拉格朗日插值法MATLAB程序
matlab拉格朗日插值函数代码

matlab拉格朗日插值函数代码拉格朗日插值法是一种常用的函数逼近方法,可以用来对给定的一组离散数据进行求值,使得所求函数通过这些离散数据点。
在MATLAB中,可以通过编写函数来实现拉格朗日插值。
先介绍拉格朗日插值的基本原理。
设已知离散点(x0,y0),(x1,y1),...,(xn,yn),要求通过这些点的插值项L(x)作为函数y = f(x)的近似。
插值项L(x)可以表示为:L(x) = y0 * L0(x) + y1 * L1(x) + ... + yn * Ln(x)其中,Lk(x)是基本多项式,表示为:Lk(x) = (x - x0) * (x - x1) * ... * (x - xk-1) * (x - xk+1) ... * (x - xn) / (xk - x0) * (xk - x1) * ... * (xk - xk-1) * (xk - xk+1) ... * (xk - xn)可以看到,Lk(x)的分子为关于x的n次多项式,在点x = xk处取到值1,在其余各点处取值为0。
每个Lk(x)都可以视为基于xk的插值函数,这些插值函数可以线性组合得到整个插值项L(x)。
在MATLAB中,可以编写一个基于拉格朗日插值法的函数,输入为已知的离散数据点,输出为插值函数在给定点处的值。
具体步骤如下。
1. 定义输入参数。
需要输入已知的离散数据点,以及给定的点的位置。
function result = lagrange_interpolation(data, x)其中,data为matrix型,第一列为x值,第二列为y值;x为scalar型,表示给定点的位置。
2. 计算插值项L(x)。
对于每个k,计算其相应的基本多项式Lk(x),并将所有基本多项式与相应的y值线性组合得到插值项L(x)。
n = size(data,1);L = ones(n, 1);for k=1:nfor j=1:nif j ~=kL(k) = L(k) * (x - data(j,1)) / (data(k,1) - data(j,1));endendendresult = sum(data(:,2) .* L);3. 输出结果。
matlab实现拉格朗日插值,多项式插值,邻近插值,线性插值 程序

题 7:一维函数插值算法课题内容:课题 7:一维函数插值算法课题内容:对函数||e-y x=,取[-5,5]之间步长为 1 的值*10作为粗值,以步长0.1 作为细值,编写程序实现插值算法:最邻近插值算法,线性插值算法和三次多项式函数插值算法,并对比插值效果。
课题要求:1、设计良好的人机交互 GUI 界面。
2、自己编写实现插值算法。
3、在同一个图形窗口显示对比最后的插值效果。
附录一、界面设计二、图像结果三、程序设计1、线性插值function pushbutton1_Callback(hObject, eventdata, handles) x=-5:5;y=10*exp(-abs(x));f1=[];for x1=-5:0.1:5a=(x1-floor(x1));%请读者认真逐一带入推导if x1==floor(x1)f1=[f1,y(floor(x1)+6)];elsef1=[f1,y(floor(x1)+6)+a*(y(floor(x1)+7)-y(floor(x1)+6))]; endendm=-5:0.1:5plot(m,f1,'-r',x,y,'+')axis([-5 5 0 10])legend('liner插值','原函数');xlabel('X');ylabel('Y');title('liner插值与原函数的对比');grid2、多项式插值x0=-5:1:-3;y0=10*exp(-abs(x0));x=-5:0.1:-3;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=-3:1:-1;y0=10*exp(-abs(x0));x=-3:0.1:-1;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=-1:1:1;y0=10*exp(-abs(x0));x=-1:0.1:1;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=1:1:3;y0=10*exp(-abs(x0));x=1:0.1:3;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=3:1:5;y0=10*exp(-abs(x0));x=3:0.1:5;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');grid3、最邻近插值function pushbutton3_Callback(hObject, eventdata, handles) x=-5:5;y=10*exp(-abs(x));f2=[];for x1=-5:0.1:5if abs(x1-floor(x1))<0.5f2=[f2,y(floor(x1)+6)];elsef2=[f2,y(floor(x1)+7)];endendm=[-5:0.1:5];f4=10*exp(-abs(m));plot(m,f2,'-r',x,y,'+')axis([-5 5 0 10])legend('nearest插值','原函数');xlabel('X');ylabel('Y');title('nearest插值与原函数的对比');grid。
