2017—2018学年度第一学期高二理科数学试卷含答案
2017—2018学年度第一学期高二理科数学试卷含答案

2017—2018学年度第一学期期末考试高二理科数学试卷(答题时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,满分60分)每小题只有一个正确选项,请将正确选项填到答题卡处1.设集合{|(1)(2)0}A x x x =+-<, {|13}B x x =<<,则A B =A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x <<2.已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线的焦点坐标为A .(-1,0)B .(1,0)C .(0,-1)D .(0,1)3.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件4.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为A .12B .8C .6D .45.执行如图所示的程序框图,若输入的n =10, 则输出的S 等于A .511B .1011C .3655D .72556.某学校组织学生参加数学测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15人,则该班的学生人数是A .45B .50C .55D .607.若一个正三棱柱的三视图如图所示,则这个正三棱柱的表面积为 A .318 B .315C .3824+D .31624+8.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则向量a 与b 之间的夹角〈a ,b 〉为A .30°B .45°C .60°D .以上都不对9.在长为10厘米的线段AB 上任取一点G ,用AG 为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是 A .925 B .1625 C .310 D .15 10.设a =log 2π,12log b π=,c =π-2,则A .a >b >cB .b >a >cC .a >c >bD .c >b >a11.在△ABC 中,若a =2bcosC ,则△ABC 的形状一定是 A .直角三角形 B .等腰直角三角形 C .等腰三角形 D .等边三角形12.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为 A . 2 B . 3 C .2 D .3二、填空题(本大题共4小题,每小题5分,共20分)13.设变量x,y满足约束条件,22,2.y xx yx≥⎧⎪+≤⎨⎪≥-⎩则z=x-3y的最小值为.14.已知命题p:∀x>0,(x+1)e x>1,则﹁p为.15.已知甲、乙、丙三个社区现分别有低收入家庭360户、270户、180户,若第一批经济适用房中有90套住房用于解决这三个社区中90户低收入家庭的住房问题,先采用分层抽样的方法决定各社区户数,则应从甲社区中抽取低收入家庭的户数为.16.对于下列表格x196197200203204y1367m所示的五个散点,已知求得的线性回归方程为y^=0.8x-155.则实数m的值为.三、解答题(本大题共6小题,共70分.解答时,应写出必要的文字说明、证明过程或演算步骤)17.(满分10分)某种零件按质量标准分为1,2,3,4,5五个等级.现从一批该零件中随机抽取20个,对其等级进行统计分析,得到频率分布表如下:(1)n;(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.18.(满分12分)在等差数列{a n}中,a10=30,a20=50.(1)求数列{a n}的通项公式;(2)令b n=21(10)2na-,证明:数列{b n}为等比数列;(3)求数列{nb n}的前n项和T n.19.(满分12分)某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36.(1)求样本容量及样本中净重大于或等于98克并且小于104克的产品的个数; (2)已知这批产品中每个产品的利润y (单位:元)与产品净重x (单位:克)的关系式为3(9698),5(98104),4(104106).y x x x =≤<⎧⎪≤<⎨⎪≤≤⎩求这批产品平均每个的利润.20. (满分12分)已知点M (6,2)在椭圆C :x2a2+y2b2=1(a >b >0)上,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2),求△PAB 的面积.21.(满分12分)已知三棱锥P -ABC 中,PA ⊥平面ABC ,AB ⊥AC ,PA =AC =12AB ,N 为AB 上一点,AB =4AN ,M ,S 分别为PB ,BC 的中点.(1)证明:CM ⊥SN ;(2)求SN 与平面CMN 所成角的大小.22. (满分12分)已知椭圆C 1的方程为x24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB→>2(其中O 为原点),求k 的取值范围. 2017—2018学年度第一学期期末考试高二理科数学参考答案一、选择题 DC A . 2. B3. A 【解析】∵x ≥2且y ≥2,∴x 2+y 2≥4,∴x ≥2且y ≥2是x 2+y 2≥4的充分条件;而x 2+y 2≥4不一定得出x ≥2且y ≥2,4. B 【解析】由等差数列性质a 3+a 6+a 10+a 13=(a 3+a 13)+(a 6+a 10)=2a 8+2a 8=4a 8=32,∴a 8=8,又d ≠0,∴m =8.5. A 【解析】第一次执行后,S =13,i =4<10;第二次执行后,S =13+115=25,i =6<10;第三次执行后,S =25+135=37,i =8<10;第四次执行后,S =37+163=49,i =10;第五次执行后,S =49+199=511,i =12>10,输出S =511.6. B 【解析】根据频率分布直方图的特点可知,低于60分的频率是(0.005+0.01)×20=0.3,所以该班的学生人数是150.3=50.7. C 【解析】该正三棱柱的直观图如图所示,且底面等边三角形的高为32,正三棱柱的高为2,则底面等边三角形的边长为4,所以该正三棱柱的表面积为3×4×2+2×21×4×32=24+38.8. D 【解析】由已知a +b +c =0,得a +b =-c ,则(a +b )2=|a |2+|b |2+2a·b =|c |2,由此可得a·b =32.从而cos 〈a ,b 〉=a·b |a||b|=14.故答案为D .9. D 【解析】以AG 为半径作圆,面积介于36π平方厘米到64π平方厘米,则AG 的长度应介于6厘米到8厘米之间(如图).∴所求概率P =210=15.10. C 【解析】利用中间量比较大小.因为a =log 2π∈(1,2),b =log 12π<0,c =π-2∈(0,1),所以a >c >b .11.C 【解析】根据余弦定理,有a =2bcosC =2b ·a2+b2-c22ab ,化简整理得b =c .所以△ABC 为等腰三角形.12. B 【解析】设双曲线的标准方程为x2a2-y2b2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此直线l 的方程为:x =c 或x =-c ,代入x2a2-y2b2=1得y 2=b 2(c2a2-1)=b4a2,∴y =±b2a ,故|AB |=2b2a ,依题意2b2a =4a , ∴b2a2=2,∴c2-a2a2=e 2-1=2,∴e = 3. 二、填空题 13.-8【解析】作出可行域如图所示.可知当x -3y =z 经过点A (-2,2)时,z 有最小值,此时z 的最小值为-2-3×2=-8. 14. ∃x 0>0,使得(x 0+1)0e x ≤1. 15. 40【解析】抽样比为90360+270+180=19,则应从甲社区中抽取低收入家庭的户数为360×19=40. 16. 8【解析】依题意得x =15×(196+197+200+203+204)=200,y =15×(1+3+6+7+m )=17+m 5,因为回归直线必经过样本点中心,所以17+m5=0.8×200-155,解得m =8.三、解答题17.解:(1)由频率分布表得0.05+m +0.15+0.35+n =1,即m +n =0.45. 由抽取的20个零件中,等级为5的恰有2个,得n =220=0.1,所以m =0.45-0.1=0.35.(2)由(1)得,等级为3的零件有3个,记作x 1,x 2,x 3;等级为5的零件有2个,记作y 1,y 2.从x 1,x 2,x 3,y 1,y 2中任意抽取2个零件,所有可能的结果为(x 1,x 2),(x 1,x 3),(x 1,y 1),(x 1,y 2),(x 2,x 3),(x 2,y 1),(x 2,y 2),(x 3,y 1),(x 3,y 2),(y 1,y 2),共10种.记事件A 为“从零件x 1,x 2,x 3,y 1,y 2中任取2件,其等级相等”. 则A 包含的基本事件有(x 1,x 2),(x 1,x 3),(x 2,x 3),(y 1,y 2),共4种. 故所求概率为P (A )=410=0.4.18.解:(1)设数列{a n }的公差为d ,则a n =a 1+(n -1)d ,由a 10=30,a 20=50,得方程组⎩⎨⎧ a1+9d =30,a1+19d =50,解得⎩⎨⎧a1=12,d =2.所以a n =12+(n -1)·2=2n +10.(2)证明:由(1)得b n =2n ,所以bn +1bn =2n +12n =2. 所以{b n }是首项为2,公比为2的等比数列. (3)由nb n =n ×2n ,得T n =1×2+2×22+…+n ×2n , ① 2T n =1×22+2×23+…+(n -1)×2n +n ×2n +1, ②①-②得,-T n =2+22+…+2n -n ×2n +1=2n +1-2-n ×2n +1. 所以T n =(n -1)2n +1+2.19.解: (1)产品净重小于100克的频率为(0.050+0.100)×2=0.300.设样本容量为n . ∵样本中产品净重小于100克的个数是36,∴36n =0.300,∴n =120.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.750,∴样本中净重大于或等于98克并且小于104克的产品的个数是120×0.750=90.(2)产品净重在[96,98),[98,104),[104,106]内的频率分别为0.050×2=0.100,(0.100+0.150+0.125)×2=0.750,0.075×2=0.150,∴其相应的频数分别为120×0.1=12,120×0.750=90,120×0.150=18,∴这批产品平均每个的利润为1120×(3×12+5×90+4×18)=4.65(元).20. 解:(1)由已知得⎩⎪⎨⎪⎧6a2+2b2=1,c a =63,a2=b2+c2,解得⎩⎨⎧a2=12,b2=4.故椭圆C 的方程为x212+y24=1.(2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2),AB 的中点为D (x 0,y 0). 由⎩⎪⎨⎪⎧y =x +m ,x212+y24=1,消去y ,整理得4x 2+6mx +3m 2-12=0,则x 0=x1+x22=-34m ,y 0=x 0+m =14m ,即D ⎝ ⎛⎭⎪⎫-34m ,14m .因为AB 是等腰三角形PAB 的底边,所以PD ⊥AB ,即PD 的斜率k =2-m 4-3+3m 4=-1,解得m =2. 此时x 1+x 2=-3,x 1x 2=0,则|AB |=2|x 1-x 2|=2·(x1+x2)2-4x1x2=32, 又点P 到直线l :x -y +2=0的距离为d =32, 所以△PAB 的面积为S =12|AB |·d =92.21.