开关电源的PCB布局走线
开关电源PCB排版基本要点

开关电源PCB排版基本要点1. PCB设计概述PCB(Printed Circuit Board,印刷电路板)是电子设备中一个重要的组成部分。
开关电源PCB的设计是为了实现电源电路的稳定和高效工作。
在设计PCB排版时,需要考虑各个元器件的布局和连线,以确保电路的性能和可靠性。
2. PCB尺寸和层数在进行开关电源PCB排版时,需要确定PCB的尺寸和层数。
PCB 的尺寸应根据电源模块和外部连接器的大小来确定,以确保元器件能够合理布局,并与其他电路板相连接。
而层数则取决于所需电路的复杂程度和PCB的可用空间。
通常,开关电源PCB可以采用2层或4层结构。
3. 元器件布局在进行元器件布局时,需要根据电路原理图的要求,将不同的元器件放置在合适的位置。
一般来说,输入和输出滤波电容应尽量靠近电源模块,以最大程度地减小电源线的电感影响。
开关元件和控制芯片应尽量靠近主要电源电路,以减小开关电压和控制信号的传输损耗。
同时,还要考虑元器件之间的间距和连线的方向,以便于布线和维修。
4. 连接线和走线规划在进行PCB排版时,合理的连接线和走线规划是非常重要的。
首先,要确保电源线和信号线之间有足够的间距,以减小互相的干扰。
其次,需要避免信号线和高电压线路的交叉,以避免干扰和短路的风险。
另外,要尽量缩短连接线的长度,以减小信号传输的延迟和损耗。
最后,要合理设置地线和电源线的走向,并确保它们之间的连通性,以避免地回路干扰和功率线路的损耗。
5. 确保供电和散热性能在进行开关电源PCB排版时,供电和散热性能是需要重点考虑的因素。
为了保证供电性能,应尽量减少电源线的电阻和电感,以提高功率传输效率。
此外,还要合理选择电源线的截面积和排线宽度,以满足电流要求。
对于散热性能,则需要合理设置散热器的位置和尺寸,以确保电源模块和其他高功率器件的稳定工作温度。
6. PCB层间布线和注释为了方便布线和维修,需要在PCB上添加层间布线和注释。
层间布线可以通过添加跳线、蓝线或插针来实现,以简化复杂电路的布线。
开关电源的PCB布线要求

开关电源的PCB布线设计开关电源PCB排版是开发电源产品中的一个重要过程。
许多情况下,一个在纸上设计得非常完美的电源可能在初次调试时无法正常工作,原因是该电源的PCB排版存在着许多问题.0、引言为了适应电子产品飞快的更新换代节奏,产品设计工程师更倾向于选择在市场上很容易采购到的AC/DC适配器,并把多组直流电源直接安装在系统的线路板上。
由于开关电源产生的电磁干扰会影响到其电子产品的正常工作,正确的电源PCB排版就变得非常重要。
开关电源PCB排版与数字电路PCB排版完全不一样。
在数字电路排版中,许多数字芯片可以通过PCB软件来自动排列,且芯片之间的连接线可以通过PCB软件来自动连接。
用自动排版方式排出的开关电源肯定无法正常工作。
所以,没计人员需要对开关电源PCB排版基本规则和开关电源工作原理有一定的了解。
1、开关电源PCB排版基本要点1.1 电容高频滤波特性图1是电容器基本结构和高频等效模型。
电容的基本公式是式(1)显示,减小电容器极板之间的距离(d)和增加极板的截面积(A)将增加电容器的电容量。
电容通常存在等效串联电阻(ESR)和等效串联电感(ESL)二个寄生参数。
图2是电容器在不同工作频率下的阻抗(Zc)。
一个电容器的谐振频率(fo)可以从它自身电容量(C)和等效串联电感量(LESL)得到,即当一个电容器工作频率在fo以下时,其阻抗随频率的上升而减小,即当电容器工作频率在fo以上时,其阻抗会随频率的上升而增加,即当电容器工作频率接近fo时,电容阻抗就等于它的等效串联电阻(RESR)。
电解电容器一般都有很大的电容量和很大的等效串联电感。
由于它的谐振频率很低,所以只能使用在低频滤波上。
