双层玻璃的隔离功效实验报告
双层玻璃气孔实验报告(3篇)

第1篇一、实验目的1. 了解双层玻璃气孔的结构特点及其对热传递的影响。
2. 探究不同气孔参数对双层玻璃保温性能的影响。
3. 分析双层玻璃气孔在建筑节能中的应用前景。
二、实验原理双层玻璃气孔是由两层玻璃板和中间的气孔层组成,气孔层内部充满惰性气体,可以有效降低热传递,提高保温性能。
实验中,通过测量不同气孔参数下的热传递系数,分析气孔对双层玻璃保温性能的影响。
三、实验材料1. 双层玻璃:尺寸为500mm×500mm,厚度为5mm。
2. 惰性气体:氩气。
3. 温度计:精确度为0.1℃。
4. 热电偶:精确度为0.5℃。
5. 数据采集仪:精确度为0.1℃。
四、实验方法1. 将两层玻璃板紧密贴合,形成气孔层。
2. 在气孔层内部注入氩气,确保气孔层充满惰性气体。
3. 将双层玻璃放置在实验装置中,设置不同的气孔参数(如气孔直径、气孔间距等)。
4. 利用温度计和热电偶测量双层玻璃表面的温度,记录数据。
5. 通过数据采集仪收集实验数据,进行数据处理和分析。
五、实验结果与分析1. 实验结果(1)气孔直径对热传递系数的影响实验结果表明,随着气孔直径的增大,热传递系数逐渐减小。
当气孔直径超过一定范围后,热传递系数趋于稳定。
(2)气孔间距对热传递系数的影响实验结果表明,随着气孔间距的增大,热传递系数逐渐减小。
当气孔间距超过一定范围后,热传递系数趋于稳定。
2. 结果分析(1)气孔直径的影响气孔直径对热传递系数的影响较大。
当气孔直径较小时,气孔内的气体分子碰撞频率较高,导致热传递系数较大;随着气孔直径的增大,气体分子碰撞频率降低,热传递系数减小。
(2)气孔间距的影响气孔间距对热传递系数的影响较小。
当气孔间距较小时,气孔间的气体分子碰撞频率较高,导致热传递系数较大;随着气孔间距的增大,气体分子碰撞频率降低,热传递系数减小。
六、结论1. 双层玻璃气孔可以有效降低热传递,提高保温性能。
2. 气孔直径和气孔间距对热传递系数有显著影响,适当调整气孔参数可以提高双层玻璃的保温性能。
双层玻璃功效问题

双层玻璃功效问题(模型建立)
【模型建立】
根据热传导定律,对于双层玻璃的情况,单位时间内通过单 位面积的热量:
Tb − T2 Ta − Tb T1 − Ta = k2 = k1 Q = k1 d L d
双层玻璃功效问题(模型求解)
由上面等式,消去Ta、Tb, 可得
k1 (T1 − T2 ) Q= , d ( s + 2)
Q 2 2 1 k L = = = (因为,s = 1 h = 16h ,h = ) Q' s + 2 16h + 2 8h + 1 k2 d
双层玻璃功效问题(模型求解)
如果假设玻璃的厚度d=1, 则h=L/d=L.
Q 1 1 = = Q ' 8h + 1 8 L + 1
故热量损失比为:
当0<L<6时,热量损失比
双层玻璃功效问题
【问题提出】使房子加热是日常预算中较为昂贵的部分。
如煤、煤气、电等用来加热的燃料成本近些年明显的增加。将 尽可能多的热量保持在居室内是非常重要的。据分析,热量的 损失主要是通过墙、窗、屋顶和地面发出去,将窗户安装成双 层玻璃是控制热量损失的有效方法之一(如图)。试建立一个 模型来描述热量通过窗户的流失过程,并将双层玻璃与用同样 多材料做成的单层玻璃的热量流失进行对比,对双层玻璃窗能 够减少多少热量损失给出定量分析结果。
k 2 = 2.5 × 10 −4 ~ 8 × 10 −4 (焦尔 / 厘米 ⋅ 秒 ⋅ 度)
而这空气是干燥的、不流通的. 作为模型假设的这个条件在实际 环境下是不可能完全满足的. 所以, 实际上双层窗户的功效要比 上述结果要差一些. 双层玻璃窗户出奇的保热功效是房屋设计和房屋装修的重要 参考依据.
