【2019年整理】01—10年江苏专转本数学真题(附答案)

合集下载

2010年江苏“专转本”高等数学试题及参考答案

2010年江苏“专转本”高等数学试题及参考答案

12010年江苏省普通高校“专转本”统一考试高等数学注意事项:1、考生务必将密封线内的各项目及第2页右下角的座位号填写清楚。

2、考生须用钢笔或圆珠笔将答案直接答在试卷上,答在草稿纸上无效。

3、本试卷共8页,五大题24小题,满分150分,考试时间120分钟。

一、选择题(本大题共6小题,每小题4分,满分24分)1.设当0x →时,函数()sin f x x x =-与()n g x ax =是等价无穷小,则常数,a n 的值为()A.1,36a n == B.1,33a n == C.1,412a n == D.1,46a n ==2.曲线223456x x y x x -+=-+的渐近线共有()A.1条B.2条C.3条D.4条3.设函数22()cos tx x e tdt Φ=⎰,则函数()x Φ的导数()x 'Φ等于()A.222cos x xe xB.222cos x xe x -C.2cos x xe x -D.22cos x e x -4.下列级数收敛的是()A.11n n n ∞=+∑ B.2121n n n n ∞=++∑ C.11(1)nn n ∞=+-∑ D.212n n n ∞=∑5.二次积分1101(,)y dy f x y dx +⎰⎰交换积分次序后得()A.1101(,)x dx f x y dy +⎰⎰B.2110(,)x dx f x y dy-⎰⎰C.2111(,)x dx f x y dy -⎰⎰ D.2111(,)x dx f x y dy-⎰⎰6.设3()3f x x x =-,则在区间(0,1)内()A.函数()f x 单调增加且其图形是凹的B.函数()f x 单调增加且其图形是凸的C.函数()f x 单调减少且其图形是凹的D.函数()f x 单调减少且其图形是凸的二、填空题(本大题共6小题,每小题4分,满分24分)7.1lim()1x x x x →∞+=-8.若(0)1f '=,则0()()lim x f x f x x →--=9.定积分312111x dx x -++⎰的值为10.设(1,2,3),(2,5,)a b k == ,若a 与b 垂直,则常数k =11.设函数2ln 4z x y =+,则10x y dz ===12.幂级数0(1)n n n x n ∞=-∑的收敛域为三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限2011lim()tan x x x x→-14、设函数()y y x =由方程2x y y e x ++=所确定,求22,dy d y dx dx15、求不定积分arctan x xdx ⎰16、计算定积分40321x dx x ++⎰17、求通过点(1,1,1),且与直线23253x t y t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线方程。