钽电容器一般都有较大电容量和较小等效串联电感,因而它的谐振频率会高于电解电容器,并能使用在中高频滤波上。
瓷片电容器电容量和等效串联电感一般都很小,因而它的谐振频率远高于电解电容器和钽电容器,所以能使用在高频滤波和旁路电路上。
开关电源PCB设计流程及布线技巧

开关电源PCB设计流程及布线技巧在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析:一、从原理图到PCB的设计流程建立元件参数-》输入原理网表-》设计参数设置-》手工布局-》手工布线-》验证设计-》复查-》cam输出。
二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。
最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。
焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。
当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。
如图:三、元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。
例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。
每一个开关电源都有四个电流回路:(1)电源开关交流回路(2)输出整流交流回路(3)输入信号源电流回路(4)输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。
所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去。
电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns。
设计开关电源如何布局PCB

设计开关电源如何布局PCB在开关电源设计中,PCB设计是非常关键的一步,它对电源的性能,EMC要求,可靠性,可生产性都影响很大。
随着电子技术的发展,开关电源的体积越来越小,工作频率也越来越高,内部器件的密集度也越来越高,这在开关电源规划中,PCB规划是十分要害的一步,它对电源的功用,EMC要求,可靠性,可出产性都影响很大。
跟着电子技术的开展,开关电源的体积越来越小,作业频率也越来越高,内部器材的密布度也越来越高,这对PCB布局布线的抗搅扰要求也越来越严,合理的,科学的PCB规划会让你的作业事半功倍。
1、布局要求PCB布局是比较考究的,不是说随意放上去,挤得下就完事的。
一般PCB布局要遵从几点:(1)布局的首要准则是保证布线的布通率,移动器材时留意飞线的衔接,把有连线联系的器材放在一同。
(2)以每个功用电路的中心元件为中心,环绕它来进行布局。
元器材应均匀、规整、紧凑地摆放在PCB电路板上,这样,不光漂亮,并且装焊简单,易于批量出产。
尽量削减和缩短各元器材之间的引线和衔接;振荡电路,滤波去耦电容要紧接近IC,地线要短,如图1所示。
图1(3)放置器材时要考虑今后的焊接和修理,两个高度高的元件之间尽量防止放置低矮的元件,如图2所示,这样不利于出产和保护,元件之间最好也不要太密布,可是跟着电子技术的开展,现在的开关电源越来越趋于小型化和紧凑化,所以就需求平衡好两者之间的度了,既要便利焊装与保护又要统筹紧凑。
还有便是要考虑实践的贴片加工才能,依照IPC-A-610E的规范,考虑元件旁边面偏移的精度,否则简单形成元件之间连锡,乃至因为元件偏移形成元件间隔不行。
图2(4)光电耦合器材和电流采样电路,简单被搅扰,应远离强电场、强磁场器材,如大电流走线、变压器、高电位脉动器材等。
