外差激光干涉仪的测量方法
激光干涉仪测量步骤

激光干涉仪线性测量步骤一、做以下准备:(1)将云台所有旋钮(仰俯、摆动、平移)调至中间位置;(2)将三角架支座脚调至中间位置;(3)带5m长接线板;(4)带百分表、磁力表座、直角尺;(5)带两块水平仪,看机床工作台安装水平;(6)电脑提前开机,并打开测量软件;(7)补偿装置带进场之前提前接好;(8)两个人调光路的同时,一个人输入测量程序。
二、光路调整1. 将激光头置于三角架上,放在机床的右侧。
接电源线预热5分钟左右(激光头指示灯,红灯常亮或闪烁 绿灯常亮),预热时将激光头与电脑之间相连的数据线连接上,之后调节三角架的高低,并用水平仪将激光头调水平。
技巧:(1)大调调三角架支架腿,微调调脚架支座脚。
2)目测激光头相对于反光镜的高低,此时调整可用三角架中间升降摇把。
2. 将反射镜固定在工作台左侧。
注:(1)提前综合布局干涉镜、反光镜与激光头的位置,使它们上下左右对齐,并且反射镜尽量靠近干涉镜。
反射镜红点朝下安装。
(2)反射镜架设应满足全行程(例如:450mm)要求,并且不能和干涉镜相撞。
(3)将激光头尽可能接近工作台右侧行程限位。
技巧:(1)用直角尺将反射镜磁力表座与工作台T型槽调平行;2)用百分表将反射镜磁力表座与工作台T型槽拉平行。
3. 调整反光镜和激光头之间的光路。
(1)旋转激光器的光靶,白点朝下,使激光器发出较小的光束;(2)将机床工作台移动到激光器最近处,将一个光靶置于前端,白点朝上;(3)搬动激光头三角架,并调节三角架中间升降摇把,使激光束打到反射镜光靶白点中心;(4)移动机床X轴,使其逐渐远离激光头,观察反射镜光靶白点上的激光束,看其是否偏移出中心位置,一旦偏移出白点,则暂停机床,调整激光头云台上的水平摆动旋钮(左后侧小旋钮),使光束移动到以光靶白点为中心的水平对称位置,再调整激光头云台上的平移旋钮(左前侧大旋钮),使光束移动到光靶白点中轴线位置,然后调整三角架中间升降摇把,使光束移动到光靶白点中心位置。
激光干涉仪测量方法

激光干涉仪测量方法
激光干涉仪是一种高精度、高灵敏度的检测仪器,普遍应用于制造行业, SJ6000 激光干涉仪上市以来一直受到广大用户的热捧,尤其是机床和机器人生产企业。
但是小编了解到有许多的生产企业还是保持着观望的态度,一方面是因为不太清楚这款仪器的稳定性怎么样?再一方面是不了解仪器的测量方法,担心买回去无法使用。
小编就跟大家简单说一下激光干涉仪的测量方法。
就拿测量机床线性精度为例吧,首先,把三脚架和云台调整好,然后拿出激光器主机放置在云台上面固定好,连接好电源和数据线,再拿出线性测量镜组,架设在机床的被检轴上,在架设镜组的时候,要多次调试干涉镜与反射镜对准激光器主机发射出的光路,调整好线性镜组的位置后,把环境补偿单元的探头放置在被检轴的不同位置,连接数据线到电脑端,在电脑上设置好检定软件。
做好准备工作就可以开始操作机器从起始位置移动到下一个目标位置,在不同的位置暂停几秒钟,由激光干涉仪进行测量和采集数据。
检定软件有完善的用户
界面,会按顺序引导您完成检测的各个步骤。
激光干涉仪测量方法

或 =∑
某一目标位置的反向偏差为 ,即
= ↑- ↓
沿轴线或绕轴线的各目标位置的反
在某一目标位置的单向定位标准不确定度的估算值为 ↑ 或 ↓即
↑=
∑(
)
()
或
=
(
∑
)
(
)
某一目标位置的单向重复定位精度为 ↑或 ↓,即
↑ = 4 ↑或 ↓ = 4 ↓
( 3) 确定采集移动方式采集数据方式有两种:一种是线性循环