解:以A 为坐标原点建立如图所示的空间直角坐标系,设PA =1,则P (0,0,1),C (0,1,0),B (2,0,0), M (1,0,12),N (12,0,0),S (1,12,0). (1)CM→=(1,-1,12),SN →=(-12,-12,0),因为CM →·SN→=-12+12+0=0, 所以CM→⊥SN →,所以CM ⊥SN . (2)易得NC→=(-12,1,0),设n =(x ,y ,z )为平面CMN 的一个法向量,则⎩⎪⎨⎪⎧CM →·n =x -y +12z =0,NC →·n =-12x +y =0,得⎩⎨⎧x =2y z =-2y,取x =2,则y =1,z =-2,n =(2,1,-2).因为|cos 〈n ,SN →〉|=|n·SN →||n|·|SN →|=22,所以SN 与平面CMN 所成角的大小为45°.22. 解:(1)设双曲线C 2的方程为x2a2-y2b2=1(a >0,b >0), 则a 2=3,c 2=4,再由a 2+b 2=c 2,得b 2=1. 故C 2的方程为x23-y 2=1. (2)将y =kx +2代入x23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得⎩⎨⎧1-3k2≠0,Δ=(-62k )2+36(1-3k2)=36(1-k2)>0, ∴k 2≠13且k 2<1.① 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=62k 1-3k2,x 1x 2=-91-3k2.∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2=3k2+73k2-1.又∵OA →·OB →>2,得x 1x 2+y 1y 2>2, ∴3k2+73k2-1>2,即-3k2+93k2-1>0,解得13<k 2<3.② 由①②得13<k 2<1, 故k 的取值范围为⎝ ⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫33,1.。
石家庄市2017~2018学年度高二数学理科第一学期期末试卷含答案(扫描版)

石家庄市2017-2018学年第一学期期末检测试题高二数学(理科)一、选择题BB CAC BCCDA A B二、填空题13.0,x R ∃∈0210x +≤ 14. 0.39 5(,242 三、解答题17.解:命题p 等价于Δ=2a -16≥0,即a ≤-4或a ≥4; (2)命题q 等价于-4a ≤4,即a ≥-16.............4 由p 或q 是真命题,p 且q 是假命题知,命题p 和q 一真一假. (5)若p 真q 假,则a <-16; (7)若p 假q 真,则-4<a <4 (9)故a 的取值范围是(-∞,-16)∪(-4,4). (10)18. 解:由题意知:43OP k =-,所以34CP k =,…………1 所以直线CP 的方程是:316(12)4y x +=-,............2 同理直线CQ 的方程是:20x =, (4)联立解得圆心为(20,10)C -,半径10r =,…………-5所以圆22:(20)(10)100C x y -++=.…………6 (2)直线l : x +y +a =0所以圆心C 到直线AB 的距离d = (8)22100=+ 解得 244a a =-=或 (10)直线l 的方程为x +y +4=0或x +y -24=0 (12)19.解:(1)由(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)×20=1…………2 得x =0.007 5,∴直方图中x 的值为0.007 5 (3)(2) 月平均用电量在[240,260)的用户有0.0075×20×100=15(户),同理可求月平均用电量为[260,280),[280,300]的用户分别有10户、5户,故抽取比例为15, (5)∴从月平均用电量在[240,260)的用户中应抽取15×15=3户),…………6 从月平均用电量在[260,280)的用户中应抽取10×15=2(户)…………7 从月平均用电量在[280,300]的用户中应抽取5×15=1(户)…………8 (3) 记抽取[240,260)的用户为1A 2A 3A , 记抽取[260,280)的用户为1B 2B ,记抽取[280,300]的用户为C从六户居民任取两户的基本事件有(1A ,2A ),(1A ,3A ),(1A ,1B ),(1A ,2B ),(1A ,C ),(2A ,3A ),(2A ,1B )(2A ,2B ),(2A ,C ),(3A ,1B ),(3A ,2B ),(3A ,C ),(1B ,2B ),(1B ,C )(2B ,C ) (10)一共有15种,满足条件的有3种,故所求的概率31155P ==. …………12 20.[解] (1)由数据得x =10131294+++=11,y =252826174+++=24,…………2 由公式得b ^=2310,…………4 再由a ^=y -b ^x 得a ^=-1310,…………6 所以y 关于x 的线性回归方程为y ^=2310x -1310.…………7 (2)当x =8时,y ^=17110,|17110-18|<2,............9 所以该小组所得线性回归方程是理想的. (10)当x =6时,y ^=23106⨯-1310=12510=12.5≈13,............11 ∴当温差为6℃时,就诊的人数约为13人. (12)21.解:(1)证明:以A 为原点,射线,,AB AC AP 分别为,,x y z 轴正方向建立空间直角坐标系O xyz -,如图所示. (2)则P (0,0,1),C (0,1,0),B (2,0,0),11,02M (,), 1,0,02N (),102S (1,,).1(1,1,)2CM =- ,11(,,0)22SN =-- 0SN CM ⋅=所以CM SN ⊥ (4)(2)1(,1,0),2NC =-设(,,)a x y z =为平面CMN 的一个法向量, 所以0,0a CM a CN ⎧⋅=⎪⎨⋅=⎪⎩ 则02,02z x y x y ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 令2x =,得(2,1,2)a =-, (6)因为PA ⊥平面ABC ,所以(0,0,1)AP = 是平面CBN 的一个法向量 (8)2cos ,3AP n AP n AP n⋅==-⋅ ,…………10 设二面角M NC B --的大小为θ,由图可知θ为锐角, 所以2cos 3θ=,即二面角M NC B --的余弦值为23.…………12 22. (1) 连结=42HA HE HB EA +=+=>= (2)动点H 的轨迹Γ是以,A E 为焦点,长轴长为4,焦距为2的椭圆.…………3 221(0)y a b b=>> 可知22224,22,3a c b a c ===-=213y +=…………5 解:(2)假设存在这样的点M 符合题意.设线段PQ 的中点为N ,P (x 1,y 1 ),Q (x 2,y 2),N (x 0,y 0),直线PQ 的斜率为k (k ≠0), 注意到(1,0)A ,则直线PQ 的方程为y =k (x -1), (6)由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩得(4k 2+3)x 2-8k 2x +4k 2-12=0, (7)所以x 1+x 2=8k 24k 2+3,故x 0=x 1+x 22=4k 24k 2+3, (8)又点N 在直线PQ 上,所以N 22243()4343k kk k -++,............9 由MP MQ =得:PQ ⊥MN , (10)所以k MN =0+3k4k 2+3m -4k 24k 2+3=-1k , (11)整理得m =k 24k 2+3=14+3k 2∈1(0)4,,所以线段OF 2上存在点M (m ,0)符合题意,其中m ∈1(0)4, (12)附加题:(各校可根据本校的教学进度自行选择)解:(1)当2a =时,()ln 2f x x x x =++,求导得,()ln 2f x x '=+ (1)2f '∴=,(1)3f =,故()f x 在1x =处的切线是210x y -+=;(2)定义域为(0,)+∞,导函数()ln f x x a '=+,令()0f x '=,得a x e -=,(3)分析可得()f x 在(0,)a e -为减函数,在(,)a e -+∞为增函数,所以 m i n ()()()(1)22a a a af x f e e a a e e ----==-+-+=-+, 由题意可知()0f x >恒成立,需要20a e --+>,解得ln 2a >-.。
17—18学年上学期高二期末考试数学(理)试题(附答案) (1)

银川一中2017/2018学年度(上)高二期末考试数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足i i z -=+1)1((i 是虚数单位),则z 的共轭复数z = A .i - B .i 2- C .i D .i 22.演绎推理是A .部分到整体,个别到一般的推理B .特殊到特殊的推理C .一般到一般的推理D .一般到特殊的推理3.用数学归纳法证明:“1+a +a 2+…+a 2n+1=aa n --+1112(a ≠1)”,在验证n =1时,左端计算所得项为A .1+aB .1+a +a 2+a 3C .1+a +a 2D .1+a +a 2+a 3+a 4 4.双曲线8822=-ky kx 的一个焦点是(0,-3),则k 的值是 A .1B .-1C .315D .-3155.在正方体ABCD —A 1B 1C 1D 1中,E 是AD 的中点,则异面直线C 1E 与BC 所成的角的余弦值是 A .510B .1010C .31D .3226.已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F ,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为A .22132x y +=B .2213x y += C .221128x y += D .221124x y +=7.曲线1x y xe -=在点(1,1)处切线的斜率等于 A .2eB .eC .2D .18.已知函数f (x )=x 2(ax +b )(a ,b ∈R )在x =2时有极值,其图象在点(1,f (1))处的切线与直线3x +y =0平行,则函数f (x )的单调减区间为A .(-∞,0)B .(0,2)C .(2,+∞)D .(-∞,+∞) 9.已知函数53)(23-+-=x ax x x f 在区间[1,2]上单调递增,则a 的取值范围是 A .]5,(-∞B .)5,(-∞C .]437,(-∞ D .]3,(-∞10.设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时,A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值11.设双曲线12222=-by a x (a >0,b >0)的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于A 、B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点, 若),(R ∈+=μλμλ,163=λμ,则该双曲线的离心率为 A .332 B .553 C .223 D .8912.已知函数f (x )=1a x x ⎛⎫-⎪⎝⎭-2lnx (a ∈R ),g (x )=a x-,若至少存在一个x 0∈[1,e ],使得f (x 0)>g (x 0)成立,则实数a 的取值范围为A .[1,+∞)B .(1,+∞)C .[0,+∞)D .(0,+∞) 二、填空题:本大题共4小题,每小题5分. 13.观察下列不等式213122+< 231151233++<, 474131211222<+++……照此规律,第五个...不等式为 .14.已知抛物线)0(22>=p px y ,过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为 . 15.若⎰+=12)(2)(dx x f x x f ,则⎰=1)(dx x f .16.已知椭圆12222=+by a x (0)a b >>的左、右焦点分别为F 1,F 2,点A 为椭圆的上顶点,B 是直线 A F 2与椭圆的另一个交点,且B AF AF F 1021,60∆=∠的面积为340,则a 的值是 .三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本大题满分10分)已知动圆C 过点A (-2,0),且与圆M :(x -2)2+y 2=64相内切求动圆C 的圆心的轨迹方程.18.(本大题满分12分)已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值 (1)求a ,b 的值与函数f (x )的单调区间(2)若对x 〔-1,2〕,不等式f (x )c 2恒成立,求c 的取值范围19.(本大题满分12分)如图,正三棱柱111ABC A B C -的所有棱长都为2,D角坐标系。