2、拉格朗日插值的matlab实现

2、拉格朗日插值实例:根据下面的数据点求出其拉格朗日插值格式,并计算当x=1.6时y的值。
x 0 0.5 1.0 1.5 2.0 2.5 3.0y 0 0.4794 0.8145 0.9975 0.9093 0.5985 0.1411function[f,f0]=Language(x,y,x0)%求已知数据点的拉格朗日插值多项式%已知数据点的x坐标向量:x%已知数据点的y坐标向量:y%插值点的x坐标:x0%求得的拉格朗日插值多项式:f%x0处的插值:f0symst;if(length(x)==length(y))n=length(x);elsedisp('x和y的维数不相等!');return;end%检错f=0.0;for(i=1:n)l=y(i);for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));%计算拉格朗日基函数end;f=f+l;%计算拉格朗日插值函数simplify(f);%化简endf0=subs(f,'t',x0);%计算插值点的函数值运行程序;x=0:0.5:3;y=[00.47940.84150.99750.90930.59850.1411];[f,f0]=Language(x,y,1.6)%计算输出的拉格朗日插值多项式%计算x=1.6时的插值输出值f0运行结果f=-799/3125*t*(t-1)*(t-3/2)*(t-2)*(t-5/2)*(t-3)+561/500*t*(t-1/2)*(t-3/2)*(t-2)*(t-5/2) *(t-3)-133/75*t*(t-1/2)*(t-1)*(t-2)*(t-5/2)*(t-3)+3031/2500*t*(t-1/2)*(t-1)*(t-3/2)*( t-5/2)*(t-3)-399/1250*t*(t-1/2)*(t-1)*(t-3/2)*(t-2)*(t-3)+1411/112500*t*(t-1/2)*(t-1) *(t-3/2)*(t-2)*(t-5/2)f0=仅供个人学习参考0.9996仅供个人学习参考。
例题matlab拉格朗日插值

例题matlab拉格朗日插值拉格朗日插值是一种常用的数值插值方法,它可以通过已知的数据点来估计未知点的函数值。
在MATLAB中,我们可以使用拉格朗日插值函数polyfit和polyval来实现。
假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要通过这些数据点来估计一个未知点的函数值。
首先,我们需要使用polyfit函数来计算拉格朗日插值多项式的系数。
```matlabx = [x1, x2, ..., xn];y = [y1, y2, ..., yn];n = length(x) - 1; % 多项式的次数coefficients = polyfit(x, y, n);```polyfit函数返回的coefficients是一个包含多项式系数的向量,从高次到低次排列。
接下来,我们可以使用polyval函数来计算未知点的函数值。
```matlabunknown_x = ...; % 未知点的x坐标unknown_y = polyval(coefficients, unknown_x);```polyval函数接受一个多项式系数向量和一个x值作为输入,返回对应的函数值。
通过这种方式,我们可以使用拉格朗日插值来估计未知点的函数值。
下面我们来看一个具体的例子。
假设我们有一组已知的数据点(0, 1), (1, 2), (2, 3),我们想要通过这些数据点来估计未知点(1.5, ?)的函数值。
```matlabx = [0, 1, 2];y = [1, 2, 3];n = length(x) - 1;coefficients = polyfit(x, y, n);unknown_x = 1.5;unknown_y = polyval(coefficients, unknown_x);```在这个例子中,我们得到的未知点的函数值为2.5。
这意味着在x坐标为1.5的位置,我们估计的函数值为2.5。
拉格朗日插值多项式matlab

实验报告:拉格朗日插值多项式实验目的与要求:熟练掌握拉格朗日插值的基本思想与插值公式实验内容:对于给定的一元函数)(x f y =的n+1个节点值(),0,1,,j j y f x j n ==。
试用Lagrange 公式求其插值多项式Lagrange 插值多项式。
数据如下: (1)求五次Lagrange 多项式5L ()x ,计算(0.596)f ,(0.99)f 的值。
(试构造Lagrange 多项式6L ()x ,计算的(1.8)f ,(6.15)f 值。