(5)元件布局的时分,要优先考虑高频脉冲电流和大电流的环路面积,尽可能地减小,以按捺开关电源的辐射搅扰。
如图3所示的几个电流环路是需求特别留意的。
开关电源的PCB布局布线设计

开关电源的PCB布局布线设计开关电源(SMPS,Switched-Mode Power Supply)是一种非常高效的电源变换器,其理论值更是接近100%,种类繁多。
按拓扑结构分,有Boost、Buck、Boost-Buck、Charge-pump等;按开关控制方式分,有PWM、PFM;按开关管类别分,有BJT、FET、IGBT等。
本次讨论以数据卡电源管理常用的PWM控制Buck、Boost型为主。
开关电源的主要部件包括:输入源、开关管、储能电感、控制电路、二极管、负载和输出电容。
目前绝大部分半导体厂商会将开关管、控制电路、二极管集成到一颗CMOS/Bipolar 工艺的电源管理IC中,极大简化了外部电路。
其中储能电感作为开关电源的一个关键器件,对电源性能的好坏有重要作用,同时也是产品设计工程师重点关注和调试的对象。
随着像手机、PMP、数据卡为代表的消费类电子设备的尺寸正朝着轻、薄、小巧、时尚的趋势发展,而这正与产品性能越强所要的更大容量、更大尺寸的电感和电容矛盾。
因此,如何在保证产品性能的前提下,减小开关电源电感的尺寸(所占据的PCB面积和高度)是本文要讨论的一个重要命题,设计者将不得不在电路性能和电感参数间进行折中(Tradeoff)。
任何事物都具有两面性,开关电源也不例外。
坏的PCB布局布线设计不但会降低开关电源的性能,更会强化EMC、EMI、地弹(grounding)等。
在对开关电源进行布局布线时应注意的问题和遵循的原则也是本文要讨论的另一重要命题。
一、开关电源占空比D、电感值L、效率η公式推导Buck型和Boost型开关电源具有不同的拓扑结构,本文将使用如图1-1、1-2所示的电路参考模型:参考电路模型默认电感的DCR(Direct Constant Resistance)为零。
Buck/Boost型开关电源,伴随开关管的开和关,储能电感的电流波形如图1-3所示:。
开关电源PCB Layout一般要求

开关电源PCB Layout一般要求PCB Layout是开关电源研发过程中的极为重要的步骤和环节,关系到开关电源能否正常工作,生产是否顺利进行,使用是否安全等问题。
开关电源PCB Layout比起其它产品PCB Layout来说都要复杂和困难,要考虑的问题要多得多,归纳起来主要有以下几个方面的要求:一.电路要求1.PCB 中的元器件必须与BOM一致。
2.线条走线必须符合原理图,利用网络联机可以轻做到这一点。
3.线条宽度必须满足最大电流要求,不得小于1mm/1A,以保证线条温升不超过℃.为了减少电压降有时还必须加宽宽度。
4.为了减小电压降和损耗,视需要在线条上镀锡。
二.安规要求1. 一次侧和二次侧电路要用隔离带隔开,隔离带清晰明确. 靠隔离带的组件,在10N的推力作用下应保持电气距离要求。
2. 隔离带中线要用1mm的丝印虚线隔开,并在高压区标识DANGER / HIGHVOLT AGE。
3. 各电路间电气间隙(空间距离):(1) 一次侧交流部分: 保险丝前L-N≧2..5mmL.N↔大地(PE)≧2. 5mm保险丝后不做要求.(2) 一次侧交流对直流部分≧2mm(3) 一次侧直流地对大地≧4mm(4) 一次侧对二次侧部分4mm(一二次侧组件之间)(5) 二次侧部分: 电压低于100V≧0.5mm电压高于100 V(6) 二次侧地对大地≧1mm4. 各电路间的爬电距离:(1) 一次侧交流电部分: 保险丝前L-N≧2..5mmL.N↔大地(PE)≧2. 5mm保险丝后不做要求.(2) 一次侧交流对直流部分≧2mm(3) 一次侧直流地对大地≧4mm(4) 一次侧对二次侧≧6.4mm光耦,Y电容,脚间距≦6.4时要开槽。