2017-2018学年安徽省亳州市高二(上)期末数学试卷(理科)(解析版)

2017-2018学年安徽省亳州市高二(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)椭圆的焦距为()A.1B.2C.3D.42.(5分)已知2018是等差数列5,8,11,14,17,…的第n项,则n=()A.669B.670C.671D.6723.(5分)已知向量=(1,1,0),=(﹣1,0,2),且与互相垂直,则k 的值是()A.1B.C.D.4.(5分)已知实数x,y满足,则z=x+2y的最大值为()A.4B.3C.0D.25.(5分)在△ABC中,已知,则C=()A.60°B.30°C.60°或120°D.120°6.(5分)“”是“(x+2)(x﹣1)≥0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(5分)若坐标原点到抛物线y=mx2的准线的距离为2,则m=()A.8B.±8C.D.8.(5分)若a,b,c∈R,且a>b>0,则下列不等式成立的是()A.B.C.a(c2+1)>b|c|D.ac2>bc29.(5分)已知A(1,2,﹣1),B(5,6,7),则直线AB与平面xOz交点的坐标是()A.(0,1,1)B.(0,1,﹣3)C.(﹣1,0,3)D.(﹣1,0,﹣5)10.(5分)如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A、B,交其准线l于点C,若点F是AC的中点,且|AF|=4,则线段AB的长为()A.5B.6C.D.11.(5分)设a,b∈R,a2+2b2=6,则a+b的最小值是()A.﹣2B.﹣C.﹣3D.﹣12.(5分)已知数列{a n}满足递推关系,(其中λ为正常数,n∈N*)且a1+a7=1,a2+a6=0.若等式a n•a n+1•a n+2=a n+a n+1+a n+2成立,则正整数n的所有可能取值之和为()A.3B.4C.6D.8二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)命题“∃x>0,”的否定为.14.(5分)如图所示,在平行六面体ABCD﹣A1B1C1D1中,M为A1C1与B1D1的交点.若=,=,=,则向量用,,,可表示为.15.(5分)若等比数列{a n}的前n项和恒成立,则该数列的公比q的取值范围是.16.(5分)已知双曲线的右焦点为F,若直线x=﹣a上存在点P,使得∠OPF=30°,其中O为坐标原点,则双曲线的离心率的最小值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知:=(x,4,1),=(﹣2,y,﹣1),=(3,﹣2,z),∥,⊥,求:(1),,;(2)(+)与(+)所成角的余弦值.18.(12分)在等差数列{a n}中,a3+a4=12,公差d=2,记数列{a2n+1}的前n项和为S n.(1)求S n;(2)设数列的前n项和为T n,若a2,a5,a m成等比数列,求T m.19.(12分)已知命题恒成立;命题q:方程表示双曲线.(1)若命题p为真命题,求实数m的取值范围;(2)若命题“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.20.(12分)在△ABC中,角A,B,C对边分别为a,b,c,且2a cos B=2c﹣b.(1)求角A的大小;(2)若△ABC的外接圆半径为1,试求该三角形面积的最大值.21.(12分)如图所示,正三棱柱ABC﹣A1B1C1的底面边长为2,D是侧棱CC1的中点.(1)证明:平面AB1D⊥平面ABB1A1;(2)若平面AB1D与平面ABC所成锐二面角的大小为,求四棱锥B1﹣AA1C1D的体积.22.(12分)在平面直角坐标系中,△ABC的两个顶点A,C的坐标分别为,三个内角A,B,C满足.(1)若顶点B的轨迹为W,求曲线W的方程;(2)若点P为曲线W上的一点,过点P作曲线W的切线交圆O:x2+y2=4于不同的两点M,N(其中M在N的右侧),求四边形ACMN面积的最大值.2017-2018学年安徽省亳州市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:椭圆,可得a=2,b=,所以c=,椭圆的焦距为:2c=2.故选:B.2.【解答】解:由等差数列5,8,11,14,17,…,可得此数列首项为5,公差为3.∴a n=5+3(n﹣1)=3n+2.令3n+2=2018,解得n=672.故选:D.3.【解答】解:根据题意,易得k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2).∵两向量垂直,∴3(k﹣1)+2k﹣2×2=0.∴k=,故选:D.4.【解答】解:作出实数x,y满足对应的平面区域如图:(阴影部分)由z=x+2y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,此时z最大.由,解得x=0,y=2,解得A(0,2),代入目标函数z=x+2y得z=0+2×2=4.即目标函数z=x+2y的最大值为4.故选:A.5.【解答】解:由正弦定理可得=,∴sin C=,∴C=60°或C=120°,故选:C.6.【解答】解:∵可得≥0,可得x>1或x≤﹣2;∵“(x+2)(x﹣1)≥0”可得x≥1或x≤﹣2,∴“”⇒“(x+2)(x﹣1)≥0”∴“”是“(x+2)(x﹣1)≥0”的充分不必要条件,故选:A.7.【解答】解:根据题意,抛物线y=mx2的标准方程为x2=y,其焦点在x轴上,且准线方程为y=﹣,若坐标原点到抛物线y=mx2的准线的距离为2,则有|﹣|=2,解可得m=±,故选:D.8.【解答】解:令a=,b=,可验证A错误;令a=16,b=4,可验证B错误;令c=0,可验证D错误;事实上,c2+1≥2|c|≥|c|(两个等号不同时成立)故选:C.9.【解答】解:直线AB与平面xoz交点的坐标是M(x,0,z),则=(x﹣1,﹣2,z+1),=(4,4,8);又与共线,∴=λ;即,解得x=﹣1,z=﹣5;∴点M(﹣1,0,﹣5).故选:D.10.【解答】解:设A、B在准线上的射影分别为为M、N,准线与横轴交于点H,则FH=p,由于点F是AC的中点,|AF|=4,∴AM=4=2p,∴p=2,设BF=BN=x,则,即,解得x=∴,故选:C.11.【解答】解:因为a,b∈R,a2+2b2=6故可设.θ⊊R.则:a+b=,再根据三角函数最值的求法可直接得到a+b的最小值是﹣3.故选:C.12.【解答】解:∵,∴当n≤5,时,a n+1﹣a n=λ,即数列{a n}的前6项构成等差数列,且公差为λ,当n≥6时,,即数列{a n}从第项起构成等比数列,且公比为2λ,∵a2+a6=0,∴a4=0,则a1=﹣3λ,a6=2λ,∵a1+a7=1,∴﹣3λ+2λ•2λ=1,即4λ2﹣3λ﹣1=0.解得λ=1或.∵λ>0,∴λ=1.∴数列{a n}为:﹣3,﹣2,﹣1,0,1,2,4,8,…∵(﹣3)×(﹣2)×(﹣1)=﹣3﹣2﹣1,∴当n=1时,等式a n•a n+1•a n+2=a n+a n+1+a n+2成立,∵(﹣1)×0×1=﹣1+0+1,∴当n=3时,等式a n•a n+1•a n+2=a n+a n+1+a n+2成立,当n≠1且n≠3时,等式不成立,∴正整数n的所有可能取值之和为4.故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【解答】解:命题是特称命题,则命题的否定是全称命题,即∀x>0,,故答案为:∀x>0,14.【解答】解:∵平行四边形A1B1C1D1中,对角线A1C1、B1D1相交于点M,∴向量==(﹣),∵平行四边形AA1B1B中,=;平行四边形AA1D1D中,=,∴=(﹣),又∵=,∴==+(﹣)=﹣++.故答案为:﹣++15.【解答】解:根据题意,对于等比数列{a n},其公比为q,若等比数列{a n}的前n项和恒成立,当n=1时,a1=S1>0,分2种情况讨论:(1)若q=1,则S n=na1,只要a1>0,S n>0就一定成立,符合题意,(2)若q≠1,则S n=,若S n>0,必有>0,又有2种情况:①当q>1时,1﹣q n<0恒成立,即q n>1恒成立,由q>1,知q n>1成立;②当q<1时,需1﹣q n>0恒成立,当0<q<1时,1﹣q n>0恒成立,当﹣1<q<0时,1﹣q n>0也恒成立,当q<﹣1时,当n为偶数时,1﹣q n>0不成立,当q=﹣1时,1﹣q n>0也不可能恒成立,所以q的取值范围为(﹣1,0)∪(0,+∞).16.【解答】解:设△OPF的外接圆的半径r,由|OF|=c,正弦定理可得,2r==2c,即有r=c,且圆心m在x=上,P在圆上,所以原题等价于直线x=﹣a与圆M存在公共点,即有≤c﹣a,由离心率公式可得e≥2.则双曲线的离心率的最小值为2,故答案为:2.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【解答】解:(1)∵,∴,解得x=2,y=﹣4,故=(2,4,1),=(﹣2,﹣4,﹣1),又因为,所以=0,即﹣6+8﹣z=0,解得z=2,故=(3,﹣2,2)(2)由(1)可得=(5,2,3),=(1,﹣6,1),设向量与所成的角为θ,则cosθ==18.【解答】解:(1)∵在等差数列{a n}中,a3+a4=12,公差d=2,∴(a1+2×2)+(a1+3×2)=12,解得a1=1,∴a n=1+(n﹣1)×2=2n﹣1.∵数列{a2n﹣1}的前n项和为S n,a2n﹣1=2(2n﹣1)﹣1=4n﹣3,∴{a2n﹣1}是1为首项,4为公差的等差数列,∴S n==2n2﹣n.(2)∵a2,a5,a m成等比数列,∴a2a m=a52,∴3(2m﹣1)=92,解得m=14.∴==(﹣),∴T m=T14=(1﹣+﹣+…+﹣)=(1﹣)=.19.【解答】解:(1)=(x﹣1)++2,∵x>1,∴(x﹣1)++2≥2+2=4,当且仅当x=2时取得等号,故命题p为真命题时,m≤4.(2)若命题q为真命题,则(m﹣2)(m+2)<0,所以﹣2<m<2,因为命题p或q为真命题,则p,q至少有一个真命题,p且q为假命题,则p,q至少有一个假命题,所以p,q一个为真命题,一个为假命题.当命题p为真命题,命题q为假命题时,,则m≤﹣2,或2≤m≤4;当命题p为假命题,命题q为真命题时,,舍去.综上,m≤﹣2,或2≤m≤4.20.