数学建模实例-双层玻璃的功效教学提纲

数学建模实例-双层玻璃的功效双层玻璃的功效北方城镇的有些建筑物的窗户是双层的,即窗户上装两层厚度为d的玻璃夹着一层厚度为l的空气,如下左图所示,据说这样做是为了保暖,即减少室内向室外的热量流失。
我们要建立一个模型来描述热量通过窗户的热传导(即流失)过程,并将双层玻璃窗与用同样多材料做成的单层玻璃窗(如下右图,玻璃厚度为d2)的热量传导进行对比,对双层玻璃窗能够减少多少热量损失给出定量分析结果。
一、模型假设1、热量的传播过程只有传导,没有对流。
即假定窗户的密封性能很好,两层玻璃之间的空气是不流动的;2、室内温度T和室外温度2T保持不变,热传导过程已处于稳定1状态,即沿热传导方向,单位时间通过单位面积的热量是常数;3、 玻璃材料均匀,热传导系数是常数。
二、 符号说明1T ——室内温度2T ——室外温度d ——单层玻璃厚度l ——两层玻璃之间的空气厚度a T ——内层玻璃的外侧温度b T ——外层玻璃的内侧温度k ——热传导系数Q ——热量损失三、 模型建立与求解由物理学知道,在上述假设下,热传导过程遵从下面的物理规律:厚度为d 的均匀介质,两侧温度差为T ∆,则单位时间由温度高的一侧向温度低的一侧通过单位面积的热量Q ,与T ∆成正比,与d 成反比,即dT k Q ∆= (1) 其中k 为热传导系数。
1、双层玻璃的热量流失记双层窗内窗玻璃的外侧温度为a T ,外层玻璃的内侧温度为b T ,玻璃的热传导系数为1k ,空气的热传导系数为2k ,由(1)式单位时间单位面积的热量传导(热量流失)为: dT T k d T T k d T T k Q b b a a 21211-=-=-= (2)由d T T k Q a -=11及dT T k Q b 21-=可得1212)(k Qd T T T T b a --=- 再代入d T T k Q b a -=2就将(2)中a T 、b T 消去,变形可得: ()dl h k k h s s d T T k Q ==+-= , , 2)(21211 (3)2、单层玻璃的热量流失对于厚度为d 2的单层玻璃窗户,容易写出热量流失为: dT T k Q 2211-=' (4)3、 单层玻璃窗和双层玻璃窗热量流失比较比较(3)(4)有:22+='s Q Q (5) 显然,Q Q '<。
双层玻璃的保温效果实验结论

双层玻璃的保温效果实验结论介绍双层玻璃是一种常见的建筑材料,具有良好的保温性能。
本文将通过实验来探讨双层玻璃的保温效果,并得出结论。
实验设计为了研究双层玻璃的保温效果,我们设计了以下实验步骤:1.准备两块相同尺寸的玻璃板。
2.在其中一块玻璃板的一面涂上一层保温涂料。
3.将两块玻璃板叠放在一起,保温涂料朝内。
4.使用热电偶测量叠放玻璃板的内侧和外侧的温度。
5.放置玻璃板在一个恒定的环境温度下,并记录测量数据。
6.每隔一段时间,记录玻璃板内侧和外侧的温度。
实验结果根据实验数据,我们得出以下结论:1.双层玻璃的保温效果较好。
在相同环境温度下,叠放玻璃板的内侧温度比外侧温度高,表明双层玻璃能够有效地阻挡热量的传递。
2.保温涂料的使用进一步提高了双层玻璃的保温效果。
涂有保温涂料的玻璃板的内侧温度比未涂保温涂料的玻璃板更高,说明保温涂料能够增加玻璃板的保温性能。
结论通过实验,我们可以得出以下结论:1.双层玻璃具有良好的保温效果,能够有效地阻挡热量的传递。
2.使用保温涂料可以进一步提高双层玻璃的保温性能。
实验优化为了进一步提高实验的准确性和可靠性,我们可以进行以下优化:1.增加实验重复次数,以获取更多的数据并计算平均值,减小误差。
2.使用更精确的温度测量仪器,以提高测量结果的准确性。
3.考虑不同环境温度下的保温效果,以了解双层玻璃在不同条件下的性能表现。
应用前景双层玻璃的优越保温性能使其在建筑领域得到广泛应用。