2019江苏专转本高数答案

2019江苏专转本高数答案

江苏省 普通高校专转本选拔考试高等数学 试题卷答案一、选择题(本大题共6小题,每小题4分,共24分)1、C2、B3、B4、A5、D6、D二、填空题(本大题共6小题,每小题4分,共24分)7、2y e -= 8、5 9、2π10、2222y x dz dx dy x y x y =-+++ 11、3π 12、[0,2) 三、计算题(本大题共8小题,每小题8分,共64分)13、原式=23000arcsin arcsin lim lim arcsin x x x x x x x x x x x→→→→--===20116x x →-==- 14、2(32)y t dy y dy dt e t dx dx e t dt-+==+,0t dy dx ==15、2222222221111ln ln ln ln ln ln 2222x xdx xdx x x x d x x x x xdx ==-=-⎰⎰⎰⎰222222222211111111ln ln ln ln ln ln ln 22222222x x xdx x x x x x d x x x x x xdx =-=-+=-+⎰⎰⎰2222111ln ln 224x x x x x C =-++ 16、令t x =-12,则原式=222222220002444(1)22arctan 2044422t t t dt dt dt t t t π+-==-=-=-+++⎰⎰⎰ 17、平面∏的法向量(1,2,3)(1,0,0)(0,3,2)n MN i →→=⨯=⨯=-u u u u r ,直线方程:0(1)3(1)2(1)0x y z -+---=.即3210y z --=.18、12cos 2z xf xf x∂''=+∂212221222cos (2)2(2)2cos 4z xf y xf y y xf xyf x y∂''''''''=⋅-+⋅-=--∂∂ 19、2101001()()26y D y x y dxdy dy x y dx dy -+=+==⎰⎰⎰⎰⎰ 20、特征方程:220r r -=,120,2r r ==,齐次方程的通解为212x Y C C e =+.令特解为2()x y x Ax B e *=+,则22(222)x y Ax Bx Ax B e *'=+++,22(44824)x y Ax Bx Ax A B e *''=++++代入原方程得:22(422)x x Ax A B e xe ++=, 有待定系数法得:41220A A B =⎧⎨+=⎩,解得1414A B ⎧=⎪⎪⎨⎪=-⎪⎩,所以通解为221211()44x x y C C e x x e =++-. 四、证明题(本大题共2小题,每小题9分,共18分)21、令()ln 3f x x x =-,显然在区间(2,3)上连续,且38(2)2ln 23ln ln10,f e =-=<< (3)3ln 333(ln 31)0,f =-=->根据零点定理,(2,3),()0f ξξ∃∈=成立.又()ln 10f x x '=->Q ,(2,3)x ∈,)(x f '单调递增,唯一性得证.22、令21()1ln(1)2x f x e x x =---+,则1()1x f x e x x '=--+,21()1(1)x f x e x ''=-++, 在0x >时,()f x ''单调递增,()(0)10f x f ''''>=>,所以()f x '单调递增,()(0)0f x f ''>=,所以()f x 单调递增,()(0)0f x f >=,得证.五、综合题(本大题共2小题,每小题10分,共20分)23、(1)2k y x '==-切,切线:,02(1)y x -=--,即2(1)y x =--,D 面积1201[2(1)(1)]3x x dx ----=⎰. (2) 21200211(1)(1)2326y y V d y y d y πππππ=---=-=⎰⎰ 24、已知0()1()xt t dt x ϕϕ=-⎰两边同时对x 求导得:()()x x x ϕϕ'=-,22()x x Ce ϕ-=,令0x =代入0()1()xt t dt x ϕϕ=-⎰得(0)1ϕ=,所以求得221,()x C x e ϕ-==.(2)因为2222232222(),(),()(1),()(3)x x x x x e x xe x x e x x x e ϕϕϕϕ----''''''==-=-=-(0)1ϕ=,(0)0ϕ'=,(0)1,(0)0ϕϕ'''''=-=. 20000()1()()(0)1lim ()lim lim lim (0)2222x x x x x x x f x f x x ϕϕϕϕ→→→→'''''-=====-=. 所以()f x 在0=x 处的连续.223000()11()(0)2()22lim lim lim 2x x x x f x f x x x x x x ϕϕ→→→-+--+==Q 20002()2()()11lim lim lim 6666x x x x x x x x x x ϕϕϕ→→→''''''+++====. 所以()f x 在0=x 处可导,1(0)6f '=.。

江苏专升本高等数学真题(附答案)

江苏专升本高等数学真题(附答案)

江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。

(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。

(3)了解反函数:反函数的定义,反函数的图象。

(4)把握函数的四则运算与复合运算。

(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。

(6)了解初等函数的概念。

重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。

(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。

(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。

(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。

(6)熟练把握用两个重要极限求极限的方法。

重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。

(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。

(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。

(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。

(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。

重点:理解函数(左、右连续)性的概念,会判别函数的中断点。

江苏专转本2001-2011年数学历年真题

江苏专转本2001-2011年数学历年真题

江苏省2001年普通高校“专转本”统一考试试卷高等数学注意事项:1. 考生务必将密封线内的各项填写清楚。

2. 考生须用钢笔或圆珠笔将答案直接打在试卷上,答在草稿纸上无效。

3. 本试卷共8页,四大题24小题,满分100分,考试时间120分钟。

题号 一 二 三 四 合计分数评卷人 得分一、选择题(本大题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合要求的,请把所选项前的字母填在题后的括号内)。

1、下列极限正确的是( )A. 01lim(1)x x e x→+= B. 11lim(1)x x e x →∞+=C.1lim sin1x x x →∞= D. 01lim sin 1x x x→=2、不定积分211dx x=-⎰( )A.211x- B.211C x+- C. arcsin x D. arcsin x C +3、若()()f x f x =-,且在(0,)+∞内:()0,()0f x f x '''>>,则()f x 在(,0)-∞内必有( )A.()0,()0f x f x '''<< B. ()0,()0f x f x '''<> C.()0,()0f x f x '''>< D. ()0,()0f x f x '''>>4、定积分21x dx -=⎰( )A. 0B. 2C. -1D. 15、方程224x y x +=在空间直角坐标系下表示( )A. 圆柱面B. 点C. 圆D. 旋转抛物面评卷人 得分二、填空题(本大题共5小题,每小题3分,共15分,请把正确答案的结果填在划线上)。