【解答】解:(1)∵2a cos B=2c﹣b,∴由正弦定理可得:2sin A cos B=2sin C﹣sin B,可得:2sin A cos B=2sin A cos B+2sin B cos A ﹣sin B,∴2sin B cos A=sin B,∵sin B≠0,∴cos A=,又0<A<π,∴.(2)∵,由正弦定理可得:a=2R sin A=,又∵a2=3=b2+c2﹣2bc cos A=b2+c2﹣bc≥bc,可得:bc≤3,∴S=bc sin A≤×3=,即该三角形面积的最大值为.21.【解答】证明:(1)如图①,取AB1的中点E,AB的中点F,连接DE,EF,CF,由题意知EF BB 1,又CD,∴四边形CDEF为平行四边形,∴DE∥CF.又三棱柱ABC﹣A1B1C1是正三棱柱,∴△ABC为正三角形,∴CF⊥AB.∵CF⊂平面ABC,CF⊥BB1,而AB∩BB1=B,∴CF⊥平面ABB1A1.又DE∥CF,∴DE⊥平面ABB1A1.而DE⊂平面AB1D,∴平面AB1D⊥平面ABB1A1.解:(2)(方法一)以B为原点,建立如图①所示的空间直角坐标系,设AA1=h,则A(),D(0,2,),B1(0,0,h),则=(﹣,h),=(﹣).设=(1,y,z)为平面AB1D的一个法向量.由,得=(1,),平面ABC的一个法向量为=(0,0,1),|cos<>|===cos=,解得h=2.∴四棱锥B1﹣AA1C1D的体积V=×==.(方法二)如图②,延长B1D与BC交于点M,连接AM.∵B1C1∥BC,D为CC1的中点,∴D也是B1M的中点,又∵E是AB1的中点,∴AM∥DE.∵DE⊥平面ABB1A1,∴AM⊥平面ABB1A1.∴∠B1AB为平面AB1D与平面ABC所成二面角的平面角.∴∠B1AB=,∴AA1=BB1=AB=2.四棱锥B1﹣AA1C1D的体积===.22.【解答】解:(1)设△ABC的三个内角A,B,C所对的边分别为a,b,c,由,得2b=(a+c).∵b=2,∴a+c=4,即|BC|+|BA|=4.由椭圆定义知,B点轨迹是以C,A为焦点,长半轴长为2,半焦距为,短半轴长为1,中心在原点的椭圆(除去左、右顶点).∴B点的轨迹方程为(y≠0);(2)易知直线MN的斜率k存在,设MN:y=kx+m,由,得(4k2+1)x2+8kmx+4(m2﹣1)=0,由△=64k2m2﹣16(4k2+1)(m2﹣1)=0,得m2=4k2+1,∵S ACMN=S△MON+S△MCO+S△ANO,设点O到直线MN:kx﹣y+m=0的距离为d,则d=,∴|MN|=2,∴===,由,得(k2+1)x2+2kmx+m2﹣4=0,,,∴y1+y2=kx1+m+kx2+m=k(x1+x2)+2m=,∴S△MCO+S△NAO===,∴S ACMN=S△MON+(S△NAO+S△MCO)=.而m2=4k2+1,,易知k2≥0,∴m2≥1,则|m|≥1,∴=,当且仅当|m|=,即m=时取“=”.∴四边形ACMN面积的最大值为4.。
广东省东莞市2017-2018学年高二第一学期期末考试数学理科试题(解析版)

广东省东莞市2017-2018学年度第一学期高二理科数学期末考试(解析版)一:选择题.1.命题“,“的否定是A. ,B. ,C. ,D. ,【答案】D【解析】【分析】根据特称命题的否定方法,根据已知中的原命题,写出其否定形式,可得答案.【详解】解:命题“,“的否定是为,,故选:D.【点睛】本题考查的知识点是全称命题,命题的否定,熟练掌握全称命题和特称命题的否定方法是解答的关键.2.在中,若,,,则A. 2B. 3C. 4D. 5【答案】A【解析】【分析】由已知,利用余弦定理可得关于BC的方程,解方程可得BC的值.【详解】解:,,,由余弦定理可得:,可得:,可得:,解得:或舍去.故选:A.【点睛】本题主要考查了余弦定理在解三角形中的应用,属于基础题.3.下列结论成立的是A. 若,则B. 若,则C. 若,,则D. 若,,则【答案】D【解析】【详解】对于当时,不成立;对于取,,不成立;对于,,,因此不成立;对于,,又,,因此成立.故选:D.A.当时,不成立;B.取,即可判断出;C.由,,可得;D.利用不等式的基本性质即可判断出.本题考查了不等式的基本性质,属于基础题.4.等差数列中,,,则的值为A. 10B. 9C. 8D. 7【答案】B【解析】【详解】等差数列中,,,,,,故选:B.依题意,利用等差数列的性质,可知,再利用等差中项的性质可得答案.本题考查等差数列的性质,求得是关键,属于基础题.5.若椭圆的离心率为,则双曲线的渐近线方程为A. B.C. D.【答案】C【解析】【详解】椭圆的离心率为,则,即有,则双曲线的渐近线方程为,即有故选:C.运用椭圆的离心率公式可得a,b的关系,再由双曲线的渐近线方程,即可得到.本题考查椭圆和双曲线的方程和性质,考查渐近线方程和离心率公式的运用,考查运算能力,属于基础题.6.如果实数x、y满足条件,那么的最大值为A. 2B. 1C.D.【答案】B【解析】【详解】先根据约束条件画出可行域,当直线过点时,t最大是1,故选:B.先根据约束条件画出可行域,再利用几何意义求最值,表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.7.若正实数a,b满足,则下列说法正确的是A. ab有最小值B. 有最小值C. 有最小值4D. 有最小值【答案】C【解析】【分析】根据a,b都是正数,以及即可得出,从而判断选项A错误,根据基本不等式即可排除选项B,D,从而只能选C.【详解】解:,,且;;;有最大值,选项A错误;,,即有最大值,B项错误.,有最小值4,C正确;,的最小值是,不是,D错误.故选:C.【点睛】考查基本不等式的应用,以及不等式的性质.8.等比数列的前n项和为,已知,且与的等差中项为,则A. 29B. 31C. 33D. 36【答案】B【解析】【分析】设等比数列的公比为q,运用等差数列中项性质和等比数列的通项公式,可得首项和公比的方程,解方程可得首项和公比,再由等比数列的求和公式,计算可得所求值.【详解】解:等比数列的公比设为q,前n项和为,,且与的等差中项为,可得,,解得,,则.故选:B.【点睛】本题考查等差数列中项性质和等比数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.9.已知三棱锥,点M,N分别为边AB,OC的中点,P是MN上的点,满足,设,,,则等于A. B.C. D.【答案】D【解析】【分析】根据所给的图形,在图形中看出要求的向量如何得到,再利用向量的加减法法则,得到结果.【详解】解:,,故选:D.【点睛】本题考查空间向量的加减法,本题解题的关键是在已知图形中应用已知棱去表示要求的结果,本题是一个基础题.10.如图在一个的二面角的棱上有两个点A、B,线段AC、BD分别在这个二面角的两个面内,并且都垂直于棱AB,且,,则CD的长为A. 2B.C.D. 1【答案】A【解析】【详解】,,,,,,.,,由,两边平方后展开整理,即可求得,则CD的长可求.本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.11.如图所示,为了测量A,B两处岛屿间的距离,小明在D处观测,A,B分别在D处的北偏西、北偏东方向,再往正东方向行驶20海里至C处,观测B在C处的正北方向,A在C处的北偏西方向,则A,B两处岛屿间的距离为A. 海里B. 海里C. 海里D. 20海里【答案】B【解析】【分析】分别在和中利用正弦定理计算AD,BD,再在中利用余弦定理计算AB的值.【详解】解:连接AB,如图所示;由题意可知,,,,,,,在中,由正弦定理得,,在中,,,;在中,由余弦定理得海里.【点睛】本题考查了解三角形的应用问题,合理选择三角形,利用正余弦定理计算是解题的关键,是中档题.12.已知双曲线E:上的四点A,B,C,D满足,若直线AD的斜率与直线AB的斜率之积为2,则双曲线C的离心率为A. B. C. D.【答案】A【解析】【详解】由,则A,B,C,D四点组成平行四边形ABDC,如图所示,设,,,则:由,则,点A在双曲线上,则:,据此可得:,则,由,则双曲线的离心率为,故选A.由题意可知:A,B,C,D四点组成平行四边形ABDC,根据直线的斜率公式及双曲线的标准方程求得,根据双曲线的离心率即可求得双曲线的离心率.本题考查双曲线的简单性质,直线的斜率公式,考查数形结合思想,属于中档题.二:填空题.13.已知向量1,,,且,则实数x的值为______【答案】4【解析】【分析】利用向量垂直的性质直接求解.【详解】解:向量,,且,,解得.实数x的值为4.故答案为:4.【点睛】本题考查向量的求法,考查向量垂直的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.14.已知命题p:,,若命题p为假命题,则实数a的取值范围是___.【答案】【解析】【分析】根据已知中“,”为假命题,可以得到否定命题:“,”为真命题,则问题可转化为一个函数恒成立问题,对二次项系数a分类讨论后,综合讨论结果,即可得到答案.【详解】解:“,”为假命题,其否定“,”为真命题,当时,显然成立;当时,恒成立可化为:解得综上实数a的取值范围是.故答案为:.【点睛】本题考查的知识点是命题真假判断与应用,其中根据原命题与其否定命题之间真假性相反,写出原命题的否定命题,并将问题转化为一个函数恒成立问题是解答本题的关键.15.已知抛物线的焦点为F,过点F的直线1交抛物线于A,B两点,若,则线段AB的中点到x轴的距离为___.【答案】【解析】【分析】根据抛物线方程可求得准线方程,根据抛物线的定义和梯形中位线定理,可得出答案.【详解】解:如图,F为焦点,AB中点为E,抛物线准线的方程:,分别过A、E、B做的垂线并交于点L,M,N.根据梯形的中位线定理,|EM|=,又根据抛物线性质,,,,.故答案为:.【点睛】本题主要考查了抛物线的应用灵活利用了抛物线的定义,考查分析问题解决问题的能力.16.如图,四边形ABCD中,,,,,,则线段AC长度的取值范围是______.【答案】【解析】【分析】在中,根据条件求出的取值范围,然后根据正弦定理可求得AC取值范围.【详解】解:在中,,,又,,且,,即,由正弦定理,,,,故答案为:.【点睛】本题考查了正弦定理、三角形边角关系,考查了推理能力与计算能力,属于中档题.三:解答题。
安徽省亳州市2017-2018学年高二上学期期末质量检测理科数学试卷 扫描版含答案

亳州市2017-2018学年度第一学期期末高二质量检测理科数学参考答案1 2 3 4 5 6 7 8 9 10 11 1213.0x ∀>1x >- 14.c b a ++-2121 15.()()1,00,-+∞ 16.217.解:(1)因为a ∥b ,所以x -2=4y =1-1,解得x =2,y =-4,这时a =(2,4,1),b =(-2,-4,-1).又因为b ⊥c ,所以b·c =0,即-6+8-z =0,解得z =2,于是c =(3,-2,2). ……5分(2)由(1)得a +c =(5,2,3),b +c =(1,-6,1),设(a +c )与(b +c )所成角为θ,因此cos θ=5-12+338·38=-219. ……10分 18.解:(1)∵3412a a +=,∴112521012a d a +=+=,∴11a =,∴21n a n =-, ∴212(21)143n a n n -=--=-,2(143)22n n n S n n +-==-. ……6分 (2)若25,,m a a a 成等比数列,则225m a a a =, 即23(21)9m -=,∴14m =∵11111()(21)(21)22121n n na S n n n n +==--+-+, ∴141111111114(1)(1)2335272922929m T T ==-+-++-=-=. ……12分19.解:(1)()()2211112111x x x x x x -+==-++---,∵(1,)x ∈+∞,∴()11241x x -++≥-,故命题p 为真命题时,4m ≤. ……5分(2)若命题q 为真命题,则(2)(2)0m m -+<,所以22m -<<, ……7分 因为命题""p q ∨为真命题,则,p q 至少有一个真命题,""p q ∧为假命题,则,p q 至少有一个假命题,所以,p q 一个为真命题,一个为假命题. ……9分当命题p 为真命题,命题q 为假命题时,422m m m ≤⎧⎨≤-≥⎩或,则2m ≤-,或24m ≤≤;当命题p 为假命题,命题q 为真命题时,422m m >⎧⎨-<<⎩, 舍去.