教版数学五年级上册梯形的面积说课稿第【1】篇〗课时目标知识与技能:在平行四边形、三角形的面积计算公式推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。

正确、较熟练地运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力。

过程与方法:通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,进一步发展学生的空间观念。

情感、态度与价值观:渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系.提高学生学习数学的兴趣。

说教学准备师:多媒体、完全一样的梯形若干个。

生:剪刀、两个完全一样的梯形纸片(如等腰梯形、直角梯形等)、练习本。

说重点难点:自主探究梯形的面积公式。

理解并掌握梯形的面积公式,会计算梯形的面积。

说教学过程一、问(目标引领问题导学)1.导入:这一单元我们已经学习了三角形和平行四边形的面积计算,谁来说一说它们的计算公式?(平行四边形的面积=底×高,用字母表示是S=ah;三角形面积=底×高÷2,用字母表示是S=ah ÷2。

)让学生回忆它们的面积的计算方法是怎么推导出来的?(把它转化成已经学过的图形来研究面积的。

)2.揭题:生活中的图形除了三角形和平行四边形外,还有梯形,这节课我们就利用转化的方法来研究梯形的面积计算公式。

(板书课题:梯形的面积)二、猜(读)(联系旧知自主尝试)1.出示教材第95页情境图。

引导学生观察:车窗玻璃是什么形状的?(梯形)思考:怎样求出它的面积呢?你能用学过的方法推导出梯形的面积计算公式吗?小组讨论,学生可能会猜测到把梯形转化成平行四边形、三角形、长方形等,来推导它的面积计算公式。

2.让学生利用梯形学具验证自己的猜测。

小组活动,教师深入各小组进行指导。

可提醒学生用剪刀剪一剪,再拼一拼。

3.交流汇报自己的推导过程,指学生到黑板边演示边讲解。

人教版数学五年级上册《梯形的面积》教学设计

人教版数学五年级上册《梯形的面积》教学设计

《梯形的面积》教学设计一、教学内容《义务教育教科书数学》(人教版)五年级上册第六单元第95页《梯形的面积》。

二、教学目标1.通过观察、操作、讨论、归纳等活动探索并掌握梯形的面积计算公式。

2.体会“转化”的数学思想,懂得事物之间是相互联系的。

3.进一步培养学生学习数学的兴趣。

三、教学重、难点教学重点:通过观察、操作、讨论、归纳等活动探索并掌握梯形的面积计算公式。

教学难点:理解并掌握梯形的面积计算公式的推导过程。

四、活动设计课前准备:这节课需要用到两组完全一样的直角梯形、等腰梯形和任意梯形,请同学们快去准备吧。

你准备好了吗?现在我们就开始今天的数学学习。

1.回顾旧知前两节课我们学习了平行四边形和三角形的面积计算公式,同学们先来回顾一下它们的推导过程。

探索平行四边形的面积计算公式时,大家是把平行四边形进行分割、平移转化成长方形进行推导的。

探索三角形的面积计算公式时,是把两个完全一样的三角形拼成一个平行四边形进行推导的。

我们是运用转化的数学思想推导出了平行四边形和三角形的面积计算公式。

2.探究新知这节课老师又给大家带来一位图形朋友,请同学们仔细观察图片,找一找看看它在哪里?车窗玻璃的形状是梯形,怎样求出它的面积呢?你能用学过的方法推导出梯形的面积计算公式吗?请大家先想一想可以把梯形转化成为我们学过的哪些图形呢?(思考)有的同学想到了把梯形转化成平行四边形,有的同学想到了把它转化成长方形、正方形或三角形。

你是用什么方法进行转化的呢?(思考)通过前面的学习,有的同学想到了用拼一拼的方法,有的同学想到了用分一分的方法。

现在就请大家先用拼一拼的方法试一试,看看你有什么发现?请大家拿出准备好的学具开始吧。

(音乐)好啦,同学们,你们拼成了哪些图形呢?下面老师展示一部分同学拼成的图形,快来找一找哪些是我们已经学过的规则图形?(思考)大家一定找到了。

有平行四边形、长方形和正方形,还有梯形,这节课我们要探究的正是梯形的面积计算公式。

五年级上册数学教案 - 梯形的面积 人教新课标

五年级上册数学教案 -  梯形的面积   人教新课标

五年级上册数学教案 - 梯形的面积人教新课标一、教学目标1. 让学生理解梯形的面积计算公式,并能运用公式解决实际问题。

2. 培养学生运用数学语言进行表达、交流的能力。

3. 培养学生的观察能力、动手操作能力和空间想象能力。

二、教学内容1. 梯形的面积计算公式:梯形面积 = (上底下底) × 高÷ 22. 运用梯形面积计算公式解决实际问题三、教学重点与难点1. 教学重点:梯形的面积计算公式及其应用2. 教学难点:理解梯形面积计算公式的推导过程四、教学准备1. 教具:梯形模型、直尺、三角板等2. 学具:学生用直尺、三角板、梯形练习纸等五、教学过程1. 导入新课利用多媒体展示生活中的梯形实物,引导学生观察并说出梯形的特征,从而引出课题。