6、设参数方程为22tx tey t t⎧=⎪⎨=+⎪⎩;则0t dy dx == 。

7、微分方程6130y y y '''-+=的通解为: 。

2001—2017江苏专转本高等数学真题(与答案)

2001—2017江苏专转本高等数学真题(与答案)

2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数yx z =的全微分=dz 10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim22⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx e e xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶 连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

01—10年江苏专转本数学真题(附答案)

01—10年江苏专转本数学真题(附答案)

2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.等价无穷小,洛必达13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.x 分别为0,1,-1时化简求极限14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

2019年江苏省普通高校“专转本”统一考试《高等数学》试卷

2019年江苏省普通高校“专转本”统一考试《高等数学》试卷

2019年江苏省普通高校“专转本”统一考试一、选择题(本大题共8小题,每小题4分,共32分)l. 设当0→x 时,函数()2()ln 1f x kx =+与()1cos g x x =-是等价无穷小,则常数k 的值为( ) A.14 B.12C.1D.2 2. 0x =是函数()111xf x e =+的( )A. 跳跃间断点B. 可去间断点C. 无穷间断点D. 振荡间断点 3. 设函数()f x 在0x =处连续,且()0lim 1sin 2x f x x→=,则()0f '=( )A. 0B.12C. 1D. 2 4. 设()f x 是函数cos2x 的一个原函数,且()00f =,则()f x dx =⎰( )A.1cos 24x C -+ B.1cos 22x C -+ C.cos2x C -+ D. cos2x C + 5. 设211ln 2ln 2a dx x x +∞=⎰,则积分下限a 的值为( ) A. 2 B. 4 C. 6 D. 8 6. 设()f x 为(),-∞+∞上的连续函数,则与211f dx x ⎛⎫⎪⎝⎭⎰的值相等的定积分为( ) A.()221f x dx x ⎰B. ()122f x dx x ⎰C. ()1122f x dx x ⎰D. ()1221f x dx x ⎰7.二次积分()011,xdx f x y dy --⎰⎰交换积分次序后得( )A.()011,y dy f x y dx --⎰⎰ B.()100,ydy f x y dx -⎰⎰C.()110,ydy f x y dx -⎰⎰ D.()10,ydy f x y dx -⎰⎰8.设()1ln 1nn u ⎛=-+⎝,1ln 1n v n ⎛⎫=+ ⎪⎝⎭,则( ) A.级数1nn u∞=∑与1nn v∞=∑都收敛 B. 级数1nn u∞=∑与1nn v∞=∑都发散C. 级数1nn u∞=∑收敛,而级数1nn v∞=∑发散 D. 级数1nn u∞=∑发散,而级数1nn v∞=∑收敛二、填空题{本大题共6小题,每小题4分,共24分)9. 设函数()()112,1,1x x x f x a x -⎧⎪-<=⎨≥⎪⎩在点1x =处连续,则常数a = .10. 曲线1ttx te y e ⎧=⎨=-⎩在点()0,0处的切线方程为 . 11. 设()ln 1y x =+,若()2018!n x y ==,则n = .12.定积分()141cosx x x dx -+⎰的值为 .13.设()2,1,2a b →→⨯=-,3a b →→⋅=,则向量a →与向量b →的夹角为 .14.幂级数2133n nn x n∞=+∑的收敛半径为 . 三、计算题(本大题共8小题,每小题8分,共64分)15. 求极限()3ln 1lim1xx x t t dte →+-⎡⎤⎣⎦-⎰.16.求不定积分()2x xx e dx +⎰.17.计算定积分7⎰.18. 设()2,z f x y x y =-,其中函数f 具有二阶连续偏导数,求22zx∂∂.19. 设(),z z x y =是由方程()2sin 1y x xy z +++=所确定的函数,求z x ∂∂,z y∂∂.20. 求通过()1,0,1M ,且与直线1111:123x y z L ---==和21:2332x tL y t z t=+⎧⎪=+⎨⎪=+⎩都平行的平面方程.21.求微分方程xy y e '''-=的通解.22. 计算二重积分⎰⎰Dydxdy ,其中D是由曲线y =与直线1y =及0x =所围成的平面闭区域.四、证明题(本大题10分) 23.证明:当02x <<时,22xxe x+<-.五、综合题(本大题共2题,每小题10分,共20分)24.已知函数()43f x ax bx =+在点3x =处取得极值27-,试求: (1)常数,a b 的值;(2)曲线()y f x =的凹凸区间与拐点; (3)曲线()1y f x =的渐近线.25.设()f x 为定义在[)0,+∞上的单调连续函数,曲线():C y f x =通过点()0,0及()1,1,过曲线C 上任一点(),M x y 分别作垂直于x 轴的直线x l 和垂直于y 轴的直线y l ,曲线C 与直线x l 及x 轴围成的平面图形的面积记为1S ,曲线C 与直线y l 及y 轴围成的平面图形的面积记为2S ,已知122S S =,试求: (1)曲线C 的方程;(2)曲线C 与直线y x =围成的平面图形绕x 轴旋转一周所形成的旋转体的体积.。