综上,2m ≤-,或24m ≤≤. ……12分20. 解:(1) 2cos 22sin cos 2sin sin 212sin cos sin ,cos 420.63a B c bA B C BB A B A A A ππ=-∴=-∴=∴=<<∴=分分又分(2)3sin 2==A R a , ……8分 又bc bc c b A bc c b a ≥-+=-+=22222cos 2,"",3==≤∴取当且仅当c b bc , ……10分43343sin 21≤==∴bc A bc S ,即4ABC ∆面积的最大值为……12分 21.解:(1)如图①,取1AB 的中点E ,AB 的中点F ,连接,,DE EF CF ,易知//1EF BB = 又//112CD BB =,∴四边形CDEF 为平行四边形,∴//DE CF . 又三棱柱111ABC A B C -是正三棱柱,∴ABC ∆为正三角形,∴CF AB ⊥.∵CF ⊂平面ABC ,1CF BB ⊥,而1AB BB B ⋂=,∴CF ⊥平面11ABB A .又//DE CF ,∴DE ⊥平面11ABB A .而DE ⊂平面1AB D ,所以平面1AB D ⊥平面11ABB A .……6分(2)(方法一)建立如图①所示的空间直角坐标系,设1AA h =,则()()13,1,0,0,2,,0,0,2h A D B h ⎛⎫ ⎪⎝⎭,得()13,1,,3,1,2h AB h AD ⎛⎫=--=- ⎪⎝⎭. 设()1,,n y z =为平面1AB D 的一个法向量.由130,302n AB y hz hz n AD y ⎧⋅=--+=⎪⎨⋅=-++=⎪⎩得3,343,3y z h ⎧=⎪⎪⎨⎪=⎪⎩即3431,,33n ⎛⎫= ⎪ ⎪⎝⎭.显然平面ABC 的一个法向量为()0,0,1m =, 24323cos ,cos 42116133m n h m n m n hπ⋅====⋅++ 所以221634161332h h +=, 即216124162h h =⇒=+.所以()11111111312233332B AACD AA C D V S -=⨯=⨯+⨯⨯=. ……12分 (方法二)如图②,延长1B D 与BC 交于点M ,连接AM .∵11//B C BC ,D 为1CC 的中点,∴D 也是1B M 的中点,又∵E 是1AB 的中点,∴//AM DE .∵DE ⊥平面11ABB A ,∴AM ⊥平面11ABB A .∴1B AB ∠为平面1AB D 与平面ABC 所成二面角的平面角.所以14B AB π∠=,∴112AA BB AB ===.∵作B 1M A 1C 1与A 1C 1交于点M ,∵正三棱柱ABC-A 1B 1C 1∴B 1M AA 1C 1 D ,∴B 1M 是高,所以……12分22.解:(1)设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c , 由正弦定理2sin sin sin a b c R A B C===.∵2sin 3(sin sin )B A C =+,∴23()b a c =+. ∵23b = ∴4a c += 即||||4BC BA +=.由椭圆定义知,B 点轨迹是以C ,A 为焦点,长半轴长为2,半焦距为3,短半轴长为1,中心在原点(0,0)的椭圆(除去左、右顶点).。
2017-2018年天津市部分区高二上学期期末数学试卷(理科)与解析

2017-2018学年天津市部分区高二(上)期末数学试卷(理科)一、选择题(共10小题,每小题4分,共40分)1.(4分)经过两点A(4,a),B(2,3)的直线的倾斜角为,则a=()A.3 B.4 C.5 D.62.(4分)双曲线=1的离心率是()A.B.C.D.23.(4分)命题“∃m∈N,曲线=1是椭圆”的否定是()A.∀m∈N,曲线=1是椭圆B.∀m∈N,曲线=1不是椭圆C.∃m∈N+,曲线=1是椭圆D.∃m∈N+,曲线=1不是椭圆4.(4分)已知向量=(λ,1,3),=(0,﹣3,3+λ),若,则实数λ的值为()A.﹣2 B.﹣ C.D.25.(4分)“直线a与平面M垂直”是“直线a与平面M内的无数条直线都垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(4分)一个几何体的三视图如图所示,其中正视图和侧视图都是腰长为1的等腰直角三角形,则该几何体外接球的表面积为()A.πB.πC.π D.3π7.(4分)直线y=kx﹣k与圆(x﹣2)2+y2=3的位置关系是()A.相交B.相离C.相切D.与k取值有关8.(4分)已知m,n是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是()A.若m∥α,n∥α,则m∥n B.若m⊥α,m∥β,则α⊥βC.若m∥α,α∥β,则m∥βD.若m⊥n,m∥α,则n⊥α9.(4分)已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点M的纵坐标为2,则点M到该抛物线的准线的距离为()A.2 B.3 C.4 D.510.(4分)已知P(x,y)为椭圆C:=1上一点,F为椭圆C的右焦点,若点M满足|MF|=1且MP⊥MF,则|PM|的取值范围是()A.[2,8]B.[,8]C.[2,]D.[,]二、填空题(共5小题,每小题4分,共20分)11.(4分)抛物线y2=﹣4x的焦点坐标为.12.(4分)椭圆=1的两个焦点为F1,F2,过F1且垂直于x轴的直线与椭圆相交,一个交点为P,则|PF2|=.13.(4分)已知三条直线l1:2x+my+2=0(m∈R),l2:2x+y﹣1=0,l3:x+ny+1=0(n∈R),若l1∥l2,l1⊥l3,则m+n的值为.14.(4分)如图,在底面是正三角形且侧棱垂直于底面的三棱柱ABC﹣A1B1C1中,AB=1,点D在棱BB1上,且BD=1,则直线AD与平面AA1C1C所成角的余弦值为.15.(4分)平面上一质点在运动过程中始终保持与点F(1,0)的距离和直线x=﹣1的距离相等,若质点接触不到过点P(﹣2,0)且斜率为k的直线,则k 的取值范围是.三、解答题(共5小题,共60分)16.(12分)已知圆的方程x2+y2﹣2x+2y+m﹣3=0(m∈R).(1)求m的取值范围;(2)若m=1,求圆截直线x﹣y﹣4=0所得弦的长度.17.(12分)已知顶点为O的抛物线y2=2x与直线y=k(x﹣2)相交于不同的A,B两点.(1)求证:OA⊥OB;(2)当k=时,求△OAB的面积.18.(12分)如图,在多面体P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=4,AB=2DC=2.(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;(2)求三棱锥P﹣BCD的体积.19.(12分)如图,在长方体ABCD﹣A1B1C1D1中,AB=AA1=1,E为BC的中点.(1)求证:C1D⊥D1E;(2)动点M满足(0<λ<1),使得BM∥平面AD1E,求λ的值;(3)若二面角B1﹣AE﹣D1的大小为90°,求线段AD的长.20.(12分)椭圆C:=1(a>b>0)的离心率为,经过椭圆右焦点且垂直于x轴的直线被椭圆截得弦的长度为3.(1)求椭圆C的方程;(2)若斜率为k的直线l与椭圆C相交于A,B 两点(A,B不是左、右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.2017-2018学年天津市部分区高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题4分,共40分)1.(4分)经过两点A(4,a),B(2,3)的直线的倾斜角为,则a=()A.3 B.4 C.5 D.6【解答】解:由题意可得:==1,解得a=5.故选:C.2.(4分)双曲线=1的离心率是()A.B.C.D.2【解答】解:双曲线=1,可知a=2,b=1,c==,所以双曲线的离心率是=.故选:B.3.(4分)命题“∃m∈N,曲线=1是椭圆”的否定是()A.∀m∈N,曲线=1是椭圆B.∀m∈N,曲线=1不是椭圆C.∃m∈N+,曲线=1是椭圆D.∃m∈N+,曲线=1不是椭圆【解答】解:因为特称命题的否定是全称命题,所以,命题“∃m∈N,曲线=1是椭圆”的否定是:∀m∈N,曲线=1不是椭圆.故选:B.4.(4分)已知向量=(λ,1,3),=(0,﹣3,3+λ),若,则实数λ的值为()A.﹣2 B.﹣ C.D.2【解答】解:∵向量=(λ,1,3),=(0,﹣3,3+λ),,∴=0﹣3+3(3+λ)=0,解得实数λ=﹣2.故选:A.5.(4分)“直线a与平面M垂直”是“直线a与平面M内的无数条直线都垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵直线a与平面M垂直,∴直线a与平面M内的任意一条直线都垂直,则直线a与平面M内的无数条直线都垂直成立,即充分性成立,反之不成立,即“直线a与平面M垂直”是“直线a与平面M内的无数条直线都垂直”的充分不必要条件,故选:A.6.(4分)一个几何体的三视图如图所示,其中正视图和侧视图都是腰长为1的等腰直角三角形,则该几何体外接球的表面积为()A.πB.πC.π D.3π【解答】解:由三视图还原原几何体如图:该几何体为四棱锥,底面ABCD是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=1,补形为正方体,则该四棱锥外接球的直径为正方体的体对角线,长为,∴该四棱锥外接球的半径r=,表面积为.故选:D.7.(4分)直线y=kx﹣k与圆(x﹣2)2+y2=3的位置关系是()A.相交B.相离C.相切D.与k取值有关【解答】解:直线y=kx﹣k=k(x﹣1)过定点A(1,0),圆心坐标为C(2,0),半径r=,则|AC|=2﹣1=1<,则点A在圆内,则直线y=kx﹣k与圆(x﹣2)2+y2=3恒相交,故选:A.8.(4分)已知m,n是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是()A.若m∥α,n∥α,则m∥n B.若m⊥α,m∥β,则α⊥βC.若m∥α,α∥β,则m∥βD.若m⊥n,m∥α,则n⊥α【解答】解:若m∥α,n∥α,则m∥n或m,n异面或m与n相交,故A错误;若m⊥α,m∥β,则α⊥β,故B正确;若m∥α,α∥β,则m∥β或m⊂β,故C错误;若m⊥n,m∥α,则n⊥α或n⊂α或n∥α,故D错误.故选:B.9.(4分)已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点M的纵坐标为2,则点M到该抛物线的准线的距离为()A.2 B.3 C.4 D.5【解答】解:设A(x 1,y1)、B(x2,y2),则有y12=2px1,y22=2px2,两式相减得:(y1﹣y2)(y1+y2)=2p(x1﹣x2),又因为直线的斜率为1,所以=1,所以有y1+y2=2p,又线段AB的中点的纵坐标为2,即y1+y2=4,所以p=2,所以抛物线方程为:y2=4x,抛物线的准线方程为x=﹣1.AB的方程为:y=x﹣1M(3,3),则点M到该抛物线的准线的距离为:3+1=4.故选:C.10.(4分)已知P(x,y)为椭圆C:=1上一点,F为椭圆C的右焦点,若点M满足|MF|=1且MP⊥MF,则|PM|的取值范围是()A.[2,8]B.[,8]C.[2,]D.[,]【解答】解:依题意知,点M在以F(3,0)为圆心,1为半径的圆上,PM为圆的切线,∴|PM|2=|PF|2﹣|MF|2,而|MF|=1,∴当|PF|最小时,切线长|PM|最小.由图知,当点P为右顶点(5,0)时,|PF|最小,最小值为:5﹣3=2.∴|PM|==,当|PF|最大时,切线长|PM|最大.当点P为左顶点(﹣5,0)时,|PF|最小,最小值为:5+3=8,∴|PM|==3,|PM|的取值范围[,3],故选:D.