程序算法
C程序经典算法50例

C程序经典算法50例1.二分查找算法:在有序数组中查找指定元素。
2.冒泡排序算法:通过不断比较相邻元素并交换位置,将较大的元素向后冒泡。
3.快速排序算法:通过选择一个基准元素,将数组分割为左右两部分,并递归地对两部分进行快速排序。
4.插入排序算法:将数组划分为已排序和未排序两部分,每次从未排序中选择一个元素插入到已排序的合适位置。
5.选择排序算法:遍历数组,每次选择最小元素并放置在已排序部分的末尾。
6.希尔排序算法:将数组按照一定间隔进行分组并分别进行插入排序,然后逐步减小间隔并重复这个过程。
7.归并排序算法:将数组递归地划分为两部分,然后将两个有序的部分进行合并。
8.桶排序算法:将元素根据特定的映射函数映射到不同的桶中,然后对每个桶分别进行排序。
9.计数排序算法:统计每个元素的出现次数,然后根据计数进行排序。
10.基数排序算法:从低位到高位依次对元素进行排序。
11.斐波那契数列算法:计算斐波那契数列的第n项。
12.阶乘算法:计算给定数字的阶乘。
13.排列问题算法:生成给定数组的全排列。
14.组合问题算法:生成给定数组的所有组合。
15.最大连续子序列和算法:找出给定数组中和最大的连续子序列。
16.最长递增子序列算法:找出给定数组中的最长递增子序列。
17.最长公共子序列算法:找出两个给定字符串的最长公共子序列。
18.最短路径算法:计算给定有向图的最短路径。
19.最小生成树算法:构建给定连通图的最小生成树。
20.汉诺塔算法:将n个圆盘从一个柱子移动到另一个柱子的问题。
21.BFS算法:广度优先算法,用于图的遍历和查找最短路径。
22.DFS算法:深度优先算法,用于图的遍历和查找连通分量。
23.KMP算法:字符串匹配算法,用于查找一个字符串是否在另一个字符串中出现。
24.贪心算法:每次都选择当前情况下最优的方案,适用于求解一些最优化问题。
25.动态规划算法:将一个大问题划分为多个子问题,并通过子问题的解求解整个问题,适用于求解一些最优化问题。
程序设计竞赛常用算法

程序设计竞赛常用算法1.排序算法:排序是一个基本的算法问题,常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。
这些排序算法有各自的优势和适用场景,需要根据具体问题需求选择合适的算法。
2.图论算法:图论是程序设计竞赛中经常出现的重要领域。
常见的图论算法有深度优先(DFS)、广度优先(BFS)、Dijkstra算法、Floyd-Warshall算法、拓扑排序、最小生成树等。
这些算法可以用于解决最短路径、连通性、最大流最小割等问题。
3.动态规划:动态规划是一种常用于解决优化问题的算法。
该算法通过将问题分解成子问题,并记录子问题的解来求解原问题的最优解。
常见的动态规划算法有背包问题、最长公共子序列(LCS)、最大子序列和等。
4.字符串处理算法:字符串处理是程序设计竞赛中常见的问题。
常见的字符串处理算法有KMP算法、哈希算法、字符串匹配等。
这些算法可以用于解决模式匹配、字符串、字符统计等问题。
5.数学算法:数学算法在程序设计竞赛中也经常被使用。
常见的数学算法有质因数分解、素数筛、快速乘法、高精度计算等。
这些算法可以用于解决数论、计算几何、概率等问题。
6.图形算法:图形算法主要用于处理图像和几何图形。
常见的图形算法有扫描线算法、凸包算法、几何运算等。
这些算法可以用于解决图像处理、三维建模等问题。
7.树和图的遍历算法:树和图的遍历算法是程序设计竞赛中常用的算法之一、常见的树和图的遍历算法有先序遍历、中序遍历、后序遍历、深度优先(DFS)、广度优先(BFS)等。
这些算法可以用于解决树和图的构建、路径等问题。
8.最大匹配和最小割算法:最大匹配算法用于求解二分图的最大匹配问题,常见的算法有匈牙利算法。
最小割算法用于求解图的最小割问题,常见的算法有Ford-Fulkerson算法。
这些算法可以用于解决网络流和二分图匹配等问题。
9.贪心算法:贪心算法是一种常用于优化问题的算法。
该算法通过每一步选择局部最优解来达到全局最优解。
程序的简单算法设计