2. 探究梯形面积计算公式(1)让学生动手操作,将两个完全相同的梯形拼成一个平行四边形,观察平行四边形的底和高与梯形的上底、下底和高之间的关系。

(2)引导学生发现平行四边形的面积是梯形面积的2倍,从而推导出梯形面积计算公式。

3. 梯形面积计算公式的应用(1)教师出示例题,引导学生运用梯形面积计算公式解决问题。

(2)学生独立完成练习题,巩固梯形面积计算公式的应用。

4. 课堂小结通过提问方式,让学生回顾本节课所学内容,总结梯形面积计算公式及其应用。

5. 课后作业布置适量的课后练习题,让学生巩固所学知识。

六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、动手操作能力和问题解决能力。

2. 课后作业:检查学生课后作业的完成情况,了解学生对梯形面积计算公式的掌握程度。

七、教学反思在教学过程中,教师应关注学生的学习反馈,及时调整教学策略,提高教学效果。

同时,注重培养学生的动手操作能力和空间想象能力,为后续学习打下基础。

需要重点关注的细节是“探究梯形面积计算公式”部分。

这个环节是整个教案中的核心,它涉及到学生对梯形面积计算公式的理解和掌握,以及如何通过直观的动手操作来引导学生发现并理解数学原理。

人教版五年级数学上册《梯形的面积》教案

人教版五年级数学上册《梯形的面积》教案

人教版五年级数学上册《梯形的面积》教案一. 教材分析《梯形的面积》是小学五年级数学上册的一章内容,主要让学生掌握梯形面积的计算方法。

本章内容是在学生已经掌握了三角形、四边形面积计算的基础上进行学习的,通过本章的学习,让学生能够进一步理解图形的面积概念,提高学生的空间想象能力和逻辑思维能力。

二. 学情分析五年级的学生已经具备了一定的数学基础,对图形的面积概念和计算方法有一定的了解。

但是,对于梯形面积的计算,学生还需要进一步的学习和实践。

因此,在教学过程中,教师需要引导学生通过观察、操作、思考、讨论等方式,自主探索梯形面积的计算方法,提高学生的自主学习能力和合作精神。

三. 教学目标1.让学生掌握梯形面积的计算方法。

2.培养学生的空间想象能力和逻辑思维能力。

3.提高学生的自主学习能力和合作精神。

四. 教学重难点1.梯形面积的计算方法。

2.理解并掌握梯形面积公式的推导过程。

五. 教学方法1.引导发现法:教师引导学生通过观察、操作、思考、讨论等方式,自主探索梯形面积的计算方法。

2.实践操作法:教师学生进行实际的操作活动,让学生在实践中理解和掌握梯形面积的计算方法。

3.合作学习法:教师学生进行小组合作学习,让学生在合作中交流、讨论、解决问题。

六. 教学准备1.教具准备:梯形模型、直尺、剪刀、彩笔等。

2.教学课件:制作相关的教学课件,帮助学生更好地理解和掌握梯形面积的计算方法。

七. 教学过程导入(5分钟)教师通过展示梯形模型,引导学生观察梯形的特征,让学生说出梯形的定义和性质。

然后,教师提出问题:“请大家想一想,我们以前学过哪些图形的面积计算方法?那么,梯形的面积应该如何计算呢?”通过问题导入,激发学生的学习兴趣和思考能力。

呈现(10分钟)教师通过教学课件,呈现梯形面积的计算方法。

首先,教师引导学生观察梯形的形状,让学生理解梯形可以看作是由两个三角形和一个平行四边形组成的。

然后,教师引导学生思考如何将梯形转化为已学过的图形,从而得出梯形面积的计算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3梯形的面积第1课时梯形的面积课时目标导航一、教学内容梯形的面积。