二、填空题(共5小题,每小题4分,共20分)11.(4分)抛物线y2=﹣4x的焦点坐标为(﹣1,0).【解答】解:根据抛物线的性质可知根据抛物线方程可知抛物线的开口向左,且2P=4,即p=2,开口向左∴焦点坐标为(﹣1,0)故答案为:(﹣1,0)12.(4分)椭圆=1的两个焦点为F1,F2,过F1且垂直于x轴的直线与椭圆相交,一个交点为P,则|PF2|=.【解答】解:椭圆的左焦点坐标(﹣1,0),不妨P(﹣1,)即:P(﹣1,),由椭圆的定义可知:|PF1|+|PF2|=2a=4∴|PF2|=4﹣=.故答案为:.13.(4分)已知三条直线l1:2x+my+2=0(m∈R),l2:2x+y﹣1=0,l3:x+ny+1=0(n∈R),若l1∥l2,l1⊥l3,则m+n的值为﹣1.【解答】解:∵l1∥l2,∴=﹣2,解得m=1.∵l1⊥l3,m=n=0不满足题意,舍去,∴﹣×=﹣1,解得n=﹣2.则m+n=﹣1.故答案为:﹣1.14.(4分)如图,在底面是正三角形且侧棱垂直于底面的三棱柱ABC﹣A1B1C1中,AB=1,点D在棱BB1上,且BD=1,则直线AD与平面AA1C1C所成角的余弦值为.【解答】解:取AC,A1C1的中点分别为E,H.∵直棱柱ABC﹣A1B1C1中,底面是正三角形,且AB=1,∴BE⊥AC,即可得到BE⊥面ACC1A1,过点D作DF⊥EH于F,则DF⊥面ACC1A1,连接FA,则∠DAF为直线AD与平面AA1C1C所成角,AF=,DF=,∴∴.故答案为:15.(4分)平面上一质点在运动过程中始终保持与点F(1,0)的距离和直线x=﹣1的距离相等,若质点接触不到过点P(﹣2,0)且斜率为k的直线,则k的取值范围是∪.【解答】解:由题意可得质点在抛物线上:y2=4x.过点P(﹣2,0)且斜率为k的直线方程为:y=k(x+2).联立,化为:k2x2+(4k2﹣4)x+4k2=0,(k≠0).∵质点接触不到过点P(﹣2,0)且斜率为k的直线,则△=(4k2﹣4)2﹣16k4<0,化为:k2,解得k或k.∴k的取值范围是∪.故答案为:∪.三、解答题(共5小题,共60分)16.(12分)已知圆的方程x2+y2﹣2x+2y+m﹣3=0(m∈R).(1)求m的取值范围;(2)若m=1,求圆截直线x﹣y﹣4=0所得弦的长度.【解答】解:(1)由题意知D2+E2﹣4F=(﹣2)2+22﹣4(m﹣3)=﹣4m+20>0,解得m<5.…(4分)(2)当m=1时,由x2+y2﹣2x+2y﹣2=0得(x﹣1)2+(y+1)2=4,…(6分)所以圆心坐标为(1,﹣1),半径r=2,圆心到直线x﹣y﹣4=0的距离为d===,…(8分)所以弦长l=2=2=2…(10分)则弦长为2…(12分)17.(12分)已知顶点为O的抛物线y2=2x与直线y=k(x﹣2)相交于不同的A,B两点.(1)求证:OA⊥OB;(2)当k=时,求△OAB的面积.【解答】解:(1)证明:将直线y=k(x﹣2)代入抛物线的方程y2=2x,消去y可得,k2x2﹣(4k2+2)x+4k2=0,设A(x1,y1),B(x2,y2),可得x1+x2=4+,x1x2=4,y1y2=k2(x1﹣2)(x2﹣2)=k2[x1x2+4﹣2(x1+x2)]=k2(4+4﹣8﹣)=﹣4即有x1x2+y1y2=0,则•=0=0,即有OA⊥OB;(2)因为k=,由(1)可得x1=1,x2=4,代入直线方程可得y1=﹣,y2=2,∴A(1,﹣),B(4,2),∴|OA|==,|OB|==2,=•|OA|•|OB|=××2=3.∴S△OAB18.(12分)如图,在多面体P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=4,AB=2DC=2.(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;(2)求三棱锥P﹣BCD的体积.【解答】(1)证明:在△ABD中,∵BD=2AD=4,AB=2DC=2,∴AD2+BD2=AB2,∴AD⊥BD.又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BD⊂平面ABCD,∴BD⊥平面PAD,又BD⊂平面BDM,∴平面MBD⊥平面PAD.(2)解:过P作PO⊥AD,则O为AD的中点,∵平面PAD⊥平面ABCD,∴PO⊥平面ABCD,即PO为四棱锥P﹣BCD的高.又△PAD是边长为2的等边三角形,∴PO=.在Rt△ABD中,斜边AB边上的高为=,又AB∥DC,∴△BCD的边CD上的高为.==2.∴S△BCD==.∴V P﹣BCD19.(12分)如图,在长方体ABCD﹣A1B1C1D1中,AB=AA1=1,E为BC的中点.(1)求证:C1D⊥D1E;(2)动点M满足(0<λ<1),使得BM∥平面AD1E,求λ的值;(3)若二面角B1﹣AE﹣D1的大小为90°,求线段AD的长.【解答】证明:(1)以D为原点,建立如图所示的空间直角坐标系D﹣xyz,设AD=2a,则D(0,0,0),A(2a,0,0),B(2a,1,0),A1(2a,0,1),C1(0,1,1),D1(0,0,1),B1(2a,1,1),E(a,1,0),∴=(0,﹣1,﹣1),=(a,1,﹣1),∴=0,∴C1D⊥D1E.…(3分)解:(2)由动点M满足(0<λ<1),使得BM∥平面AD1E,∴M(2a,0,λ),连接BM,∴=(0,﹣1,λ),=(﹣a,1,0),=(﹣2a,0,1),设平面AD1E的法向量为=(x,y,z),则,取x=1,得=(1,a,2a),∵BM∥平面AD1E,∴⊥,即=﹣a+2λa=0,解得λ=.…(7分)(3)连接AB1,B1E,设平面B1AE的法向量为=(x,y,z),=(﹣a,1,0),=(0,1,1),则,取x=1,得=(1,a,﹣a),…(9分)∵二面角B1﹣AE﹣D1的大小为90°,∴⊥,∴=1+a2﹣2a2=0,∵a>0,∴a=1,∴AD=2.…(12分)20.(12分)椭圆C:=1(a>b>0)的离心率为,经过椭圆右焦点且垂直于x轴的直线被椭圆截得弦的长度为3.(1)求椭圆C的方程;(2)若斜率为k的直线l与椭圆C相交于A,B 两点(A,B不是左、右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.【解答】解:(1)由题意可得e===,则=,由椭圆的通径=3,解得:a=2,b=,∴所求椭圆C的方程为;…(3分)(2)设直线AB:y=kx+m,A(x1,y1),B(x2,y2),则,整理得:(3+4k2)x2+8kmx+4(m2﹣3)=0,∵△>0,∴3+4k2﹣m2>0,x 1+x2=﹣,x1x2=,∴y 1y2=k2x1x2+km(x1+x2)+m2=,(6分)∵以AB 为直径的圆过椭圆C 的右顶点,∴k AD •k BD =﹣1,∴y 1y 2+x 1x 2﹣2(x 1+x 2)+4=0,∴7m 2+16mk +4k 2=0, ∴m 1=﹣2k ,m 2=﹣k ,且均满足3+4k 2﹣m 2>0,(9分)当m 1=﹣2k 时,l 的方程为y=k (x ﹣2),则直线过定点(2,0)与已知矛盾, 当m 1=﹣k 时,l 的方程为y=k (x﹣),则直线过定点(,0) ∴直线l 过定点,定点坐标为(,0).(12分)赠送—高中数学知识点【1.3.1】单调性与最大(小)值 (1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为yxo减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。
2017-2018学年安徽省滁州市高二(上)期末数学试卷(理科)(解析版)

2017-2018学年安徽省滁州市高二(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)高二(2)班男生36人,女生18人,现用分层抽样方法从中抽出n人,若抽出的男生人数为12,则n等于()A.16B.18C.20D.222.(5分)命题“∀x∈R,x>lnx”的否定为()A.∀x∈R,x≤lnx B.∀x∈R,x<lnxC.∃x0∈R,x0≤lnx0D.∃x0∈R,x0>lnx03.(5分)双曲线的焦点到渐近线的距离为()A.B.3C.2D.4.(5分)下列函数是偶函数的是()A.y=x+cos x B.y=x+sin2x C.y=x2+cos x D.y=x2+sin2x 5.(5分)若正方形ABCD的边长为1,则在正方形ABCD内任取一点,该点到点A的距离小于1的概率为()A.B.C.D.6.(5分)“函数f(x)=ax2﹣(3a﹣1)x+1在区间[1,+∞)上是增函数”是“0≤a≤1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)执行如图所示的程序框图,则输出的结果为()A.2B.3C.4D.58.(5分)设命题p:∃x∈R,x2﹣x+2=0;命题q:若m>1,则方程+=1表示焦点在x轴上的椭圆.那么,下列命题为真命题的是()A.p∨(¬q)B.(¬p)∨(¬q)C.p∧q D.p∧(¬q)9.(5分)将曲线y=cos(2x+)向左平移个单位后,得曲线y=f(x),则函数f(x)的单调增区间为()A.B.C.D.10.(5分)已知长方体ABCD﹣A1B1C1D1,AD=AA1=2,AB=3,E是线段AB上一点,且AE=AB,F是BC中点,则D1C与平面D1EF所成的角的正弦值为()A.B.C.D.11.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,且b(3﹣cos A)=3a cos C+a cos B,则sin A=()A.B.C.D.12.(5分)已知双曲线C:﹣=1(a>0,b>0)的左顶点为M,右焦点为F,过左顶点且斜率为l的直线l与双曲线C的右支交于点N,若△MNF的面积为b2,双曲线C 的离心率为()A.3B.2C.D.二、填空题:本大题共6小题,每小题5分,共30分.13.(5分)已知向量=(﹣1,3),=(3,t),若⊥,则|2+|=.14.(5分)已知一个算法的程序框图如图所示,当输入的x=﹣1与x=1时,则输出的两个y值的和为.15.(5分)如图,直四棱柱ABCD﹣A 1B1C1D1的底面是边长为1的正方形,侧棱长,则异面直线A1B1与BD1的夹角大小等于.16.(5分)直线y=kx+1与圆(x﹣2)2+y2=1有交点,则实数k的取值范围是.17.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,点E,F分别为CD,DD1的中点,点G在棱AA1上,若CG∥平面AEF,则四棱锥G﹣ABCD的外接球的体积为.18.(5分)已知椭圆+=1的右焦点为F,点M是椭圆上第一象限内的点,MF的延长线依次交y轴,椭圆于点P,N,若=,则直线MN的斜率为.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 19.(10分)甲乙两人同时生产内径为25.41 mm的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出5件(单位:mm),甲:25.44,25.43,25.41,25.39,25.38乙:25.41,25.42,25.41,25.39,25.42.从生产的零件内径的尺寸看、谁生产的零件质量较高.20.(12分)已知直线y=x﹣2p与抛物线y2=2px(p>0)相交于A,B两点,O是坐标原点.(1)求证:OA⊥OB;(2)若F是抛物线的焦点,求△ABF的面积.21.(12分)某高校进行社会实践,对[25,55]岁的人群随机抽取1000人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在(30,35]岁,[35,40)岁年龄段人数中,“时尚族”人数分别占本组人数的80%、60%.(1)求[30,35)岁与[35,40)岁年龄段“时尚族”的人数;(2)从[30,45)岁和[45,50)岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在[30,45)岁内的概率.22.