实验环境与器材:Matlab7.0实验过程(步骤)或程序代码: (1)fid=fopen('l3.txt','wt');fprintf(fid,'试用Lagrange 公式求其插值多项式Lagrange 插值多项式,求f(0.596),f(0.99)\n');A=[0.4,0.55,0.65,0.80,0.95,1.05];B=[0.41075,0.57815,0.69675,0.9,1,1.25382]; For p=1:2x=input('输入x=') a=1; for i=1:6a=a*(x-A(i));endl=0;for i=1:6b=1;for j=1:6if i~=jb=b*(A(i)-A(j));endendl=l+B(i)*a/((x-A(i))*b);endfprintf(fid,'x f(x)\n');fprintf(fid,'%2f %f\n',x,L);end(2)fid=fopen('l3.txt','wt');fprintf(fid,'试用Lagrange公式求其插值多项式Lagrange插值多项式,求f(1.8),f(6.15)\n');for p=1:2x=input('输入x=')A=[1,2,3,4,5,6,7];B=[0.368,0.135,0.050,0.018,0.007,0.002,0.001];a=1;for i=1:7a=a*(x-A(i));endl=0;for i=1:7b=1;for j=1:7if i~=jb=b*(A(i)-A(j));endendl=l+B(i)*a/((x-A(i))*b);endfprintf(fid,'x f(x)\n');fprintf(fid,'%2f %f\n',x,L);end实验结果与分析:(1)试用Lagrange公式求其插值多项式Lagrange插值多项式,求f(0.596),f(0.99) x f(x)0.596000 0.625732x f(x)0.990000 1.054230(2)试用Lagrange公式求其插值多项式Lagrange插值多项式,求f(1.8),f(6.15) x f(x)1.800000 0.165093x f(x)6.150000 0.001231成绩:教师签名:月日。
用matlab编写拉格朗日插值算法的程序

用matlab编写拉格朗日插值算法的程序10[ 标签:matlab,插值算法,程序 ]用matlab编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,在整个插值区间上采用拉格朗日插值法计算f(0.6),写出程序源代码,输出计算结果x -2.15 -1.00 0.01 1.02 2.03 3.25y 17.03 7.24 1.05 2.03 17.06 23.05匿名回答:1 人气:6 解决时间:2011-05-24 19:58满意答案好评率:83%做了一个测试,希望有所帮助。
代码:% 用matlab编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,% 在整个插值区间上采用拉格朗日插值法计算f(0.6),写出程序源代码,输出计算结果% x -2.15 -1.00 0.01 1.02 2.03 3.25% y 17.03 7.24 1.05 2.03 17.06 23.05function main()clc;x = [-2.15 -1.00 0.01 1.02 2.03 3.25]; y = [17.03 7.24 1.05 2.03 17.06 23.05 ]; x0 = 0.6;f = Language(x,y,x0)function f = Language(x,y,x0)%求已知数据点的拉格朗日插值多项式%已知数据点的x坐标向量: x%已知数据点的y坐标向量: y%插值点的x坐标: x0%求得的拉格朗日插值多项式或在x0处的插值: f syms t l;if(length(x) == length(y))n = length(x);elsedisp('x和y的维数不相等!');return; %检错endh=sym(0);for (i=1:n)l=sym(y(i));for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));end;h=h+l;endsimplify(h);if(nargin == 3)f = subs (h,'t',x0); %计算插值点的函数值elsef=collect(h);f = vpa(f,6); %将插值多项式的系数化成6位精度的小数end结果:f =0.0201>>如何用MATLAB编写的拉格朗日插值算法的程序、二阶龙格-库塔方法的程序和SOR迭代法的程序,要能运行的∮初夏戀雨¢回答:2 人气:29 解决时间:2009-12-08 19:04满意答案好评率:100%拉格朗日function y=lagrange(x0,y0,x)n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endSOR迭代法的Matlab程序function [x]=SOR_iterative(A,b)% 用SOR迭代求解线性方程组,矩阵A是方阵x0=zeros(1,length(b)); % 赋初值tol=10^(-2); % 给定误差界N=1000; % 给定最大迭代次数[n,n]=size(A); % 确定矩阵A的阶w=1; % 给定松弛因子k=1;% 迭代过程while k<=Nx(1)=(b(1)-A(1,2:n)*x0(2:n)')/A(1,1);for i=2:nx(i)=(1-w)*x0(i)+w*(b(i)-A(i,1:i-1)*x(1:i-1)'-A(i,i+1:n)*x0(i+1:n)')/A(i,i); endif