(教材第95~96页及例3)二、教学目标1.理解梯形面积计算公式的推导过程,会应用公式计算梯形的面积。

2.培养学生合作学习的能力。

3.继续向学生渗透旋转、平移的数学思想。

三、重点难点重点:应用公式计算梯形的面积。

难点:理解梯形面积公式的推导过程。

四、教学准备课件PPT、剪刀、两个完全一样的直角梯形、等腰梯形和一般梯形图片。

一、复习引入1.这一单元我们已经学习了三角形和平行四边形的面积计算,谁来说一说它们的计算公式?2.回忆这些面积的计算公式是怎么推导出来的。

师:生活中的图形除了三角形和平行四边形外,还有梯形,这节课我们就来研究梯形的面积计算公式。

二、学习新课1.推导梯形的面积公式。

(1)引导学生观察:车窗玻璃是什么形状的?(出示教材第95页情境图)学生回答:梯形师:怎样求出它的面积呢?你能用学过的方法推导出梯形的面积计算公式吗?小组讨论,学生可能会猜测把梯形转化成平行四边形、三角形、长方形等,来推导它的面积计算公式。

(2)让学生利用梯形学具验证自己的猜测。

(小组活动,教师深入各小组进行指导。

可提醒学生用剪刀剪一剪,再拼一拼)(3)交流汇报自己的推导过程。

(指名学生到黑板边演示边讲解)学生推导梯形的面积计算公式有多种方法,可能会这样做:①用两个完全一样的一般梯形,拼成一个平行四边形。

出示推导过程:②用两个完全一样的直角梯形,拼成一个长方形。

出示推导过程:③用两个完全一样的等腰梯形,拼成一个平行四边形。

出示推导过程:④把一个梯形剪成两个三角形。

梯形的面积=三角形1的面积+三角形2的面积=梯形上底×高÷2+梯形下底×高÷2=(梯形上底+梯形下底)×高÷2出示推导过程:⑤把一个梯形剪成一个平行四边形和一个三角形。

梯形的面积=平行四边形的面积+三角形的面积=平行四边形的底×高+三角形的底×高÷2=(平行四边形的底+三角形的底÷2)×高=(平行四边形的底×2+三角形的底÷2×2)×高÷2=(平行四边形的底+平行四边形的底+三角形的底)×高÷2因为梯形的上底=平行四边形的底,梯形的下底=平行四边形的底+三角形的底,所以梯形的面积=(上底+下底)×高÷2。

出示推导过程:(4)用字母表示梯形的面积计算公式。

如果用S表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,那么梯形的面积计算公式可表示为S=(a+b)h÷2。

2.运用梯形的面积计算公式解决教材第96页例3。

(出示教材第96页例3情境图和横截面的示意图)引导学生观察情境图并思考:横截面是一个什么形状?(这是一个梯形;而且有两个角是直角,是一个直角梯形)师:直角梯形的高在哪里?你能理解这个横截面的含义吗?通过交流,学生能明白:直角梯形的高也是它的一个腰长。

这个梯形的上底是36 m,下底是120 m,高是135 m。

师:你能利用所学的知识计算一下这个直角梯形的面积吗?(让学生尝试计算,并交流汇报)S=(a+b)h÷2=(36+120)×135÷2=156×135÷2=10530( m2)答:它的面积是10530 m2。

三、巩固反馈完成教材第96页“做一做”。

(40+71)×40÷2=2220(cm2)(45+65)×40÷2=2200(cm2)四、课堂小结梯形的面积怎样计算?梯形的面积梯形的面积=(上底+下底)×高÷2用字母表示:S=(a+b)h÷2例3S=(a+b)h÷2=(36+120)×135÷2=156×135÷2=10530( m2)答:它的面积是10530 m2。

1.尊重学生的认知规律,注重知识的前后联系。

梯形的面积计算公式推导方法与三角形的面积计算公式推导方法有很大的相似之处,放手让学生自己利用前面的学习经验,推导出梯形的面积计算公式。

2.转变学习方式,让学生自主探究学习。

动手操作、合作交流、自主探究是学生学习数学的重要方式。

培养学生学习的兴趣,促进学生自主学习,体验到成功的喜悦。

3.我的补充:________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________备课资料参考【例题】已知梯形的面积为39 cm2,上底长5 cm,下底长8 cm,求梯形的高。