贪心算法
分治算法是将一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题,直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
分治算法的适用场景包括但不限于归并排序、快速排序、堆排序等。
分治算法
动态规划
动态规划是一种通过把原问题分解为相对简单的子问题的方式来求解复杂问题的方法。
优化算法设计
复杂度分析的重要性
算法应用实例
04
排序算法
冒泡排序:通过重复地遍历待排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来,遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
Dijkstra算法
用于求解最短路径问题的图论算法。该算法的基本思想是从起始节点出发,按照距离的远近逐步向外扩展,直到扩展到目标节点为止。
空间复杂度
1
2
3
通过分析算法的时间复杂度和空间复杂度,可以评估算法在处理不同规模输入时的性能表现。
评估算法性能
通过比较不同算法的时间复杂度和空间复杂度,可以评估算法的优劣,选择适合特定问题的最优算法。
比较不同算法
了解算法的时间复杂度和空间复杂度,可以帮助我们发现算法中的瓶颈,进而优化算法设计,提高运行效率。
时间复杂度优化
优化算法所需存储空间,通过减少数据结构的大小或使用更有效的数据结构来降低空间复杂度。
空间复杂度优化
将算法拆分成多个独立的任务,并利用多核处理器或多线程环境并行执行,以提高处理速度。
并行化与并发
将问题分解为子问题,并存储子问题的解以避免重复计算,提高算法效率。
动态规划
算法优化策略
通过数学公式推导简化算法,减少计算量,提高效率。
程序算法的三种基本结构

程序算法的三种基本结构一、顺序结构顺序结构是程序算法的最基本结构,也是最常用的结构之一。
在顺序结构中,程序按照指定的顺序执行各个语句,每个语句执行完毕后才会执行下一个语句。
这种结构适用于那些需要按照一定顺序执行的任务,例如输入输出、变量初始化、循环等。
顺序结构的特点是执行顺序固定,无法改变。
因此,程序员需要精确地确定每个语句的执行顺序。
如果顺序不正确,会导致程序出错或无法正常运行。
二、选择结构选择结构是程序算法中的一种常用结构,它根据条件的不同执行不同的语句。
选择结构分为两种形式:单向选择结构和双向选择结构。
单向选择结构包含一个条件表达式和一个执行语句,如果条件为真,执行该语句;如果条件为假,则不执行该语句。
单向选择结构适用于只有两种情况的场景,例如判断一个数的正负性。
双向选择结构包含一个条件表达式和两个执行语句,如果条件为真,执行第一个语句;如果条件为假,则执行第二个语句。
双向选择结构适用于有两种以上情况的场景,例如判断一个数的大小关系。
选择结构的特点是根据条件选择执行不同的语句,能够提高程序的灵活性和适应性。
但是,使用选择结构时需要注意条件表达式的准确性和完整性,以免产生错误。
三、循环结构循环结构是程序算法中的一种重要结构,它可以重复执行一组语句。
循环结构分为三种形式:while循环、do-while循环和for循环。
while循环是一种前测试循环,即在每次循环之前测试条件是否为真,如果为真则执行循环体,否则退出循环。
while循环适用于不知道循环次数的场景,例如输入未知数量的数据。
do-while循环是一种后测试循环,即先执行循环体,然后测试条件是否为真,如果为真则继续执行循环,否则退出循环。
do-while循环适用于至少执行一次循环的场景,例如进行一项操作直到满足某个条件为止。
for循环是一种计数循环,即在循环开始前初始化计数器,然后在每次循环结束时更新计数器,直到计数器达到指定的值为止。
程序算法符号表