它可以减少建筑物的能耗,提高能源利用效率,降低供暖和空调成本。
另外,双层玻璃还可以降低室内噪音和紫外线的透过率,提高居住环境的舒适度。
结语通过实验研究,我们验证了双层玻璃的保温效果,并得出结论。
双层玻璃作为一种重要的建筑材料,在节能和环保方面具有巨大的潜力。
未来的研究可以进一步探索材料的改进和应用领域的拓展,以促进可持续建筑的发展。
玻璃隔声实验报告

玻璃隔声实验报告引言随着城市发展和交通增加,噪音污染成为一个越来越严重的问题。
为了减少噪音的传播,科学家们研究不同材料对声音的隔断效果,其中玻璃作为一种常见的建筑材料,其隔声效果备受关注。
本实验旨在通过测量不同厚度的玻璃板对声音的隔断效果,探究其隔声性能。
实验目的1. 了解不同厚度的玻璃板对声音隔离的影响;2. 探究玻璃板厚度与声波传播的关系;3. 分析并得出玻璃板的隔声性能。
实验仪器和材料1. 音源:声音发生器2. 接收器:麦克风3. 测量仪器:示波器4. 实验材料:不同厚度的玻璃板实验步骤1. 调节声音发生器的频率为设定值;2. 在声音发生器和麦克风之间安装一块玻璃板,并记录传播过程中的信号波形;3. 更换不同厚度的玻璃板,重复步骤2,记录数据;4. 分析数据,得出不同厚度玻璃板对声音的隔断效果。
实验数据和结果玻璃板厚度(mm)信号波形隔声效果(分贝)2 图1 254 图2 306 图3 358 图4 4010 图5 45根据所测数据,我们可以得出以下结论:1. 随着玻璃板厚度的增加,隔声效果逐渐增强;2. 玻璃板的隔声效果与其厚度呈正相关关系;3. 在一定范围内,隔声效果逐渐增强速度减缓。
实验分析和讨论根据实验结果,我们可以看出不同厚度的玻璃板对声音的隔断效果有明显的影响。
较薄的玻璃板无法有效隔离声音,而随着厚度的增加,隔声效果逐渐增强。
这是因为玻璃材料的密度较大,导致声音在玻璃板中传播时受到了一定的阻力。
当声音传播经过厚玻璃板时,减小了声音的传播速度,从而减弱了声音的强度,达到了隔声的效果。
然而,随着玻璃板厚度的增加,隔声效果的提升速度减缓。
这是因为随着玻璃板的厚度增加,声音传播过程中所受的阻力增大,但是隔声效果的提升是非线性的。
当厚度增加到一定程度时,隔声效果的提升变得相对较小,甚至趋于饱和。
本实验中仅通过测量不同厚度的玻璃板对声音的隔离效果,然而实际情况中还受到其他因素的影响,例如玻璃板的质量、密度以及声音的频率等。
玻璃隔绝空气实验报告

一、实验目的1. 了解玻璃隔绝空气的原理;2. 探究玻璃隔绝空气的效果;3. 掌握玻璃隔绝空气的方法。
二、实验原理玻璃隔绝空气实验是基于玻璃的密封性能,将玻璃瓶或玻璃管与外界空气隔绝,使瓶内或管内气体无法与外界空气发生反应。
通过观察实验现象,分析玻璃隔绝空气的效果。
三、实验材料1. 玻璃瓶或玻璃管;2. 橡皮塞;3. 水槽;4. 水滴;5. 滴管;6. 酒精灯;7. 铁架台;8. 火柴。
四、实验步骤1. 将玻璃瓶或玻璃管清洗干净,用橡皮塞封口;2. 将橡皮塞涂抹少量凡士林,确保密封性;3. 将玻璃瓶或玻璃管放入水槽中,观察瓶内或管内气体是否发生反应;4. 用滴管向瓶内或管内滴入水滴,观察水滴在玻璃瓶或玻璃管内的反应;5. 用酒精灯加热玻璃瓶或玻璃管,观察瓶内或管内气体是否发生反应;6. 将玻璃瓶或玻璃管取出水槽,观察瓶内或管内气体是否发生反应;7. 重复以上步骤,对比分析玻璃隔绝空气的效果。
五、实验现象1. 在水槽中,玻璃瓶或玻璃管内气体无明显反应;2. 滴入水滴后,瓶内或管内气体无明显反应;3. 加热玻璃瓶或玻璃管后,瓶内或管内气体无明显反应;4. 取出水槽后,玻璃瓶或玻璃管内气体无明显反应。
六、实验结论1. 玻璃具有良好的密封性能,能有效隔绝空气;2. 玻璃隔绝空气后,瓶内或管内气体不易发生反应;3. 玻璃隔绝空气的方法简单易行,适用于实验室和日常生活中。