(5) 二次侧部分之间:电压低于100V时≧0.5mm; 电压高于100V时,按电压计算。
(6) 二次侧对大地≧2mm.(7) 变压器二次侧之间≧8mm5. 导线与PCB边缘距离应≧1mm6. PCB上的导电部分与机壳之空间距离小于4 mm时, 应加0.4 mm麦拉片。
电源PCB布局和走线设计要求规范标准

5.2.6.过锡方向分析,散热分析,风向及风流量考虑 (如:散热片应怎样放、多厚、散热牙(翼)方向、散热面积多大最利于散热、散热片材质要求、辅助散热、风道方向、PIN脚稳固性、可靠度等)5.2.7.布局应尽量满足以下要求: 初级电路与次级电路分开布局;交流回路, PFC、PWM回路,整流回路,滤波回路这四大回路包围的面积尽量小, 各回路中功率元件引脚彼此尽量靠近,控制IC要尽量靠近被控制的MOS管,控制IC周边的元件尽量靠近IC布置5.2.8. 电解电容不可触及高发热元件,如大功率电阻,变压器,散热片5.2.9所有金属管脚不能紧靠在相邻元件本体上,以防过锡时高温使元件管脚烫伤其它元件外壳而短路或爆裂5.2.10.发热元件一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件5.2.11.跳线不要放在IC及其它大体积塑胶外壳的元件下,避免短路或烫伤别的元器件。
5.2.12.SMD封装的IC摆放的方向必需与过锡炉的方向成平行,不可垂直,如下图SOL5.2.13.SMD封装的IC两端尽可能要预留2.0mm的空间不能摆元件,为了预防两端SMD元件吃锡不良。
如果布局上有困难,可允许预留1.0mm的空间5.2.14.多脚元件应有第1脚及规律性的脚位标识(双列16PIN以上和单排10PIN以上均应进行脚位标识)PFC MOS和PWM MOS散热片必须接地,以减少共模干扰5.2.15.对热敏感元件(如电解电容、IC、功率管等)应远离热源,变压器、电感、整流器等;发热量大的元件应放在出风口或边缘;散热片要顺着风的流向摆放;发热器件不能过于集中5.2.16.功率电阻要选用立插封装摆放,以便散热或避免烧坏板子;如果是卧插封装,作业时一定要用打KIN元器件5.2.17.考虑管子使用压条时,压条与周边元件不能相碰或出现加工抵触5.2.18.贴片元件间的间距:a.单面板:PAD与PAD之间要求不小于0.75mmb.双面板:PAD于PAD之间要求不小于0.50mmc.单面板/双面板:PAD于板边间距要求不小于1.0mm;避免折板边损坏元件(机器分板);d.贴片元件与A/I或R/I元件间的距离如图:>=0.75mm>=0.75mm>=0.75mm5.4.PCB布线5.4.1.为了保证PCB加工时板边不出现断线的缺陷,PCB布线距离板边不能小于0.5mm5.4.2.在布线时,不能有90度夹角的走线出现5.4.3.IC相邻PIN脚不允许垂直于引脚相连5.4.4.各类螺钉孔的禁布区围禁止有走线5.4.5.逆变器高压输出的电路间隔要大于240mil,否则开槽≥1.0mm,并有高压符号标示5.4.6.铜箔最小间距:单/双面板0.40mm,特殊情况可以减小,但不超过4处5.4.7.设计双面板时要注意,底部有金属外壳或绕铜线的元件,因插件时底部与PCB接触,顶层的焊盘要开小或不开,同时顶层走线要避开元件底部,以防短路发生不良。
这些LED开关电源PCB布线技巧经常用到

这些LED开关电源PCB布线技巧经常用到在LED开关电源的设计过程中,PCB布线是其中最为关键的一个环节,其布线的合理与否将会直接关系到LED开关电源产品的工作性能和使用寿命。
小编在这里为大家整理了一些非常实用的PCB布线技巧,与各位工程师们一起分享,希望能够对工程师们的产品设计研发工作有所帮助。
LED开关电源中一般都会包含有具有传导作用的高频信号,因此,PCB板上任何的印制线都可以为其起到一个天线的作用。