(12分)已知S n为等差数列{a n}的前n项和,已知S2=2,S3=﹣6.(1)求数列{a n}的通项公式和前项和S n;(2)是否存在n,使S n,S n+2+2n,S n+3成等差数列,若存在,求出n,若不存在,说明理由.23.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PB=PD=,AB=1,AP=2,Q是CD中点.(1)求点C到平面BPQ的距离;(2)求二面角A﹣PQ﹣B的余弦值.24.(12分)设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M 的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围.2017-2018学年安徽省滁州市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:性别比为2:1,现用分层抽样方法从中抽出n人,若抽出的男生人数为12,则n==18,故选:B.2.【解答】解:由全称命题的否定为特称命题,可得命题“∀x∈R,x>lnx”的否定为”∃x0∈R,x0≤lnx0故选:C.3.【解答】解:双曲线的焦点坐标为(4,0)或(﹣4,0),渐近线方程为y=±x,则焦点到渐近线的距离d==2,故选:C.4.【解答】解:根据题意,依次分析选项:对于A,f(x)=x+cos x,f(﹣x)=(﹣x)+cos(﹣x)=﹣x+cos x,f(﹣x)≠f(x),f(x)不是偶函数,不符合题意;对于B,f(x)=x+sin2x,f(﹣x)=(﹣x)+sin(﹣2x)=﹣(x+sin2x)=﹣f(x),f(x)为奇函数,不符合题意;对于C,f(x)=x2+cos x,f(﹣x)=(﹣x)2+cos(﹣x)=x2+cos x=f(x),则f(x)是偶函数,符合题意;对于D,f(x)=x2+sin2x,f(﹣x)=(﹣x)2+sin(﹣2x)=x2﹣sin2x,f(﹣x)≠f(x),f(x)不是偶函数,不符合题意;故选:C.5.【解答】解:如图:满足动点P到定点A的距离|P A|<1的平面区域如图中阴影所示:则正方形的面积S正方形=1,阴影部分的面积S=,故动点P到定点A的距离|P A|<1的概率P=,故选:A.6.【解答】解:∵函数f(x)=ax2﹣(3a﹣1)x+a2在[1,+∞)上是增函数,∴a=0时,f(x)=x,是增函数,a≠0时,f(x)是二次函数,∵函数f(x)在区间[1,+∞)上单调递增,∴,解得:0<a≤1,综上:a的范围是0≤a≤1,故“函数f(x)=ax2﹣(3a﹣1)x+1在区间[1,+∞)上是增函数”是“0≤a≤1”的充分必要条件,故选:C.7.【解答】解:第一次进行循环,S=20,i=2,不满足退出循环的条件;第二次进行循环,S=10,i=3,不满足退出循环的条件;第三次进行循环,S=,i=4,不满足退出循环的条件;第四次进行循环,S=,i=5,满足退出循环的条件;故输出的i值为5,故选:D.8.【解答】解:由x2﹣x+2=0,∵△=12﹣8=﹣7<0,即此方程无解,即命题p:∃x∈R,x2﹣x+2=0;为假命题,即¬p为真命题,当m>1时,2m﹣1>m>0,即方程+=1表示焦点在x轴上的椭圆.即命题q为真命题,¬q为假命题,即(¬p)∨(¬q)为真命题,故选:B.9.【解答】解:将曲线y=cos(2x+)向左平移个单位后,得曲线y=f(x)=cos(2x++)=cos(2x+)的图象,令2kπ﹣π≤2x+≤2kπ,求得kπ﹣≤x≤kπ﹣,故函数的增区间为[kπ﹣,kπ﹣],k∈Z.再根据函数的周期为π,故函数的周期为[kπ+,kπ+],k∈Z,故选:C.10.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵长方体ABCD﹣A1B1C1D1,AD=AA1=2,AB=3E是线段AB上一点,且AE=AB,F是BC中点,∴D1(0,0,2),C(0,3,0),E(2,1,0),F(1,3,0),=(0,3,﹣2),=(2,1,﹣2),=(1,3,﹣2),设平面D1EF的法向量=(x,y,z),则,取y=1,得=(2,1,),设D1C与平面D1EF所成的角为θ,则D1C与平面D1EF所成的角的正弦值sinθ===.故选:A.11.【解答】解:∵b(3﹣cos A)=3a cos C+a cos B,∴由正弦定理可得:3sin B=3sin A cos C+sin A cos B+sin B cos A,可得:3sin B=3sin A cos C+sin C,∴由正弦定理可得:3b=3a cos C+c,∴3b=3a•+c,可得:3b2+3c2﹣3a2=2bc,∴cos A==,∴sin A=.故选:A.12.【解答】解:双曲线C:﹣=1(a>0,b>0)的左顶点为M(﹣a,0),右焦点为F(c,0),过左顶点且斜率为1的直线l:y=x+a,直线l与双曲线C的右支交于点N,,可得:(b2﹣a2)y2﹣2ab2y=0,解得N的纵坐标为:﹣.又因为△MNF的面积为b2,所以:﹣×2c×=b2,﹣4ac=3a2﹣3(c2﹣a2)所以3e2﹣2e﹣8=0,e>1解得e=2,故选:B.二、填空题:本大题共6小题,每小题5分,共30分.13.【解答】解:∵向量=(﹣1,3),=(3,t),⊥,∴=﹣3+3t=0,解得t=1,∴=(3,1),2=(1,7),|2+|==5.故答案为:.14.【解答】解:由程序框图知:算法的功能是求y=的值,输入的x=﹣1时,y=,输入的x=1时,y=1,则输出的两个y值的和为.故答案为:.15.【解答】解:连接BC1,∵A1B1∥C1D1,∴∠BD1C1为异面直线A1B1与BD1所成的角,∵直四棱柱ABCD﹣A1B1C1D1的底面是边长为1的正方形,∴C1D1⊥平面BCC1B1,∴C1D1⊥BC1,在Rt△BC1D1中,BC1=,tan∠BD1C1==,∠BD1C1=.故答案是16.【解答】解:圆(x﹣2)2+y2=1的圆心坐标为(2,0),半径为1.由圆心到直线y=kx+1的距离d=≤1,解得﹣≤k≤0.∴实数k的取值范围是[﹣,0].故答案为:[﹣,0].17.【解答】解:如图,取AB中点H,连接CH,HG,则CH∥AE,CH∥平面AEF,又CG∥平面AEF,∴平面CGH∥平面AEF,可得EF∥GH,则G为AA1的中点,∴AG=1,则四棱锥G﹣ABCD的外接球的直径为以AB,AD,AH为棱的长方体的对角线,长为,半径为,则四棱锥G﹣ABCD的外接球的体积为.故答案为:.18.【解答】解:椭圆+=1的右焦点为F,F(1,0),设直线的斜率为k,直线方程为:y=k(x﹣1),代入椭圆+=1,可得:(3+4k2)x2﹣8k2x+4k2﹣12=0,可得x A+x B=,椭圆+=1的右焦点为F,点M是椭圆上第一象限内的点,MF的延长线依次交y 轴,椭圆于点P,N,若=,∴=1,可得k=.故答案为:.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 19.【解答】解:甲的平均数.乙的平均数.甲的方差,乙的方差.∵甲、乙平均数相同,乙的方差较小,∴乙生产的零件比甲的质量高.20.【解答】(1)证明:由得x2﹣4px+4p2=2px.∴x2﹣6px+4p2=0.设A(x1•y1).B(x2,y2),则y1=x1﹣2p,y2=x2﹣2p,且,∴.∴,∴OA⊥OB.(2)解:由(l)知△AOB的面积等于,=.(用求解同样给分)直线y=x﹣2p与x轴交点为M(2p,0),抛物线焦点F为,∴,∴△AFB的面积为21.【解答】解:(1)[30,35)岁年龄段“时尚族”的人数为1000×0.06×5×80%=240.[35,40)岁年龄段“时尚族”的人数为1000×0.04×5×60%=120.(2)由(1)知[30,35)岁中抽4人,记为a、b、c、d,[35,40)岁中抽2人,记为x、y,则领队两人是:ab、ac、ad、ax、ay、bc、bd、bx、by、cd、cx、cy、dx、dy、xy共l5种可能,其中两人都在[30,35)岁内的有6种,所以领队的两人年龄都在[30,45)岁内的概率为P=.22.【解答】解:(1)设等差数列{a n}的公差为d,∵S2=2,S3=﹣6.∴2a1+d=2,3a1+3d=﹣6,联立解得a1=4,d=﹣6.∴a n=4﹣6(n﹣1)=10﹣6n.S n==7n﹣3n2.(2)假设存在n,使S n,S n+2+2n,S n+3成等差数列,则2(S n+2+2n)=S n+S n+3,∴2[7(n+2)﹣3(n+2)2+2n]=7n﹣3n2+7(n+3)﹣3(n+3)2,化为:n=5.因此存在n=5,使S n,S n+2+2n,S n+3成等差数列.23.【解答】解:∵正方形边长AB=1,,AP=2.∴PB2=P A2+AB2.PD2=P A2+AD2.∴.P A⊥AB,P A⊥AD,∴P A⊥平面ABCD.∴分别以AB、AD、AP为x轴,y轴、z轴,建立如图所示的空间直角坐标系,则A(0,0,0),B(1,0,0),D(0,1,0),P(0,0,2),,C(1,1,0)∴,,,.(1)设平面BPQ的一个法向量=(x1•y1•z1),则.令z1=1,得=(2,1,1),∴PC与平面BPQ所成角的正弦值.∴点C到平面BPQ的距离为.(2)设平面APQ的一个法向量=(x2•y2•z2),则,,令x2=2,得=(2,﹣1,0),∴,∴二面角A﹣PQ﹣B的余弦值为.24.【解答】解:(1)设M的焦点F1(﹣c,0),F2(c,0),∵,△PF1F2面积为,∴,∴c=1,由,得∴椭圆M的方程为.(2)设直线l的方程为y=kx+t,由•得(3+4k2)x2+8ktx+4t2﹣12=0,设A(x1•y2),B(x2•y2),则..由k1+k2=mk对任意k成立,得,∴,又(0,t)在椭圆内部,∴0≤t2<3,∴m≥2,即m∈[2,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017—2018学年度第一学期期末考试高二理科数学试卷(答题时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,满分60分)每小题只有一个....正确选项,请将正确选项填到答题卡处1.设集合{|(1)(2)0}A x x x =+-<, {|13}B x x =<<,则A B =U A .{|13}x x -<< B .{|11}x x -<< C .{|12}x x << D .{|23}x x <<2.已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线的焦点坐标为A .(-1,0)B .(1,0)C .(0,-1)D .(0,1)3.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件4.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为A .12B .8C .6D .45.执行如图所示的程序框图,若输入的n =10, 则输出的S 等于A .511B .1011C .3655D .72556.某学校组织学生参加数学测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15人,则该班的学生人数是A .45B .50C .55D .607.若一个正三棱柱的三视图如图所示,则这个正三棱柱的表面积为 A .318 B .315C .3824+D .31624+8.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则向量a 与b 之间的夹角〈a ,b 〉为A .30°B .45°C .60°D .以上都不对9.在长为10厘米的线段AB 上任取一点G ,用AG 为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是 A .925 B .1625 C .310 D .15 10.