max(abs(x-x0))<=tolfid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n'); fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'x的值\n\n');fprintf(fid, '%12.8f \n', x);break;endk=k+1;x0=x;endif k==N+1fid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n'); fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'超过最大迭代次数,求解失败!');fclose(fid);endMatlab中龙格-库塔(Runge-Kutta)方法原理及实现龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。
Lagrange插值程序1

在Matlab中,可以编写如下程序来利用Lagrange插值公式进行计算:function f=Lagrange(x,fx,inx)n=length(x);m=length(inx);for i=1:m;z=inx(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x(j))/(x(k)-x(j));endends=p*fx(k)+s;endf(i)=s;endplot(x,fx,'O',inx,f)x=[1:12]fx=[12 234 34 -1 34 2 5 23 34 9 45 23]xi=[1:0.2:12]Lagrange(x,fx,xi)得出结果:12.0000 -60.5937 18.2765 124.9778 202.5952 234.0000 223.3757 184.1249 131.4738 78.4253 34.0000 2.9467 -13.6885 -17.5810 -12.0379 -1.0000 11.7556 23.1624 31.1611 34.7730 34.0000 29.6054 22.8332 15.1153 7.8099 2.0000 -1.6307 -2.8397 -1.7907 1.0404 5.0000 9.4024 13.6643 17.4033 20.4834 23.0000 25.2037 27.3769 29.6858 32.0400 34.0000 34.7742 33.3426 28.7320 20.4439 9.0000 -3.4848 -12.8605 -12.88734.0592 45.0000 112.3788 197.1817 267.9699 254.3439 23.0000拉格朗日插值法理论介绍对于给定的若n+1个点,对应于它们的次数不超过n的拉格朗日多项式只有一个。
拉格朗日插值、牛顿插值的matlab代码

实验五多项式插值逼近信息与计算科学金融崔振威201002034031一、实验目的:拉格朗日插值和牛顿插值的数值实现二、实验内容:p171.1、p178.1、龙格现象数值实现三、实验要求:1、根据所给题目构造相应的插值多项式,2、编程实现两类插值多项式的计算3、试分析多项式插值造成龙格现象的原因主程序1、拉格朗日function [c,l]=lagran(x,y)%c为多项式函数输出的系数%l为矩阵的系数多项式%x为横坐标上的坐标向量%y为纵坐标上的坐标向量w=length(x);n=w-1;l=zeros(w,w);for k=1:n+1v=1;for j=1:n+1if k~=jv=conv(v,poly(x(j)))/(x(k)-x(j)) %对多项式做卷积运算endendl(k,:)=v;endc=y*l;牛顿插值多项式主程序function [p2,z]=newTon(x,y,t)%输入参数中x,y为元素个数相等的向量%t为插入的定点%p2为所求得的牛顿插值多项式%z为利用多项式所得的t的函数值。
n=length(x);chaS(1)=y(1);for i=2:nx1=x;y1=y;x1(i+1:n)=[];y1(i+1:n)=[];n1=length(x1);s1=0;for j=1:n1t1=1;for k=1:n1if k==j %如果相等则跳出循环continue;elset1=t1*(x1(j)-x1(k));endends1=s1+y1(j)/t1;endchaS(i)=s1;endb(1,:)=[zeros(1,n-1) chaS(1)];cl=cell(1,n-1); %cell定义了一个矩阵for i=2:nu1=1;for j=1:i-1u1=conv(u1,[1 -x(j)]); %conv()用于多项式乘法、矩阵乘法cl{i-1}=u1;endcl{i-1}=chaS(i)*cl{i-1};b(i,:)=[zeros(1,n-i),cl{i-1}];endp2=b(1,:);for j=2:np2=p2+b(j,:);endif length(t)==1rm=0;for i=1:nrm=rm+p2(i)*t^(n-i);endz=rm;elsek1=length(t);rm=zeros(1,k1);for