而就这种天线的作用来看,PCB印制线的长度和宽度会影响其阻抗和感抗,从而会影响频率响应。
即使是通过直流信号的印制线也会从邻近的印制线耦合到射频信号并造成电路问题。
因此,在进行PCB布线的过程中,工程师需要将所有通过交流电流的印制线设计得尽可能短而宽,这种设计也就意味着必须将所有连接到印制线和连接到其他电源线的元器件放置得很近。
在PCB布线的实际操作中,PCB板上的印制线长度与其表现出的电感量和阻抗是有一个比例和规律可循的。
通常来说,印刷线的长度和电感量、阻抗成正比关系,而宽度则与印制线的电感量和阻抗成反比。
印刷线的长度反映出印制线响应的波长,长度越长,印制线能发送和接收电磁波的频率越低,它就能辐射出更多的射频能量。
根据印制线路板电流的大小,工程师应当尽量加租电源线宽度,减少环路电阻。
同时使电源线、地线的走向和电流的方向一致,这样有助于增强抗噪声能力。
在LED开关电源的布线过程中,还有一个问题需要工程师特别注意,那就是接地的设置。
接地是开关电源四个电流回路的底层支路,它作为电路的公共参考点,能够在整个PCB设计中很重要的作用,对干扰控制有着重要的牵制作用。
因此,在布局中应仔细考虑接地线的放置,将各种接地混合会造成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。
开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。
布板时须遵循高频电路布线原则。
1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。
脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。
输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。
Y电容应放置在机壳接地端子或FG连接端。
共摸电感应与变压器保持一定距离,以避免磁偶合。
如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。
输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。
发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路,开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率 MOSFET高直流阻抗电压驱动特性有关。
下面谈一谈印制板布线的一些原则。
线间距:随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合。
考虑到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设为0.3mm,单面板最小线间距设为0.5mm,焊盘与焊盘、焊盘与过孔或过孔与过孔,最小间距设为0.5mm,可避免在焊接操作过程中出现“桥接”现象。
,这样大多数制板厂都能够很轻松满足生产要求,并可以把成品率控制得非常高,亦可实现合理的布线密度及有一个较经济的成本。
最小线间距只适合信号控制电路和电压低于63V的低压电路,当线间电压大于该值时一般可按照500V/1mm经验值取线间距。
于有一些相关标准对线间距有较明确的规定,则要严格按照标准执行,如交流入口端至熔断器端连线。
某些电源对体积要求很高,如模块电源。
一般变压器输入侧线间距为1mm实践证明是可行的。
对交流输入,(隔离)直流输出的电源产品,比较严格的规定为安全间距要大于等于6mm,当然这由相关的标准及执行方法确定。
一般安全间距可由反馈光耦两侧距离作为参考,原则大于等于这个距离。