采集方法,另一种是线性多阶梯循环方法。GB17421 评定标准中采用 线性循环采集方法。测量移动方式: 采用沿着机床轴线快速移动,分 别对每个目标位置从正负两个方向上重复移动五次测量出每个目标 位置偏差,即运动部件达到实际位置减去目标位置之差。
(图2) ( 2) 确定测量目标位置根据GB17421 评定标准中规定,机床规 格小1 000mm 取不少于10 个测量目标位置,大于1 000mm 测量目标 位置点数适当增加,一般目标值取整数,但是我们建议在目标值整数 后面加上三位小数。主要考虑机床滚珠丝杠的导程及编码器的节距所 产生的周期误差,同时也考虑机床全程上各目标位置上得到充分地采 集。
沿轴线或绕轴线的任一位置 的重复定位精度的最大值。即
R↑ = max [ ↑],R↓ = max [ ↓]
R = max [ ] 轴线单向定位精度A↑或A↓,即 A↑ = max [ + 2 ↑] - min [ - 2 ↑] 或 A↓ = max [ ↓ + 2 ↓] - min [ ↓ - 2 ↓] 轴线双向定位精度A,即 A = max [ ↑ + 2 ↑; ↓ + 2 ↓] - min[ ↑ - 2 ↑;
( 4) 评定方法采用双向计算方法进行评定机床的位置精度。目
外差激光干涉仪的测量方法

一、举例描述外差激光干涉仪的测量方法。
光外差干涉是指两只相干光束的光波频率产生一个小的频率差,引起干涉场中干涉条纹的不断扫描,经光电探测器将干涉场中的光信号转换为电信号,由电路和计算机检出干涉场的相位差。
特点:克服单频干涉仪的漂移问题;细分变得容易; 提高了抗干扰性能。
原理:在干涉场中,放入两个探测器,一个放在基准点(x0, y0)处,称之为基准探测器,其输出基准信号i(x0, y0, t),另一个放在干涉场某探测点(xi, yi)处,称之为扫描探测器,输出信号为i(xi, yi, t) 。
将两信号相比,测出信号的过零时间差Δt ,便可知道二者的光学位相差)/1/(π2),(),(00v t t y x φy x φ∆∆=∆∆=-ω由控制系统控制扫描探测器对整个干涉场扫描,就可以测出干涉场各点的位相差。
设测试光路和参考光路的光波频率分别为ω和ω+Δω,则干涉场的瞬时光强为[]{}[][]{}[][])(cos )()2(cos )(2cos 121)(2cos 121),(cos )cos(),,(222x,y t-φE E x,y φt E E x,y φt E t E y x φt E t E t y x I t r t r t r t r ωωωωωωωωω∆++∆+++++∆++=++∆+=由于光电探测器的频率响应范围远远低于光频ω,它不能跟随光频变化,所以式中含有2ω的交变项对探测器的输出响应无贡献。
)],(cos[2/2/),,(22y x φt E E E E t y x i t r t r -∆++∝ω干涉场中某点(x ,y )处光强以低频Δω随时间呈余弦变化 (1)激光外差干涉测长数据处理双频激光器1/4波片准直系统可动角隅棱镜检偏器v探测器前置放大器f2f1f1±Δff2f1f2f1±Δf图4-33双频激光器外差干涉测长原理图偏振分光镜f2-f1f2-(f1±Δf )⎰⎰⎰⎰∆±=±=∆tttt t f NL L t v t vt f 000d 222d 2d 2d λλλλλ所以===由于(2)激光外差干涉测量微振动方解石棱镜及1/4波片的作用是使测量光束的光路既作发射光路,又作接收光路。
物理实验技术中激光干涉仪操作步骤详解