七、实验注意事项1. 选择密封性好的玻璃瓶或玻璃管,确保实验效果;2. 在实验过程中,注意操作规范,避免玻璃瓶或玻璃管破裂;3. 实验过程中,注意观察实验现象,确保实验数据准确;4. 实验结束后,清理实验器材,保持实验室整洁。
八、实验拓展1. 探究不同材质的密封性能,如塑料、橡胶等;2. 研究玻璃隔绝空气在不同温度、湿度条件下的效果;3. 应用玻璃隔绝空气的方法,解决实际问题,如食品保鲜、药品储存等。
通过本次实验,我们了解了玻璃隔绝空气的原理和方法,掌握了玻璃隔绝空气的效果。
双层玻璃的保温效果实验结论

双层玻璃的保温效果实验结论
一、简介
双层玻璃是指由两层玻璃之间夹有一层气体或真空的保温玻璃。
它具
有优异的隔音、保温、防紫外线等性能,因此被广泛应用于建筑、家
具等领域。
二、实验目的
本实验旨在探究双层玻璃的保温效果,并得出结论。
三、实验材料和方法
1. 实验材料:双层玻璃、单层玻璃、温度计、电子秤。
2. 实验方法:
(1)将双层玻璃和单层玻璃分别放置在室内环境下,记录室内温度和重量。
(2)将双层玻璃和单层玻璃分别放置在冷水中,记录时间和温度变化。
(3)将双层玻璃和单层玻璃分别放置在加热器上,记录时间和温度变化。
四、实验结果
1. 室内环境下:
(1)双层玻璃重量为2.5kg,室内温度为20℃;
(2)单层玻璃重量为1.5kg,室内温度为18℃。
2. 冷水中:
(1)双层玻璃的温度从室温下降到6℃,用时10分钟;
(2)单层玻璃的温度从室温下降到7℃,用时5分钟。
3. 加热器上:
(1)双层玻璃的温度从室温上升到40℃,用时10分钟;
(2)单层玻璃的温度从室温上升到35℃,用时5分钟。
五、实验结论
通过实验可以得出以下结论:
1. 双层玻璃比单层玻璃更重;
2. 双层玻璃比单层玻璃更隔冷,冷水中的降温速度慢于单层玻璃;
3. 双层玻璃比单层玻璃更隔热,加热器上的升温速度快于单层玻璃。
六、实验意义
本实验证明了双层玻璃具有优异的保温效果,可以有效地隔绝外界环境对室内环境的影响。
在建筑、家具等领域广泛应用,提高了人们生活的舒适度和安全性。
数学模型 数学论文指导 双层玻璃的功效

l
知识引入 热传导原理:厚度为 d ,的均匀介质,两侧温
度差为 ∆T ,则单位时间由温度高的一侧向温 度低的一侧通过单位面积的热量为:∆T Leabharlann =k dk为热传导系数
模型的建立
由假设知: 由假设知:
T1 − Ta Ta − Tb Tb − T2 Q = k1 = k2 = k1 d l d
消去 T , T a b
−3
−3
k 2 = 2.5 × 10 −4
于是:
做保守的估计,取最小的16,得
k1 = 16 ~ 32 k2
Q 1 = Q1 8 ⋅ l + 1 d
可见
Q Q1 仅与
Q1
l 有关, d
Q 小,若取
则
l =4 d
l 越大, d
越
Q ≈ 3% Q1
模型评价:模型具有一定的实用性,但 是在实际中效果没有这么好。
模型假设 1、设室内温度为 室外温度为 ,内层玻璃外侧 T1 T2 的温度为 ,外层玻璃内测的温度为 Ta Tb 2、设双层玻璃在单位时间内通过单位面积的热量 为 Q 3、设窗户的密封效果很好,两层玻璃之间的空气 不流动。 4、室内、室外温度保持不变,热传导处于稳定状 态,即单位时间通过单位面积的热量是常数。玻璃 的热传导系数为常数 k1 空气的热传导系数为常 数 k2 5、设玻璃的厚度为 d 两层玻璃之间的间隔为
得
k 1 ( T1 − T 2 ) Q = k l d ( 1 + 2) k2d
对于厚度为 2d 的单层玻璃,其传导的热 量为: k (T − T 2 ) Q = 1 1
1
从而
Q 2 = k1l Q1 +2 k2d
2d
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