也可在光耦下面印制板上开槽,使爬电距离加大以满足绝缘要求。
一般开关电源交流输入侧走线或板上元件距非绝缘的外壳、散热器间距要大于5mm,输出侧走线或器件距外壳或散热器间距要大于2mm,或严格按照安全规范执行。
常用方法:上文提到的线路板开槽的方法适用于一些间距不够的场合,顺便提一下,该法也常用来作为保护放电间隙,常见于电视机显象管尾板和电源交流输入处。
该法在模块电源中得到了广泛的应用,在灌封的条件下可获得很好的效果。
方法二:垫绝缘纸,可采用青壳纸、聚脂膜、聚四氟乙烯定向膜等绝缘材料。
一般通用电源用青壳纸或聚脂膜垫在线路板于金属机壳间,这种材料有机械强度高,有有一定抗潮湿的能力。
聚四氟乙烯定向膜由于具有耐高温的特性在模块电源中得到广泛的应用。
在元件和周围导体间也可垫绝缘薄膜来提高绝缘抗电性能。
注意:某些器件绝缘被覆套不能用来作为绝缘介质而减小安全间距,如电解电容的外皮,在高温条件下,该外皮有可能受热收缩。
大电解防爆槽前端要留出空间,以确保电解电容在非常情况时能无阻碍地泻压.今天谈一谈印制板铜皮走线的一些事项:走线电流密度:现在多数电子线路采用绝缘板缚铜构成。
常用线路板铜皮厚度为35μm,走线可按照1A/mm经验值取电流密度值,具体计算可参见教科书。
为保证走线机械强度原则线宽应大于或等于0.3mm(其他非电源线路板可能最小线宽会小一些)。
铜皮厚度为70μm 线路板也常见于开关电源,那么电流密度可更高些。
补充一点,现常用线路板设计工具软件一般都有设计规范项,如线宽、线间距,旱盘过孔尺寸等参数都可以进行设定。
在设计线路板时,设计软件可自动按照规范执行,可节省许多时间,减少部分工作量,降低出错率。
一般对可靠性要求比较高的线路或布线线密度大可采用双面板。
其特点是成本适中,可靠性高,能满足大多数应用场合。
块电源行列也有部分产品采用多层板,主要便于集成变压器电感等功率器件,优化接线、功率管散热等。
具有工艺美观一致性好,变压器散热好的优点,但其缺点是成本较高,灵活性较差,仅适合于工业化大规模生产单面板,市场流通通用开关电源几乎都采用了单面线路板,其具有低成本的优势,在设计,及生产工艺上采取一些措施亦可确保其性能。
今天谈谈单面印制板设计的一些体会,由于单面板具有成本低廉,易于制造的特点,在开关电源线路中得到广泛应用,由于其只有一面缚铜,器件的电器连接,机械固定都要依靠那层铜皮,在处理时必须小心。
为保证良好的焊接机械结构性能,单面板焊盘应稍微大一些,以确保铜皮和基板的良好缚着力,而不至于受到震动时铜皮剥离、断脱。
一般焊环宽度应大于0.3mm。
焊盘孔直径应略大于器件引脚直径,但不宜过大,保证管脚与焊盘间由焊锡连接距离最短,盘孔大小以不妨碍正常查件为度,焊盘孔直径一般大于管脚直径0.1-0.2mm。
多引脚器件为保证顺利查件,也可更大一些。
电气连线应尽量宽,原则宽度应大于焊盘直径,特殊情况应在连线于与焊盘交汇必须将线加宽(俗称生成泪滴),避免在某些条件线与焊盘断裂。
原则最小线宽应大于0.5mm。
<BR>单面板上元器件应紧贴线路板。
需要架空散热的器件,要在器件与线路板之间的管脚上加套管,可起到支撑器件和增加绝缘的双重作用,要最大限度减少或避免外力冲击对焊盘与管脚连接处造成的影响,增强焊接的牢固性。
线路板上重量较大的部件可增加支撑连接点,可加强与线路板间连接强度,如变压器,功率器件散热器单面板焊接面引脚在不影响与外壳间距的前题条件下,可留得长一些,其优点是可增加焊接部位的强度,加大焊接面积、有虚焊现象可即时发现。
引脚长剪腿时,焊接部位受力较小。
在台湾、日本常采用把器件引脚在焊接面弯成与线路板成45度角,然后再焊接的工艺,的其道理同上。
今天谈一谈双面板设计中的一些事项,在一些要求比较高,或走线密度比较大的应用环境中采用双面印制板,其性能及各方面指标要比单面板好很多。