物理实验技术中激光干涉仪操作步骤详解激光干涉仪是一种常用的物理实验技术,它利用激光的干涉现象来测量光学元件的性能。
本文将详细介绍激光干涉仪的操作步骤,包括调节光路和实施测量等过程。
首先,激光干涉仪的调节光路是关键的一步。
在调节光路之前,我们需要准备好一束稳定、单色的激光器和一些基本的光学元件,例如反射镜、透镜等。
1. 校准光路:首先,将激光器稳定放置在平坦的台面上,并连接好电源。
然后,使用一块平行玻璃或反射镜将激光器的光束分成两束,使其相互平行。
这可以通过调节反射镜的角度来实现。
2. 调整波长:使用光学元件来调整激光器的波长,以匹配干涉仪所使用的光学元件。
这可以通过调节光栅或控制激光器参数等方法来实现。
3. 调整光路长度:在干涉仪中,需要调整光路的长度,使得两束光相互干涉。
这可以通过移动反射镜或调节镜子的位置来实现。
需要注意的是保持两束光的相对位置稳定,以避免干涉产生失真。
完成光路的调节后,我们可以开始实施测量。
激光干涉仪的主要测量对象包括薄膜膜层、透镜曲率、表面形貌等。
1. 薄膜测量:将待测薄膜放置在干涉仪的光路中,通过测量光的干涉条纹来确定薄膜的厚度或者折射率。
这可以通过调节光路长度或者改变薄膜的位置来实现。
2. 透镜曲率测量:将待测透镜放置在光路中,通过测量光的干涉条纹来确定透镜的曲率半径。
这可以通过调节光路长度或者改变透镜的位置来实现。
3. 表面形貌测量:通过测量光的干涉条纹来确定物体表面的形貌。
这可以通过调节光路长度、移动探测器位置或者改变样品的位置来实现。
在进行测量过程中,我们需要注意以下几点:1. 确保实验环境的稳定性,如避免外界震动和温度变化对实验的影响。
2. 实施测量时应使用合适的探测器,如光电二极管或相机。
探测器的位置应在干涉条纹中心,以保证测量的准确性。
3. 进行实验时要小心避免对光学元件的损坏,尤其是透镜和反射镜,避免触摸它们的表面。
通过以上步骤,我们可以成功地进行激光干涉仪的操作和测量。
激光干涉仪测量距离和表面精度

激光干涉仪测量距离和表面精度激光干涉仪是一种常用的精密测量仪器,可用于测量距离和表面精度。
通过利用光波的干涉现象,激光干涉仪能够实现高精度的测量。
本文将介绍激光干涉仪的原理、测量距离和表面精度的方法,以及激光干涉仪在不同领域中的应用。
激光干涉仪是基于光波的干涉现象进行测量的仪器。
光波的干涉是指两束或多束光波相遇时发生的波的叠加现象。
激光干涉仪通过将激光分成两束,一束作为参考光束,一束照射到待测物体上反射回来作为待测光束,再将两束光波进行干涉,通过测量干涉条纹的变化来获得距离和表面精度的信息。
激光干涉仪的测量距离的原理基于光波的干涉,利用干涉条纹的变化来获得物体到仪器的距离。
当两束光波相遇时,它们会发生干涉,干涉条纹的间距和形态会随着物体到仪器的距离的变化而改变。
通过测量干涉条纹的形态和间距的变化,激光干涉仪可以计算出物体到仪器的距离。
这种测量方法具有高精度和高分辨率的特点,适用于微小距离的测量。
激光干涉仪的测量表面精度的方法基于光波的干涉,利用干涉条纹的形态和间距来获得表面精度的信息。
当光波照射到物体表面时,由于表面的形态和光的反射特性的影响,干涉条纹的形态和间距会发生变化。
通过测量干涉条纹的形态和间距的变化,激光干涉仪可以计算出物体表面的精度。
这种测量方法具有高精度和高分辨率的特点,适用于表面平整度和粗糙度的测量。
激光干涉仪广泛应用于多个领域,如制造业、科学研究和地质勘探等。
在制造业中,激光干涉仪可用于检测零件的尺寸和形状,以及测量零件表面的精度。