程序算法符号表
程序算法中常见的符号表包括:
1.赋值符号:用于将数值或表达式赋给变量,通常是"="。
2.算术运算符:包括加法(+)、减法(-)、乘法(*)、除法(/)等。
3.比较运算符:用于比较两个值,例如等于(==)、不等于(!=)、大于(>)、小于(<)等。
4.逻辑运算符:用于处理逻辑条件,如与(&&)、或(||)、非(!)等。
5.控制结构符号:包括if、else、while、for 等用于构建程序流程的关键字。
6.括号:用于控制运算符的优先级和明确表达式的计算顺序。
7.分号:用于表示语句的结束。
这些符号在程序设计中起着关键作用,帮助定义算法和程序逻辑。
(1-4)程序设计算法举例

1、已知xyz+yzz=532,其中 、已知 均为一位数, ,其中x,y,z均为一位数,编程求出满足条 均为一位数 件的x,y,z所有组合。 所有组合。 件的 所有组合 #include<stdio.h> void main( ) { int x,y,z; for(x=1;x<=9;x++) for(y=1;y<=9;y++) for(z=0;z<=9;z++) { if(x*100+y*10+z+t*100+z*10+z==532) printf(“x:%d,y:%d,z:%d\n”,x,y,z); } }
3、已知四位数a2b3能被 整除,编写一个 程序求满足此要 、已知四位数 能被23整除 能被 整除,编写一个C程序求满足此要 求的四位数。 求的四位数。 #include<stdio.h> void main( ) { int a,b,n; for(a=1;a<=9;a++) for(b=0;b<=9;b++) { n= a*1000+200+b*10+3; if(n%23==0) printf(“%d\n”,n); } }
2、编写一个程序求出200~300之间的数,且满足条件:它们三 、编写一个程序求出 之间的数, 之间的数 且满足条件: 个数字之积为42,三个数字之和为12。 个数字之积为 ,三个数字之和为 。 #include<stdio.h> void main( ) { int n,i1,i2,i3; for(n=200;n<=300;n++) {i1=n/100; i2=n%100/10; i3=n%10; if(i1+i2+i3==12&&i1*i2*i3==42) printf(“%d\t”,n); }
程序员必学的10大算法

程序员必学的10大算法程序员在编程中经常会遇到各种问题,需要使用算法来解决。
掌握一些经典算法能够提高程序效率、减少bug的数量,并且对于面试中的算法题也有帮助。
下面是程序员必学的10大算法。
1.排序算法:排序算法是最基本也是最常用的算法之一、常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。
排序算法能够让数据按照一定的顺序排列,提高数据的查找和处理效率。
2.查找算法:查找算法是在一组数据中找到目标数据的过程。
常见的查找算法有顺序查找、二分查找、哈希查找等。
查找算法能够帮助程序员快速定位目标数据,提高程序效率。
3.哈希算法:哈希算法将任意长度的数据映射为固定长度的数据。
常见的哈希算法有MD5、SHA、CRC等。
哈希算法在密码加密、唯一标识生成等场景中应用广泛。
4.最短路径算法:最短路径算法是在带权图中找到两个节点之间最短路径的过程。
常见的最短路径算法有迪杰斯特拉算法、弗洛伊德算法、贝尔曼-福特算法等。
最短路径算法在网络路由、导航系统等领域有重要应用。
5.动态规划算法:动态规划算法是在求解多阶段决策过程的最优解问题时使用的一种算法。
常见的动态规划算法有背包问题、最长公共子序列等。
动态规划算法能够解决很多实际问题,提高程序的效率和准确性。
6.贪心算法:贪心算法是一种在每一步选择中都采取当前状态下最优的选择,从而希望最终能得到全局最优解的算法。
常见的贪心算法有霍夫曼编码、最小生成树等。
贪心算法适用于那些可以通过局部最优选择来达到全局最优的问题。
7.图算法:图算法是解决图结构中的问题的一种算法。
常见的图算法有深度优先、广度优先、拓扑排序、最小生成树等。
图算法在社交网络分析、网络流量优化等领域有广泛应用。
8. 字符串匹配算法:字符串匹配算法是在一个较长的字符串中查找出现的目标子串的过程。
常见的字符串匹配算法有暴力匹配、KMP算法、Boyer-Moore算法等。
字符串匹配算法在文本、模式匹配等场景中非常重要。
程序员常用的十大经典算法