j=1:k1for i=1:nrm(j)=rm(j)+p2(i)*t(j)^(n-i);endz=rm;endendplot(t,z,'y',x,y,'*r') %输出牛顿插值多项式的函数图p171.1(a)、f(x)=e x解:在matlab窗口中输入:>> x=[0 0.2 0.4 0.6 0.8 1];>> y=[exp(0) exp(0.2) exp(0.4) exp(0.6) exp(0.8) exp(1)]y =1.0000 1.2214 1.4918 1.82212.2255 2.7183>> [c,l]=lagran(x,y)可以得出输出结果为:c =0.0139 0.0349 0.1704 0.4991 1.0001 1.0000l =-26.0417 78.1250 -88.5417 46.8750 -11.4167 1.0000130.2083 -364.5833 369.7917 -160.4167 25.0000 0-260.4167 677.0833 -614.5833 222.9167 -25.0000 0260.4167 -625.0000 510.4167 -162.5000 16.6667 0-130.2083 286.4583 -213.5417 63.5417 -6.2500 026.0417 -52.0833 36.4583 -10.4167 1.0000 0由输出结果可以的出:P(x)的系数分别为:a0=0.0139 a1=0.0349 a2=0.1704 a3=0.4991 a4=1.0001 a5=1.0000(b)、f(x)=sin(x)解:在matlab窗口中输入:>> x=[0 0.2 0.4 0.6 0.8 1];>> y=[sin(0) sin(0.2) sin(0.4) sin(0.6) sin(0.8) sin(1)];>> [c,l]=lagran(x,y)可以得出输出结果为:c =0.0073 0.0016 -0.1676 0.0002 1.0000 0l =-26.0417 78.1250 -88.5417 46.8750 -11.4167 1.0000130.2083 -364.5833 369.7917 -160.4167 25.0000 0-260.4167 677.0833 -614.5833 222.9167 -25.0000 0260.4167 -625.0000 510.4167 -162.5000 16.6667 0-130.2083 286.4583 -213.5417 63.5417 -6.2500 026.0417 -52.0833 36.4583 -10.4167 1.0000 0由输出结果可以的出:P(x)的系数分别为:a0=0.0073 a1=0.0016 a2=-0.1676 a3=0.0002 a4=1.0000 a5=0(c)、f(x)=(x+1)x+1解:在matlab窗口中输入:>> x=[0 0.2 0.4 0.6 0.8 1];>> y=[1 1.2^1.2 1.4^1.4 1.6^1.6 1.8^1.8 2^2];>> [c,l]=lagran(x,y)可以得出输出结果为:c =0.3945 -0.0717 0.7304 0.9415 1.0052 1.0000l =-26.0417 78.1250 -88.5417 46.8750 -11.4167 1.0000130.2083 -364.5833 369.7917 -160.4167 25.0000 0-260.4167 677.0833 -614.5833 222.9167 -25.0000 0260.4167 -625.0000 510.4167 -162.5000 16.6667 0-130.2083 286.4583 -213.5417 63.5417 -6.2500 026.0417 -52.0833 36.4583 -10.4167 1.0000 0由输出结果可以的出:P(x)的系数分别为:a0=0.3945 a1=-0.0717 a2=0.7304 a3=0.9415 a4=1.0052 a5=1.0000P178.12、a0=5 a1=-2 a2=0.5 a3=-0.1 a4=0.003x0=0 x1=1 x2=2 x3=3 c=2.5解:在matlab窗口中输入:>> x=[5 -2 0.5 -0.1];>> y=[0 1 2 3];>> t=0:0.1:2.5;>> [u,v]=newTon(x,y,t)可得出输出结果:u =0.1896 -0.7843 -1.3928 2.8688v =2.8688 2.7218 2.5603 2.3855 2.1983 2.0000 1.7917 1.5745 1.3497 1.1182 0.8813 0.6401 0.3957 0.1493 -0.0980 -0.3451 -0.5908 -0.8340 -1.0735 -1.3082 -1.5370 -1.7588 -1.9723 -2.1765 -2.3702 -2.5523由此可以求出牛顿多项式为:f(x)=0.1896x^3--0.7843^x2--1.3928x+2.8688输出的图为:结果分析:利用牛顿插值多项式的函数,通过调用函数可以求得牛顿多项式与给定的点的值,并通过matlab做出函数图像。