在科学研究中,激光干涉仪可用于研究光学现象、材料的性质和微小物体的运动。
在地质勘探中,激光干涉仪可用于测量地表的高程和形态,以及探测地下的岩层和地下水位。
总结一下,激光干涉仪是一种常用的精密测量仪器,可用于测量距离和表面精度。
通过利用光波的干涉现象,激光干涉仪能够实现高精度的测量。
通过测量干涉条纹的形态和间距的变化,激光干涉仪可以计算出物体到仪器的距离和物体表面的精度。
外差干涉测长的原理及应用

外差干涉测长的原理及应用1. 原理介绍外差干涉测长是一种基于干涉原理的测量方法,主要用于测量物体的长度、距离和形状等参数。
它利用光的干涉现象,通过两束光的相干干涉而产生干涉图像,从而可以得到被测物体的参数。
2. 工作原理外差干涉测长的基本原理是将激光光束分成两束,其中一束为参考光束,另一束为测量光束。
这两束光束分别经过分束器和反射镜,然后分别被引入被测物体和参考光程中。
在被测物体上,测量光束经过反射后与参考光束再次叠加,形成干涉图像。
通过干涉图像的变化,可以计算出被测物体的长度、距离和形状等参数。
3. 应用场景外差干涉测长广泛应用于工业制造、科学研究和生物医学等领域。
以下列举了一些常见的应用场景:•工业制造:外差干涉测长可以用于测量精密机械零件的尺寸,如轴承孔的直径、齿轮的模数等。
这种测量方法高精度、非接触,能够满足工业制造对精度要求较高的应用。
•科学研究:外差干涉测长在科学研究中也有很大的应用,例如在材料科学中,可以用于测量材料的膨胀系数、压力应力等参数的变化。
在物理学中,可以用于测量光源的波长稳定性以及光谱的测量等。
•生物医学:外差干涉测长在生物医学领域也有着广泛的应用,例如在眼科领域中,可以用于测量角膜的厚度和形状,以及眼底血管的直径和血流速度等。
在生物材料研究中,可以用于测量细胞、纤维和薄膜的尺寸变化。
4. 优点和挑战外差干涉测长具有以下优点:•高精度:外差干涉测长能够实现纳米级的测量精度,适用于对精度要求较高的应用。
•非接触:外差干涉测长不需要物体与测量仪器直接接触,减少了对被测物体的损伤和干扰。
•宽测量范围:外差干涉测长可根据需要选择不同的波长和光路配置,适用于不同尺寸和形状的物体测量。
然而,外差干涉测长也面临一些挑战:•环境干扰:外差干涉测长对环境的振动、温度、湿度等因素十分敏感,需要在稳定的环境条件下进行测量。
•复杂的仪器设备:外差干涉测长需要精密的光学元件和仪器设备,以及精准的光源和探测器,增加了设备的复杂性和成本。
多光束激光外差超高精度测量金属线胀系数方法

多光束激光外差超高精度测量金属线胀系数方法一、多光束激光外差干涉测量原理多光束激光外差干涉测量是一种基于激光干涉原理的测量方法。
它利用激光束通过分束器分成多个光束,分别照射在待测物体上,并通过干涉现象获取物体表面形态的信息。
在纵向上,通过改变其中一个光束的光程差,可以使测量结果更加精确。
二、多光束激光外差超高精度测量金属线胀系数方法步骤1.装置设计和搭建:设计搭建多光束激光外差干涉测量装置,包括激光器、分束器、反射镜、接收器等。
确保各个光束照射到待测金属线上。
2.预热金属线:对金属线进行预热处理,使其温度达到测试温度。
此步骤可以通过控制电流通过金属线来实现。
3.建立干涉图像:通过激光器照射到金属线上,并通过反射到接收器上形成干涉图像。
干涉图像中的干涉条纹反映了金属线的形变情况,可以通过图像处理方法获取干涉条纹的形态。
4.观察干涉条纹的变化情况:随着金属线温度的升高,干涉条纹的形态会发生变化。
通过观察变化情况可以推算出金属线的长度变化,从而得到金属线的热膨胀系数。