2010年江苏专转本高等数学真题(附答案)

2010年江苏专转本高等数学真题(附答案)

2010年江苏专转本高等数学真题(附答案)2010年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分)1.设当0x →时,函数()sin f x x x =-与()ng x ax =是等价无穷小,则常数,a n 的值为 ( )A. 1,36a n ==B. 1,33a n ==C. 1,412a n == D. 1,46a n == 2.曲线223456x x y x x -+=-+的渐近线共有( )A. 1条B. 2条C. 3条D. 4条 3.设函数22()cos t xx e tdtΦ=⎰,则函数()x Φ的导数()x 'Φ等于( ) A.222cos x xe x B.222cos x xe x - C. 2cos xxex-D. 22cos x e x - 4.下列级数收敛的是( ) A. 11n n n ∞=+∑ B.2121n n n n∞=++∑ C.1n n n ∞=D.212n n n ∞=∑5.二次积分111(,)y dy f x y dx+⎰⎰交换积分次序后得( ) A. 1101(,)x dx f x y dy+⎰⎰B.211(,)x dx f x y dy-⎰⎰C. 2111(,)x dx f x y dy-⎰⎰D.2111(,)x dx f x y dy-⎰⎰6.设3()3f x x x=-,则在区间(0,1)内( )A. 函数()f x 单调增加且其图形是凹的B. 函数()f x 单调增加且其图形是凸的C. 函数()f x 单调减少且其图形是凹的D. 函数()f x 单调减少且其图形是凸的二、填空题(本大题共6小题,每小题4分,满分24分)7. 1lim()1xx x x →∞+=-8. 若(0)1f '=,则0()()lim x f x f x x →--=9. 定积分312111x dxx -++⎰的值为10. 设(1,2,3),(2,5,)a b k ==,若a 与b 垂直,则常数k = 11. 设函数24z x y=+,则10x y dz===12. 幂级数0(1)n nn x n ∞=-∑的收敛域为三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限211lim()tanx x x x→- 14、设函数()y y x =由方程2x yy e x++=所确定,求22,dy d ydx dx15、求不定积分arctan x xdx ⎰ 16、计算定积分4021dx x +⎰17、求通过点(1,1,1),且与直线23253x t y t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C 、非奇非偶函数
() D 、不能确定奇偶性
()
2 A、 0 I
2
B、 I 1
9 、若广义积分
1
1 x p dx 收敛,则
p 应满足
A、 0 p 1
B、 p 1
C、 I 0 C、 p 1
2
D、
I1
2
()
D、 p 0
10 、若 f ( x)
1
1 2e x 1 ,则 x
1 ex
0是 f x 的
11、已知 y arctan x ln(1 2x ) cos ,求 dy . 5
x
x et2 dt
0
12 、计算 lim x0
x 2 sin x
.等价无穷小,洛必达
13 、求 f ( x)
( x 1) sin x
x (x2
的间断点,并说明其类型
1)
.x 分别为 0, 1, -1 时化简求极限
14 、已知 y 2
C 、 f ' (x) 0 , f '' ( x) 0
2
4、 x 1 dx 0
A、0
B、2
5 、方程 x 2 y 2 4 x 在空间直角坐标系中表示
D、 f ' ( x) 0 , f '' (x) 0
C 、- 1
() D、1
()
A 、圆柱面
B 、点
C 、圆
D 、旋转抛物面
二、填空题 (本大题共 5 小题,每小题 3 分,共 15 分)
D
19 、 已 知 y f ( x) 过 坐 标 原 点 , 并 且 在 原 点 处 的 切 线 平 行 于 直 线 2x y 3 0 , 若
f ' (x) 3ax 2 b,且 f (x) 在 x 1处取得极值, 试确定 a 、 b 的值, 并求出 y f (x) 的表达式 .
20 、设 z f ( x2 , x ) ,其中 f 具有二阶连续偏导数,求 y
z、
2z
.
x xy
