微囊与微球制备技术共16页文档
微囊与微球的制备技术

第三节 微囊化技术 单凝聚法 复凝聚法 溶剂-非溶剂法 改变温度法
相分离
液中干燥法(乳状液,萃取过程) 喷雾干燥(物理机械法) 乳化缩聚法 缩聚法 界面缩聚法 辐射交联法
第三节 微囊化技术 相分离法:
1、定义
在药物与材料的混合溶液中,加入另一种物 质或不良溶剂,或采用其它适当手段使材料的 溶解度降低,自溶液中产生一个新相 (凝聚 相),这种制备微粒的方法称为相分离法。
比形状更重要的是囊心物的脆性,脆性大的囊心物 会产生粉尘,微囊破裂,包囊不全等问题。 囊心物多孔会增大囊材的用量
囊心物的密度不能太大,易使微囊粘连;不能太小, 会使单剂量的体积太大,不利于服用。
第三节 微囊化技术 缩聚法
本部分所涉及的工艺都由单体或高分子通过聚合反 应产生囊膜或基质,从而制成微囊或微球。 乳化缩聚法 界面缩聚法 辐射交联法
连续干燥法及间歇干燥法中,如所用的材料溶剂亦 能溶解药物,则制得的是微球,否则得到的是微囊, 复乳法制得的是微囊。
第三节 微囊化技术
连续干燥法或间歇干燥法如用水作连续相,不宜制 作水溶性药物的微粒,因微粒中的药物易进入水相而 降低包封率和载药量,可不用水而改用O/O型乳状液。
第三节 微囊化技术 喷雾干燥法
液滴喷雾干燥法可用于固态或液态药物的微囊化,其 工艺是先将囊心物分散在材料的溶液中,再用喷雾法将 此混合物喷入热气流使液滴干燥固化。如囊心物不溶于 囊材溶液,可得到微囊;如能溶解,可得微球。
第三节 微囊化技术 2、对囊心物的要求
囊心物最好为球形,或规则的立方体,柱状体组成 的光滑晶体,容易得到满意的包裹效果。
2、分类
单凝聚法、复凝聚法、溶剂-非溶剂法、改变 温度法
第三节 微囊化技术 3、基本原理
微球与微囊ppt课件

(2)囊材
• 药物分散或被吸附在高分子、聚合物基质中而形成的 微粒分散体系 。
微球
微球与微囊的区别?
• 一个在裸奔 →微球
• 微球从内到外成分都一样,没有包裹; • 微囊是有囊包裹的,囊内有药物,囊可被消化 道分解。
微囊化目的
• • • • • • • ①掩盖药物的不良气味与口味 ②提高药物的稳定性 ③防止药物在胃内失活或减少对胃的刺激性 ④使液态药物固态化便与应用与贮存 ⑤减少复方药物的的配伍变化 ⑥可制备缓释或控释制剂 ⑦使药物浓集于靶区,提高疗效,降低毒副 作用 • ⑧可将活细胞或生物活性物质包裹
微囊化技术研究
• 1980年前主要应用粒径为5μ m~2mm的小丸 →第一代产品 • 1980年后发展了粒径为0.01~10μ m的小丸 →第二代产品
• 近年来主要是纳米级胶体粒子的靶向制剂,即具有 特异的吸收和作用部位的制剂 → 第三代产品
二、微囊和微球的载体材料
• 三类————
• 1。天然高分子囊材
5、液中干燥法
• 从乳状液中除去分散相中的挥发性溶剂以制备微 囊的方法称为液中干燥法,亦称为乳化-溶剂挥发 法 • 例: • 水中干燥法 EC溶于CH2CL2+布洛芬→含有表面 活性剂水中→升温40 0C→过滤洗涤 • 油中干燥法 将丙烯酸树脂溶于丙酮中+布洛芬→ 液体石蜡中→升温35 0C搅拌→过滤洗涤
微球与微囊
一、概述
高分子微球和微囊是近年来尤其受到重 视的精细化学产品,这是因为高分子微 球材料的应用范围非常广泛,几乎涉及 到所有领域,从低价位的涂料到高附加 值的液晶显示器间隔材料、电子器件粘 结剂、生物分离用层析填料、包埋药物 的微囊等。高附加值的微球、微囊产品 对粒径均一性和制备重复性要求非常高, 否则不能满足应用要求。
第四章 微球微囊技术

如用明胶及阿拉伯胶为材料,介质水、明胶、阿拉伯胶 三者的组成与凝聚现象的关系.可由三元相图说明。
复凝聚区 均相溶液区
水稀释发生凝聚
两相分离区
K为复凝聚区,即可形成微囊的低浓度明胶和阿 拉伯胶混合溶液; P为曲线以下两相分离区,两胶溶液不能混溶亦 不能形成微囊; H为曲线以上两胶溶液可混溶形成均相溶液区。 A点代表10%明胶、10%阿拉伯胶和80%水的 混合液,必须加水稀释,沿A→B虚线进入凝 聚区K才能发生凝聚。 相图说明,明胶同阿拉伯胶发生复凝聚时,除p H值为主要条件外,浓度也是重要条件。
常用的囊材:
1.天然高分子 最常用。 (1)明胶:
分酸法明胶(A型)和碱法明胶(B型)。
可根据药物对酸碱性的要求选用A型或B型。用量: 为20~100g/L。 加入10%~20%甘油或丙二醇可改善明胶弹性。 加入低粘度乙基纤维素可减少膜壁细孔。
(2) 阿拉伯胶:
一般常与明胶等量配合使用,作囊材的用量为 20~100g/L,亦可与白蛋白配合作复合材料。
2. 囊壁的溶解 溶解的速率取决于材料的性质、介质的组成、pH值、 体积和温度等。 3. 囊壁的消化降解 当微囊进入体内后,囊壁可受胃蛋白酶或其它酶的消化 降解成为体内的代谢产物 第一阶段:囊壁材料分子量变小,囊材仍保持不溶性,
第一阶段:进一步降解使囊材开始溶解,微囊的外形也 开始变化。 两个阶段都可以提高药物释放的速率。
(6) 壳聚糖
2. 半合成高分子材料
多系纤维素衍生物,其特点是毒性小、粘度大、成盐 后溶解度增大。 (1)羧甲基纤维素盐 属于阴离子型的高分子电解质,
(CMC-Na)常与明胶配合作复合囊材,
(2) 纤维素肽酸酯(邻苯二甲酸醋酸纤维素,CAP),
微囊与微球技术