5.测量数据分析:将观察到的干涉条纹的变化情况记录下来,并进行图像处理分析。
通过图像处理方法可以得到金属线的长度变化情况,进而得到金属线的热膨胀系数。
三、多光束激光外差超高精度测量金属线胀系数方法优势1.高精度:多光束激光外差干涉测量可以提供较高的测量精度,可达到亚微米级别。
2.高稳定性:通过多光束干涉技术,可以减小外界干扰对测量结果的影响,使得测量结果更加稳定可靠。
3.高实时性:该方法可以实时监测金属线的温度变化,并得到相应的胀系数,可以及时调整工艺和温度控制。
四、多光束激光外差超高精度测量金属线胀系数的应用多光束激光外差超高精度测量金属线胀系数方法可以应用于金属线材的热膨胀性能测量,可广泛应用于制造业、航空航天、材料科学等领域。
例如,在航空航天工程中,该方法可以用于对导航系统中的精密仪器设备的热膨胀系数进行测量,以确保设备工作在合适的温度条件下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、举例描述外差激光干涉仪的测量方法。
光外差干涉是指两只相干光束的光波频率产生一个小的频率差,引起干涉场中干涉条纹的不断扫描,经光电探测器将干涉场中的光信号转换为电信号,由电路和计算机检出干涉场的相位差。
特点:克服单频干涉仪的漂移问题;细分变得容易; 提高了抗干扰性能。
原理:
在干涉场中,放入两个探测器,一个放在基准点(x0, y0)处,称之为基准探测器,其输出基准信号i(x0, y0, t),另一个放在干涉场某探测点(xi, yi)处,称之为扫描探测器,输出信号为i(xi, yi, t) 。
将两信号相比,测出信号的过零时间差Δt ,便可知道二者的光学位相差
)
/1/(π2),(),(00v t t y x φy x φ∆∆=∆∆=-ω
由控制系统控制扫描探测器对整个干涉场扫描,就可以测出干涉场各点的位相差。
设测试光路和参考光路的光波频率分别为ω和ω+Δω,则干涉场的瞬时光强为
[]{}
[][]{}[][]
)(cos )()2(cos )(2cos 121)(2cos 121),(cos )cos(),,(2
22
x,y t-φE E x,y φt E E x,y φt E t E y x φt E t E t y x I t r t r t r t r ωωωωωωωωω∆++∆+++++∆++=
++∆+=
由于光电探测器的频率响应范围远远低于光频ω,它不能跟随光频变化,所以式中含有2ω的交变项对探测器的输出响应无贡献。
)]
,(cos[2/2/),,(22y x φt E E E E t y x i t r t r -∆++∝ω
干涉场中某点(x ,y )处光强以低频Δω随时间呈余弦变化 (1)激光外差干涉测长
数据处理
双频激光器
1/4波片
准直系统
可动角隅棱镜
检偏器
v
探测器前置
放大器
f2
f1
f1±Δf
f2f1
f2f1±Δf
图4-33
双频激光器外差干涉测长原理图
偏振分光镜
f2-f1
f2-(f1±Δf )
⎰⎰⎰
⎰∆±
=±=∆t
t
t
t t f N
L L t v t v
t f 0
00
d 2
2
2
d 2
d 2d λ
λ
λ
λλ
所以==
=由于
(2)激光外差干涉测量微振动
方解石棱镜及1/4波片的作用是使测量光束的光路既作发射光路,又作接收光路。
通过o 光和e 光在方解石中光路的不同,起到“光学定向耦合”作用,使发射与接收的光无损失地通过方解石棱镜(不考虑光吸收损失)。