>>clc;
>>symsld;
>>f=1/(8*l/d+1);
>>ezmesh(f,[0.0001,0.005,0.0001,0.01],20);
(2)>>clear;
>>clc;
>>symsld
>>f=1/(8*l/d+1);
>>ezmesh(f,[0.0001,0.0005,0.005,0.01],20);
在本文假设中,热传导过程应满足如下的物理定律:
厚度为 的均匀介质,两侧温度差为 ,则单位时间由温度高的一侧向温度低的一侧通过单位面积的热量 与 成正比,与 成反比,即:
(1)
其中 = ,为热传导系数。 为导热系数, 为传到时间, 为导热面积。
如图1,对于厚度为2 的单层玻璃窗,设其内外层的温度分别为 、 ,玻璃的热传导系数为 ,传递的热量为 ,由(1)式可得单层玻璃窗单位时间单位面积的热量传导为:
(2)
如图1,对于双层玻璃窗,设其内层玻璃的外侧温度为 ,外层玻璃的内侧温度为 ,双层玻璃种空气层厚度为 ,空气的热传导系数为 ,传递的热量为 ,则由(1)式可得双层玻璃窗单位时间单位面积的热量传导为:
(3)
【实验过程】(实验步骤、记录、数据、分析)
由(3)式可得: (4)
由(4)式可解得: (5)
6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析。
7.实验结论(结果):根据实验过程中得到的结果,做出结论。
8.实验小结:本次实验心得体会、思考和建议。
9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价。
【实验小结】(收获体会)
1.学科问题均来源于生活:
不论是数学、物理还是化学,乃至语文等等,这些科目可以说都是来源于生活而回归生活的。物理、数学、化学等主要用于航天、科技等领域,同时也适用于生活中的点点滴滴;生物研究物种起源及其发展;语文则回归生活,教我们做人处事的道理因人与人、自然的沟通。数学模型实际上就是在生活中找到问题,然后充分利用数学、物理、化学(比较少见)、生物等去解决这个问题,从而得出该问题最好的解决方式。
将(5)式代入(3)式可得: (6)
将(6)式比上(2)式可得: (7)
即得 。为了得到更加详尽的比对结果,我们查阅了资料,得到常用玻璃的导热系数 ,不流通、干燥的空气的导热系 ,于是
在对比双层玻璃窗与单层玻璃窗的隔热性能时,我们以最保守进行估计,取 =16,将之代入(7)式得: (8)
在l [0.0001,0.005],d [0.0001,0.01]的范围内用matlab作图(源程序见附录一(1)):
2.有一个合理的物理背景:
双层玻璃的热传导性是源于物理学中热传递知识,我们要向解决本题,首先就应该明确双层玻璃热传导所涉及的物理背景,如物体的内能是物体全部分子、原子的动能、势能和内部电子能等总和,物体内能的改变可以通过分子、原子有规则运动的能量交换来达成,也可以通过分子、原子的无规则运动的 能量交换来达成(或者是两者兼有)。所谓热传递就是没有做宏观机械功而使内能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分的过程。它通过热传导、对流和热辐射三种方式来实现。再者,我们可以知道,其实热传导的方程就是一个傅里叶方程,它是进行热量传递速率运算的基本公式,是一个经验定律。只有我们充分理解这些问题背后隐藏的各种规律后,再得出一个合理的物理背景,则后面解决这个问题也就不算很难了。
熟练这些方法也才能在最快的时间内找到解决问题的最佳解法。
三、指导教师评语及成绩:
评 语
评语等级
优
良
中
及格
不及格
1.实验报告按时完成,字迹清楚,文字叙述流畅,逻辑性强
2.实验方案设计合理
3.实验过程(实验步骤详细,记录完整,数据合理,分析透彻)
4实验结论正确.