四、综合题 (本大题共 4 小题,第 21 小题 10 分,第 22 小题 8 分,第 23 、24 小题各 6 分,共 30 分)
21 、过 P (1,0) 作抛物线 y x 2 的切线,求
( 1)切线方程;
( 2)由 y x 2 ,切线及 x 轴围成的平面图形面积; ( 3)该平面图形分别绕 x 轴、 y 轴旋转一周的体积。
1 dx
1 x2
()
A、 1 1 x2
B、 1
c
1 x2
C 、 arcsin x
D、 arcsin x c
3 、若 f ( x) f ( x) ,且在 0, 内 f ' (x) 0 、 f '' ( x) 0 ,则在 ( ,0) 内必有
()
A 、 f ' (x) 0 , f '' (x) 0
B、 f ' ( x) 0 , f '' (x) 0
1 、下列极限中,正确的是
()
A 、 lim (1 tan x) cot x e x0
C 、 lim (1 cosx) secx e x0
2 、已知 f ( x) 是可导的函数,则
f (h) f ( h)
lim
h0
h
1
B 、 lim x sin 1
x0
x
1
D 、 lim (1 n) n e n
()
A、 f ( x)
x tet
dy
6 、设
y
2t
,则
t2
dx
t
0
7 、 y '' 6 y' 13y 0 的通解为
2
2x
8、交换积分次序 dx f ( x, y)dy
0
x
9 、函数 z x y 的全微分 dz
10 、设 f (x) 为连续函数,则
1
[ f ( x)
f ( x)
x]x 3dx
1
三、计算题 (本大题共 10 小题,每小题 4 分,共 40 分)
22 、设 g(x)
f ( x)
x a
x
0
,其中
f ( x) 具有二阶连续导数,且
x0
f (0) 0 .
( 1)求 a ,使得 g( x) 在 x 0 处连续; ( 2)求 g ' ( x) .
23 、设 f (x) 在 0, c 上具有严格单调递减的导数 f ' ( x) 且 f (0) 0 ;试证明: 对于满足不等式 0 a b a b c 的 a 、 b 有 f ( a) f (b) f (a b) .
4 、若 y arctan ex ,则 ddx
ex
B、
1
e 2x dx
C 、 1 dx 1 e2x
ex
D、
dx
1 e2x
5 、在空间坐标系下,下列为平面方程的是
()
A、 y2 x
xyz0
B、
x 2y z 1
x2y4 z
C、
=
=
2
7
3
D、 3x 4z 0
6 、微分方程 y 2 y y 0 的通解是
()
A、 y c1 cos x c 2 sin x B、 y c1e x c 2e 2x C 、 y c1 c 2 x e x D、 y c1e x c2e x
7 、已知 f ( x) 在 , 内是可导函数,则 ( f ( x) f ( x)) 一定是
A 、奇函数
B 、偶函数
8 、设 I
1 x 4 dx ,则 I 的范围是 01 x
ln y dy
x
x ,求 dx x 1, y 1 .
e2 x 15 、计算 1 ex dx .
16 、已知
0k 1 x2 dx
1 ,求 k 的值 . 2
17 、求 y ' y tan x sec x 满足 y x 0 0 的特解 .
18 、计算 sin y 2dxdy , D 是 x 1、 y 2 、 y x 1围成的区域 .
24 、一租赁公司有 40 套设备,若定金每月每套 200 元时可全租出,当租金每月每套增加 10 元
时,租出设备就会减少一套,对于租出的设备每套每月需花 多少时公司可获得最大利润?
20 元的维护费。问每月一套的定金
2002 年江苏省普通高校“专转本”统一考试 高等数学
一、选择题 (本大题共 10 小题,每小题 3 分,共 30 分)
2001 年江苏省普通高校“专转本”统一考试 高等数学
一、选择题 (本大题共 5 小题,每小题 3 分,共 15 分)
1 、下列各极限正确的是
1x
A 、 lim (1 ) e
x0
x
1
B 、 lim (1 1) x e
x
x
1
C 、 lim x sin 1
x
x
()
1
D 、 lim x sin 1
x0
x
2 、不定积分
B、 f (0)
C、 2 f (0)
D、 2 f ( x)
3 、设 f ( x) 有连续的导函数,且 a 0 、 1,则下列命题正确的是
()
A、
f (ax)dx
1 f ( ax)
C
a
C 、 f (ax)dx) af (ax)
B 、 f ( ax) dx f (ax) C D 、 f (ax) dx f ( x) C
相关文档
最新文档