分析:利用梯形的面积计算公式求出梯形的高=面积×2÷(上底+下底)。

解答:39×2÷(5+8)=6(cm)答:这个梯形的高是6 cm。

解法归纳:梯形的高=面积×2÷(上底+下底),梯形的上底=面积×2÷高-下底,梯形的下底=面积×2÷高-上底。

以盈补虚2000多年前,我国的数学名著《九章算术》中介绍了三角形面积的计算方法“半广以乘正从”。

著名数学家刘徽在注文中用“以盈补虚”的方法加以证明,把三角形转化成长方形,如图1。

我们也可以用“以盈补虚”的方法来计算梯形的面积。

如图2。

图1图2第2课时梯形的面积(练习课)课时目标导航一、教学内容梯形的面积的运用练习。

(教材第97~98页练习二十一第1、8、11*题)二、教学目标1.通过练习,使学生熟练掌握梯形的面积计算公式,并能运用计算公式解决生活中的实际问题。

2.提高学生运用知识解决问题的能力,培养分析、概括和思考的能力。

3.在练习中获得积极的情感体验,进一步培养学生学习数学的兴趣。

三、重点难点重点:熟练运用梯形的相关知识求梯形的面积以及底和高。

难点:运用所学知识解决实际问题。

一、基础练习1.梯形。

(1)师:我们已经学过了梯形,什么是梯形?(2)师:谁来说一说梯形各部分的名称。

(3)师:在梯形中比较特殊的梯形是什么?(出示直角梯形和等腰梯形)2.梯形的面积。

(1)师:我们在前一节课里利用转化的方法推导出梯形的面积计算公式是怎样的?梯形的面积=(上底+下底)×高÷2字母表示:S=(a+b)h÷2(2)师:已知梯形的面积以及上底和下底,如何求得高呢?二、指导练习1.教学教材第97~98页练习二十一第1题。

(1)教师出示水渠模型,帮助学生理解:水渠横截面面积就是梯形的面积,渠口宽就是梯形的上底,渠底宽就是梯形的下底,渠深就是梯形的高。

(2)学生独立完成习题,教师巡视,发现问题及时纠正。

(3)指名板演,再集体订正。

2.教学教材第97~98页练习二十一第8题。

(1)师:观察这堆圆木的横截面,你有什么新的发现?(学生讨论后汇报)师:横截面是梯形,因此可以用梯形面积计算公式来计算圆木的总根数。

(2)学生计算验证。

(3)师:圆木顶层根数、底层根数、层数各是梯形的哪一部分?引导学生思考并归纳:圆木顶层根数就是梯形的上底,底层根数就是梯形的下底,层数就是梯形的高。

3.教学教材第97~98页练习二十一第11*题。

(1)先引导学生读题,理解题意。

(2)组织学生比赛,看谁的方法最多。

(3)汇报交流,全班集体订正。

提示:首先要考虑如何剪去一个最大的平行四边形。

应该是以梯形上底长度为底长的平行四边形。

剩下的是三角形,可以用两种方法求面积。

方法一:梯形的面积-剪去的平行四边形的面积。

(2+3.5)×1.8÷2-2×1.8=1.35(cm2)方法二:先用梯形的下底长减去梯形的上底长得到剩下三角形的底长,然后乘梯形的高,最后除以2,得到剩下的三角形的面积。

(3.5-2)×1.8÷2=1.35(cm2)三、巩固练习1.完成教材第97~98页练习二十一第6题。

注意让学生观察图形找到计算所需条件。

花坛的三面要围篱笆,形成一个直角梯形。

20 m就是它的高,用46 m-20 m=梯形上底与下底的和。

(46-20)×20÷2=260(m2)2.完成教材第97~98页练习二十一第9题。

(1)学生汇报自己测量的数据和计算结果。

(2)集体交流测量方法和计算方法。

提示:找到能测量的梯形后,先分别量出这个梯形的上底、下底和高的长度,再根据面积公式计算即可。

四、课堂小结通过这节课的学习,你在哪些方面又有了提高?梯形的面积(练习课)第1题(1.4+2.8)×1.2÷2=2.52(m2)答:横截面的面积是2.52 m2。

第8题(2+6)×5÷2=20(根)答:图中圆木总根数为20。

第11*题方法一:(2+3.5)×1.8÷2-2×1.8=1.35(cm2)方法二:(3.5-2)×1.8÷2=1.35(cm2)答:剩下的面积是1.35 cm2。

梯形中剪去一个最大的平行四边形,求剩下的面积(即三角形的面积)剩下三角形的面积=梯形的面积-剪去的平行四边形的面积1.本节课注重有关知识的复习,为梯形面积计算公式的理解和运用做好准备。

2.充分发挥学生的主体作用,让学生自主运用梯形面积计算公式。

3.尝试运用与巩固反馈相结合,促进学生对梯形面积计算公式的掌握和解决问题能力的培养。

4.我的补充:________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________备课资料参考【例题】求梯形的面积。

相关文档
最新文档