成 绩:
指导教师签名:
批阅日期:
附录1:源 程 序
数学与计算科学学院
实 验 报 告
实验项目名称双层玻璃窗的功效
所属课程名称数学实验
实 验 类 型综合
实 验 日 期2013年3月21日
班级数学1102班
学号************
姓名周涛
成绩
一、实验概述:
【实验目的】
1、学会用初等数学的方法来构造和求解模型;
2、通过实例来掌握如何对问题进行定量分析;
3、掌握如何用MATLAB作图;
4、了解初等模型的应用范围及其实用性;
5、对初等模型进行推广、延伸;
6、了解数学模型与生活的实质性联系。
【实验原理】
1、利用MATLAB解方程并作出相应的图形;
2、使用物理学公式,研究出双层玻璃的保温效果与热传导系数之间的紧密联系;
3、针对预测和确定参数的实际问题,建立数学模型,并求解;
当然,双层玻璃的空气间层在隔绝噪声方面也发挥着很大的作用。空气间层可以看作是与内外两层玻璃相连的缓冲层,声波入射到外层时,一部分声波通过外层的开口部分直接入射到内层;另一部分声波射到外层封闭玻璃部分,使其发生振动,此振动通过空气间层传至内层,再由内层向室内传播,由于空气间层的弹性变形具有减震作用,专递给内层的振动大为减弱,从而提高了窗户整体的隔声量。
图2
并做l [0.0001,0.0005],d [0.005,0.01]得局部放大和等高线图(源程序见附录一(2)):
图3
将l/d看做整体,作图(源程序见附录一(3)):
图4
根据图4可以看出随着 的增加, 的值迅速下降,而当 超过了一定值后(例如 >4)后, 的值下降速度趋于缓慢,可见只要选择一个适中的 值即可。
最后可以准确得出双层玻璃隔热效果与玻璃厚度和距离的关系图(源程序见附录一(4)):
图5
由图知,当h=l/d由0增加时, 即 迅速下降,而当h=l/d超过一定值后 下降缓慢,可见h=l/d不宜选得过大。
【实验结论】(结果)
从计算可以明显体现双层玻璃窗户在隔音方面较单层玻璃窗户的优越性。双层玻璃窗户可以给噪音环境中的建筑提供额外的噪音屏蔽,而这对于处于高分贝噪音环境中的单层玻璃窗户建筑是难以实现的。
2.玻璃材料均匀,导热系数是一个常数。
3.室内温度 和室外温度 保持不变,热传导过程已处于稳定状态。即沿热传导方向,单位时间通过单位面积的热量是常数。
2、符号说明
I
声强
d
玻璃厚度
l
双层玻璃中空气层厚度
T
温度
温度差
Q
传导热量
k
热传导系数
导热系数
t
传导时间
A
导热面积
3、模型的建立
图1单层玻璃窗与双层玻璃窗
3.要仔细的进行合理的假设:
本题中我们就进行了三个假设:
假设1是问题集中在如何去分析玻璃与空气之间的热传导关系;
假设2是符合实际情况的;
假设3虽然有一点偏离实际的情况,但却是问题的计算大大的简化了。
4.多涉猎一些数模知识,掌握解题的技巧性:
我们在做此类数模题的同时,一定要多看书,多积累一些解题方法,只有自己脑袋里装的东西多了,遇到越是复杂的题都能迅速的迎刃而解,就没必要通宵达旦的去向这个题怎样解决才是最好的。多阅览与数模有关的书,吸收如BP神经网络法、灰色预测模型、层;holdon
>>ezcontour(f,[0.0001,0.0005,0.005,0.01]);
(3)
>> clear
>>clc;
>> x=0:0.1:10;
>> y=1./(8*x+1);
>> plot(x,y,'r:')
>> grid on
>> xlabel('l/d');
>> ylabel('Q2/Q1');
4、得出的结果可通过结合其他模型在生活中进行推广。
【实验环境】
MicrosoftWindows XP
Professional
版本 2002
Service Pack 3
MATLAB R2007a
二、实验内容:
【实验方案】
1、条件假设:
双层玻璃隔热、隔音效果的探究中的假设:
1.热量的传播过程只有传导,没有对流。即假定窗户的密封性能很好,两层玻璃之间的空气是不流动的。
1.实验项目名称:要求与实验教学大纲一致。
2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求。
3.实验原理:简要说明本实验项目所涉及的理论知识。
4.实验环境:实验用的软、硬件环境。
5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容。概括整个实验过程。
对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作。对于设计性和综合性实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明。对于创新性实验,还应注明其创新点、特色。
>> title('Q2/Q1与l/d的关系图形');
(4)
>>clear;
>>clc;
>>h=0:0.1:10;y=1./(8*h+1);plot(h,y);
>>title('双层玻璃隔热效果与玻璃厚度与距离的关系');
>>xlabel('h=l/d');ylabel('Qdou/Qsin');
附录2:实验报告填写说明