∆f f f f f f f D D
=+-±=00s s ()
其中频率fs 信号由声光调制器的信号源直接输入混频器与拍频信号混频,把多普勒频移fD 解调出来。
(3)激光外差干涉在精密定位中的应用
B
A
f 1 f 2
f 1±2Δf f 2
f 1
f 1±Δ f
f 1±2Δ f f 1±Δ f
f 1±Δ f
f 2
1/4波片
B
A
1/4波片
该干涉仪系统有以下两个特点:
(1)仪器分辨力由于多普勒频差增加一倍而增加一倍;
(2)平面反射镜相对于光轴的任何偏斜只会使反射回的光束偏移,而不会偏斜。
二、分析说明双频激光干涉测长系统的原理及电路结构。
原理:双频激光干涉仪的光路如图6所示,其中氦氖激光器上沿轴向施加以磁场,由于塞曼效应激光被分裂成有一定频率差的左旋偏振光1f 和右旋偏振光2f (常用的双频激光干涉仪把这一频差设计成MHz 5.1)。
通过1/4波片后,1f 和2f 变成相互垂直的线偏振光
21νν和,又被分束镜1B 分成两束,其中一束反射到主截面与相互垂直的两线偏振光偏振方
向成45°的检偏器1P ,产生拍频信号。
光电探测器1D 对两倍光频的和频信号没有响应,接收到的只是频率为ν∆的参考差频信号。
另一束光透过分束镜1B 向前传播进入偏振分光棱镜2B 后,偏振方向垂直纸面的1ν被完全反射,偏振方向在纸面内的2ν完全透射。
再经由参考臂反射镜1M 和测量臂反射镜2M 反射回来合束,通过类似检偏器1P 的检偏器2P ,产生的拍频信号被光电探测器2D 接收。
由于测量反射镜2M 以速度V 运动,光的多普勒效应使由2M 返回光的频率产生多普勒频移D ν∆±(正负号取决于测量反射镜的运动方向),2D 接收到的测量信号频率为D νν∆±∆。
将测量信号与参考信号进行同步相减便得到多普勒频移
D ν∆±,多普勒频移对测量时间积分,也就是说进行累计计数就可以测出测量反射镜的位
移量。
测量反射镜运动产生的多普勒频移可以表示为 λ
ννV
c V D 22==
∆ (5) 式中c 为光速,λ为光波长。
若测量所用时间为t ,则测量镜的位移量L 可由下式计算
N dt dt Vdt L t t
t
D 2
22
λ
νλ
νλ
=
∆=
∆==⎰⎰
⎰ (6)
式中N 为记录下来的累计脉冲数。
B 1
ν1
激光器
M 1
M 2
B 2
P 2
D 2
P 1D 1
V
ν2
ν1
1/4波片
ν1
ν2
ν2±Δν
ν1-ν2
ν1-(ν2±Δν)
ν2
图6双频激光干涉仪光路图
电路结构:激光干涉测长系统包括迈克尔逊干涉仪,激光光源,可移动平台,光电显微镜,光电计数器和显示记录装置。
光光源一般是采用单模的He-Ne 气体激光器,输出的是波长为632.8纳米的红光。
可移动平台携带着迈克尔逊干涉仪的一块反射镜和待测物体一起沿入射光方向平移,由于它的平移,使干涉仪中的干涉条纹移动。
光电显微镜的作用是对准待测物体,分别给出起始信号和终止信号,其瞄准精度对测量系统的总体精度有很大影响。
光电计数器则对干涉条纹的移动进行计数。
显示和记录装置是测量结果的输出设备,显示和记录光电计数器中记下的干涉条纹移动的个数及与之对应的长度,可以用专用计算机或也可以用通用的PC 机替代。
三、简单说明外差干涉和准外差干涉的区别。
外差干涉能获得干涉场中每点的相位值,需要频移器等特殊设备,它是逐点扫描,不能用于散斑干涉计量中。
准外差干涉引入相位移动,人为改变两干涉波面的相对相位,比较干涉场中同一点在不同相移量下光强的变化来求解该点的相位。
故两者只是相位的改变与探测方法不同。