双面板焊盘由于孔已作金属化处理强度较高,焊环可比单面板小一些,焊盘孔孔径可比管脚直径略微大一些,因为在焊接过程中有利于焊锡溶液通过焊孔渗透到顶层焊盘,以增加焊接可靠性。
但是有一个弊端,如果孔过大,波峰焊时在射流锡冲击下部分器件可能上浮,产生一些缺陷。
大电流走线的处理,线宽可按照前帖处理,如宽度不够,一般可采用在走线上镀锡增加厚度进行解决,其方法有好多种<BR>1,将走线设置成焊盘属性,这样在线路板制造时该走线不会被阻焊剂覆盖,热风整平时会被镀上锡。
<BR>2,在布线处放置焊盘,将该焊盘设置成需要走线的形状,要注意把焊盘孔设置为零。
<BR>3,在阻焊层放置线,此方法最灵活,但不是所有线路板生产商都会明白你的意图,需用文字说明。
在阻焊层放置线的部位会不涂阻焊剂<线路镀锡的几种方法如上,要注意的是,如果很宽的的走线全部镀上锡,在焊接以后,会粘接大量焊锡,并且分布很不均匀,影响美观。
一般可采用细长条镀锡宽度在1~1.5mm,长度可根据线路来确定,镀锡部分间隔0.5~1mm<B R>双面线路板为布局、走线提供了很大的选择性,可使布线更趋于合理。
关于接地,功率地与信号地一定要分开,两个地可在滤波电容处汇合,以避免大脉冲电流通过信号地连线而导致出现不稳定的意外因素,信号控制回路尽量采用一点接地法,有一个技巧,尽量把非接地的走线放置在同一布线层,最后在另外一层铺地线。
输出线一般先经过滤波电容处,再到负载,输入线也必须先通过电容,再到变压器,理论依据是让纹波电流都通过旅滤波电容。
<电压反馈取样,为避免大电流通过走线的影响,反馈电压的取样点一定要放在电源输出最末梢,以提高整机负载效应指标走线从一个布线层变到另外一个布线层一般用过孔连通,不宜通过器件管脚焊盘实现,因为在插装器件时有可能破坏这种连接关系,还有在每1A电流通过时,至少应有2个过孔,过孔孔径原则要大于0.5mm,一般0.8mm可确保加工可靠性。
器件散热,在一些小功率电源中,线路板走线也可兼散热功能,其特点是走线尽量宽大,以增加散热面积,并不涂阻焊剂,有条件可均匀放置过孔,增强导热性能。
<BR>今天谈谈铝基板在开关电源中的应用和多层印制板在开关电源电路中的应用。
<BR>铝基板由其本身构造,具有以下特点:导热性能非常优良、单面缚铜、器件只能放置在缚铜面、不能开电器连线孔所以不能按照单面板那样放置跳线。
<BR>铝基板上一般都放置贴片器件,开关管,输出整流管通过基板把热量传导出去,热阻很低,可取得较高可靠性。
变压器采用平面贴片结构,也可通过基板散热,其温升比常规要低,同样规格变压器采用铝基板结构可得到较大的输出功率。
铝基板跳线可以采用搭桥的方式处理。
铝基板电源一般由由两块印制板组成,另外一块板放置控制电路,两块板之间通过物理连接合成一体。
由于铝基板优良的导热性,在小量手工焊接时比较困难,焊料冷却过快,容易出现问题现有一个简单实用的方法,将一个烫衣服的普通电熨斗(最好有调温功能),翻过来,熨烫面向上,固定好,温度调到150℃左右,把铝基板放在熨斗上面,加温一段时间,然后按照常规方法将元件贴上并焊接,熨斗温度以器件易于焊接为宜,太高有可能时器件损坏,甚至铝基板铜皮剥离,温度太低焊接效果不好,要灵活掌握.<BR>最近几年,随着多层线路板在开关电源电路中应用,使得印制线路变压器成为可能,由于多层板,层间距较小,也可以充分利用变压器窗口截面,可在主线路板上再加一到两片由多层板组成的印制线圈达到利用窗口,降低线路电流密度的目的,由于采用印制线圈,减少了人工干预,变压器一致性好,平面结构,漏感低,偶合好。
开启式磁芯,良好的散热条件。
由于其具有诸多的优势,有利于大批量生产,所以得到广泛的应用。
但研制开发初期投入较大,不适合小规模生。
开关电源分为,隔离与非隔离两种形式,在这里主要谈一谈隔离式开关电源的拓扑形式,在下文中,非特别说明,均指隔离电源。