设a =log 2π,12log b π=,c =π-2,则A .a >b >cB .b >a >cC .a >c >bD .c >b >a11.在△ABC 中,若a =2bcosC ,则△ABC 的形状一定是 A .直角三角形 B .等腰直角三角形 C .等腰三角形D .等边三角形12.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为 A . 2 B . 3 C .2 D .3二、填空题(本大题共4小题,每小题5分,共20分)13.设变量x,y满足约束条件,22,2.y xx yx≥⎧⎪+≤⎨⎪≥-⎩则z=x-3y的最小值为.14.已知命题p:∀x>0,(x+1)e x>1,则﹁p为.15.已知甲、乙、丙三个社区现分别有低收入家庭360户、270户、180户,若第一批经济适用房中有90套住房用于解决这三个社区中90户低收入家庭的住房问题,先采用分层抽样的方法决定各社区户数,则应从甲社区中抽取低收入家庭的户数为.16.对于下列表格所示的五个散点,已知求得的线性回归方程为y^=0.8x-155.则实数m的值为.三、解答题(本大题共6小题,共70分.解答时,应写出必要的文字说明、证明过程或演算步骤)17.(满分10分)某种零件按质量标准分为1,2,3,4,5五个等级.现从一批该零件中随机抽取20个,对其等级进行统计分析,得到频率分布表如下:(1)n;(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.18.(满分12分)在等差数列{a n}中,a10=30,a20=50.(1)求数列{a n}的通项公式;(2)令b n=21(10)2na-,证明:数列{b n}为等比数列;(3)求数列{nb n}的前n项和T n.19.(满分12分)某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36.(1)求样本容量及样本中净重大于或等于98克并且小于104克的产品的个数; (2)已知这批产品中每个产品的利润y (单位:元)与产品净重x (单位:克)的关系式为3(9698),5(98104),4(104106).y x x x =≤<⎧⎪≤<⎨⎪≤≤⎩求这批产品平均每个的利润.20. (满分12分)已知点M (6,2)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2),求△P AB 的面积.21.(满分12分)已知三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,P A =AC =12AB ,N 为AB 上一点,AB =4AN ,M ,S 分别为PB ,BC 的中点.(1)证明:CM ⊥SN ;(2)求SN 与平面CMN 所成角的大小.22. (满分12分)已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB→>2(其中O 为原点),求k 的取值范围.2017—2018学年度第一学期期末考试高二理科数学参考答案一、选择题A . 2. B3. A 【解析】∵x ≥2且y ≥2,∴x 2+y 2≥4,∴x ≥2且y ≥2是x 2+y 2≥4的充分条件;而x 2+y 2≥4不一定得出x ≥2且y ≥2,4. B 【解析】由等差数列性质a 3+a 6+a 10+a 13=(a 3+a 13)+(a 6+a 10)=2a 8+2a 8=4a 8=32,∴a 8=8,又d ≠0,∴m =8.5. A 【解析】第一次执行后,S =13,i =4<10;第二次执行后,S =13+115=25,i =6<10;第三次执行后,S =25+135=37,i =8<10;第四次执行后,S =37+163=49,i =10;第五次执行后,S =49+199=511,i =12>10,输出S =511.6. B 【解析】根据频率分布直方图的特点可知,低于60分的频率是(0.005+0.01)×20=0.3,所以该班的学生人数是150.3=50.7. C 【解析】该正三棱柱的直观图如图所示,且底面等边三角形的高为32,正三棱柱的高为2,则底面等边三角形的边长为4,所以该正三棱柱的表面积为3×4×2+2×21×4×32=24+38.8. D【解析】由已知a +b +c =0,得a +b =-c ,则(a +b )2=|a |2+|b |2+2a·b =|c |2,由此可得a·b =32.从而cos 〈a ,b 〉=a·b |a||b |=14.故答案为D .9. D 【解析】以AG 为半径作圆,面积介于36π平方厘米到64π平方厘米,则AG 的长度应介于6厘米到8厘米之间(如图).∴所求概率P =210=15.10. C 【解析】利用中间量比较大小.因为a =log 2π∈(1,2),b =log 12π<0,c =π-2∈(0,1),所以a >c >b .11.C 【解析】根据余弦定理,有a =2bcosC =2b ·a 2+b 2-c 22ab ,化简整理得b =c .所以△ABC 为等腰三角形.12. B 【解析】设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此直线l 的方程为:x =c 或x =-c ,代入x 2a 2-y 2b 2=1得y 2=b 2(c 2a 2-1)=b 4a 2,∴y =±b 2a ,故|AB |=2b 2a ,依题意2b 2a =4a , ∴b 2a 2=2,∴c 2-a 2a 2=e 2-1=2,∴e = 3. 二、填空题 13.-8【解析】作出可行域如图所示.可知当x -3y =z 经过点A (-2,2)时,z 有最小值,此时z 的最小值为-2-3×2=-8. 14. ∃x 0>0,使得(x 0+1)0e x ≤1. 15. 40【解析】抽样比为90360+270+180=19,则应从甲社区中抽取低收入家庭的户数为360×19=40. 16. 8【解析】依题意得x =15×(196+197+200+203+204)=200,y =15×(1+3+6+7+m )=17+m 5,因为回归直线必经过样本点中心,所以17+m5=0.8×200-155,解得m =8.三、解答题17.解:(1)由频率分布表得0.05+m +0.15+0.35+n =1,即m +n =0.45. 由抽取的20个零件中,等级为5的恰有2个,得n =220=0.1,所以m =0.45-0.1=0.35.(2)由(1)得,等级为3的零件有3个,记作x 1,x 2,x 3;等级为5的零件有2个,记作y 1,y 2.从x 1,x 2,x 3,y 1,y 2中任意抽取2个零件,所有可能的结果为(x 1,x 2),(x 1,x 3),(x 1,y 1),(x 1,y 2),(x 2,x 3),(x 2,y 1),(x 2,y 2),(x 3,y 1),(x 3,y 2),(y 1,y 2),共10种.记事件A 为“从零件x 1,x 2,x 3,y 1,y 2中任取2件,其等级相等”. 则A 包含的基本事件有(x 1,x 2),(x 1,x 3),(x 2,x 3),(y 1,y 2),共4种. 故所求概率为P (A )=410=0.4.18.解:(1)设数列{a n }的公差为d ,则a n =a 1+(n -1)d ,由a 10=30,a 20=50,得方程组⎩⎨⎧ a 1+9d =30,a 1+19d =50,解得⎩⎨⎧a 1=12,d =2. 所以a n =12+(n -1)·2=2n +10.(2)证明:由(1)得b n =2n ,所以b n +1b n=2n +12n =2.所以{b n }是首项为2,公比为2的等比数列. (3)由nb n =n ×2n ,得T n =1×2+2×22+…+n ×2n , ① 2T n =1×22+2×23+…+(n -1)×2n +n ×2n +1, ②①-②得,-T n =2+22+…+2n -n ×2n +1=2n +1-2-n ×2n +1. 所以T n =(n -1)2n +1+2.19.解: (1)产品净重小于100克的频率为(0.050+0.100)×2=0.300.设样本容量为n . ∵样本中产品净重小于100克的个数是36,∴36n =0.300,∴n =120.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.750,∴样本中净重大于或等于98克并且小于104克的产品的个数是120×0.750=90.(2)产品净重在[96,98),[98,104),[104,106]内的频率分别为0.050×2=0.100,(0.100+0.150+0.125)×2=0.750,0.075×2=0.150,∴其相应的频数分别为120×0.1=12,120×0.750=90,120×0.150=18,∴这批产品平均每个的利润为1120×(3×12+5×90+4×18)=4.65(元).20. 解:(1)由已知得⎩⎪⎨⎪⎧6a 2+2b 2=1,c a =63,a 2=b 2+c 2,解得⎩⎨⎧a 2=12,b 2=4.故椭圆C 的方程为x 212+y 24=1.(2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2),AB 的中点为D (x 0,y 0). 由⎩⎪⎨⎪⎧y =x +m ,x 212+y 24=1,消去y ,整理得4x 2+6mx +3m 2-12=0,则x 0=x 1+x 22=-34m ,y 0=x 0+m =14m , 即D ⎝ ⎛⎭⎪⎫-34m ,14m . 因为AB 是等腰三角形P AB 的底边,所以PD ⊥AB , 即PD 的斜率k =2-m4-3+3m 4=-1,解得m =2. 此时x 1+x 2=-3,x 1x 2=0,则|AB |=2|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=32, 又点P 到直线l :x -y +2=0的距离为d =32, 所以△P AB 的面积为S =12|AB |·d =92.21.解:以A 为坐标原点建立如图所示的空间直角坐标系,设P A =1,则P (0,0,1),C (0,1,0),B (2,0,0), M (1,0,12),N (12,0,0),S (1,12,0). (1)CM→=(1,-1,12),SN →=(-12,-12,0), 因为CM →·SN→=-12+12+0=0,所以CM→⊥SN →,所以CM ⊥SN . (2)易得NC→=(-12,1,0),设n =(x ,y ,z )为平面CMN 的一个法向量,则⎩⎪⎨⎪⎧CM →·n =x -y +12z =0,NC →·n =-12x +y =0,得⎩⎨⎧x =2y z =-2y,取x =2,则y =1,z =-2,n =(2,1,-2).因为|cos 〈n ,SN →〉|=|n ·SN →||n |·|SN →|=22,所以SN 与平面CMN 所成角的大小为45°.22. 解:(1)设双曲线C 2的方程为x 2a 2-y 2b 2=1(a >0,b >0), 则a 2=3,c 2=4,再由a 2+b 2=c 2,得b 2=1. 故C 2的方程为x 23-y 2=1. (2)将y =kx +2代入x 23-y 2=1, 得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=(-62k )2+36(1-3k 2)=36(1-k 2)>0, ∴k 2≠13且k 2<1.① 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2. ∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2=3k 2+73k 2-1.又∵OA →·OB →>2,得x 1x 2+y 1y 2>2, ∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0, 解得13<k 2<3.②由①②得13<k 2<1,故k 的取值范围为⎝ ⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫33,1.。