程序员常用的十大经典算法
1、二分查找法:将一个有序的序列中的某一特定项目,通过设定的查找方法,使查找次数尽可能减少的算法。
2、KMP算法:用于在文本串中查找模式串的字符串匹配算法。
3、动态规划算法:通过将大问题划分成小问题来解决最优最小化问题,获得最佳结果的算法。
4、深度优先搜索算法:深度优先搜索通过沿着树的深度遍历树的节点来搜索所有可能的分支信息,以达到求解问题的目的。
5、贪心算法:一种以局部最优的选择来寻找整体最优解的策略。
6、快速排序算法:通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则将这两部分记录继续排序,以达到整个序列有序的目的。
7、分治算法:将大问题不断拆分成若干个规模较小的子问题,递归处理每一个子问题,并将子问题的结果合并,从而解决原来的大问题。
8、拓扑排序:在有向无环图中根据节点的前后关系按前序次序安排节点的排序算法。
9、回溯算法:回溯算法是暴力穷举法的一种,该算法可以寻找满足一定条件的所有可能解决方案。
10、Dijkstra算法:用于求图中任意一点到其他所有点的最短路径的最优路线算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小结:
1.注意算法的要求;
2.理解循环算法。怎样用数学语言表 示循环?
练习
1.写出解一元二次方程
的一个算法。
2.写出求1至1000的正整数中3的 倍数的一个算法。
作业
设计一个计算1 2 3 100 的值 的算法。(用数学语言)
假设家中生火泡茶有以下几个步骤: a.生火 b.将水倒入锅中 c.找茶叶 d.洗茶壶茶碗 e.用开水冲茶 请选出一个最优算法( ) A.abcde B.bacde C.cadbe D.dcabe
算法的定义: 通常指可以用计算机来解决的某一类问题的程序或步骤, 这些程序或步骤必须是明确和有效的,而且能够在有限步之 内完成。
算法的要求: 1.可执行性 2.确定性 3.有穷性 4.有输入信息的说明 5.有输出结果的说明
例1‘ 已知球的半径R=2.5,写出求球的表面
积Y和体积V的一个算法。( 3.14159 )
ቤተ መጻሕፍቲ ባይዱ
例2‘ 写出一个求有限整数序列中的最大值的
算法。 解:算法如下: S1 先假定序列中的第一个整数为“最大 值”。将序列中的下一个整数值与“最大值” S2 比较,如果它大于此“最大值”,这时你就假 定“最大值”是这个整数。 S3 如果序列中还有其他整数,重复S2。 S4 在序列中一直到没有可比的数为止,这 时假定的“最大值”就是这个序列中的最大值。
例3‘ 写出求1 2 3 9 10 的值的算法。
解法1:算法如下: S1 先求 1 2,得到结果2; S2 将第一步所得结果2再乘以3,得到结果6。 S3 将6再乘以4,得到24; S4 将24再乘以5,得到120;
S9 将362880再乘以10,得到3628800,即是 最后的结果。
例1 任意给定一个大于1的整数n,试设计一
个程序或步骤对n是否为质数作出判定。 解:算法如下: S1 输入n。 S2 判断n是否等于2。若n=2,则n是质数; 若n>2,则执行 S3。
S3 依次从2-(n-1)检验是不是n的因数, 即整除n的数。若有这样的数,则n不是质数; 若没有这样的数,则n是质数。