药物微囊化进程:
近年采用微囊化技术的药物已有30多种,如解 热镇痛药、抗生素、多肽、避孕药、维生素、 抗癌药以及诊断用药等。上市的微囊化商品有 红霉素片、β胡萝卜素片等。
抗癌药微囊经人工化学栓塞提高了治疗效果。
应用影细胞(ghost cell)或重组细胞(如红细胞) 作载体,可使药物的生物相容性得以改善;将 抗原微囊化可使抗体滴度提高。
(二)囊材
用于包裹所需的材料称为囊材(coating material)。 一般要求:①性质稳定;②有适宜的释药速率;
③无毒、无刺激性;④能与药物配伍,不影响药 物的药理作用及含量测定;⑤有一定的强度、弹 性及可塑性,能完全包封囊心物;⑥具有符合要 求的粘度、穿透性、亲水性、溶解性、降解性等 特性。 常用的囊材:
新剂型设计
西安交通大学药学院 药剂教研室 李维凤
第四节 微囊和微球的制备技术
一、概述
微型包囊技术(microencapsulation)简称微囊化, 系利用天然的或合成的高分子材料(称为囊材)作 为囊膜壁壳(membrane wall),将固态药物或液 态药物(称为囊心物)包裹而成药库型微型胶囊, 简称微囊 (microcapsule)。
三、微囊的制备
微囊的制备方法可归纳为物理化学法、 物理机械法和化学法。根据药物、囊材 的性质和微囊的粒径、释放要求以及靶 向性要求,选择不同的要求。
(一)物理化学法
此法亦称相分离法(phase separation)是在芯 料与囊材的混合物中(乳状或混悬状),加入另 一种物质(无机盐或非溶剂或采用其他手段), 用以降低囊材的溶解度,使囊材从溶液中凝聚 出来而沉积在芯料的表面,形成囊膜,囊膜硬 化后,完成微囊化的过程。
2、半合成高分成盐 后溶解度大。
药物制剂新技术微囊与微球的制备技术

1~250μm之间,均属于微米级,又统称微粒(microparticles)。
6
(二)药物微囊化的目的:
1、掩盖药物的不良味道; 2、提高药物稳定性; 3、减少对胃的刺激; 4、减少复方药物的配伍变化; 5、使液态药物固体化; 6、可制备缓释或者控释制7剂; 7、可使药物浓集于靶区; 8、用于生物活性药物包囊。
7
二、囊材与载体材料
微囊或微球的基本组成:包括主药、囊材或载体材料 、附加剂。
囊材:指微囊制备所需要的包裹材料。 载体材料:指微球制备所需要的骨架材料。 附加剂:包括稳定剂、稀释剂、增塑剂以及控制 释放速率的阻滞剂和促进剂8等,主要用于提高微囊或 微球的质量。
8
(一)囊材与载体材料的要求
性质稳定 有适宜的释药速率 无毒、无刺激 能与药物配伍,不影响药物的药理作用及含量测定 有一定的强度及可塑性,9能完全包封囊心物 具有符合要求的黏度、渗透性、亲水性、溶解性等特点
10
1、天然高分子材料
(2) 阿拉伯胶 ❖ 系由糖苷酸及阿拉伯胶的钾、钙、镁盐所组成,一般常与明胶
等量配合使用,也可与白蛋白配合作复合囊材。 ❖ 作为囊材时的用量为20~100g/L。
(3)其它: ❖ 如海藻酸盐、壳聚糖、蛋白类11(人或牛血清白蛋白、玉米蛋白
、鸡蛋白、酪蛋白等)、羟乙淀粉、羧甲淀粉等淀粉衍生物和 葡聚糖及其衍生物。
20
20
(4)成囊的影响因素
2)药物的性质: 药物与明胶要有足够亲和力,使药物 可吸附适量的明胶才能包裹成囊。
3)增塑剂的影响: 加入增塑剂可使制得的明胶微囊具 有良好的可塑性,不粘连、分散性好。山梨醇、聚乙二醇 、丙二醇或甘油是常用的增塑剂。在单凝聚法制备明胶微 囊时加入增塑剂,可减少微囊聚集、降低囊壁厚度。
(完整版)第18章-第四节:微囊与微球

(二)半合成高分子材料
4.纤维醋法酯(CAP): pH>6时溶解可单独使用(30g/L左右) 或与明胶配合
5.羟丙甲纤维素(HPMC): 能溶于冷水成为粘性溶液 不溶于热水,长期贮存稳定
(三)合成高分子材料
1.非生物降解囊材: ①不受pH值影响的囊材有聚酰胺、硅橡胶
等 ②在一定pH条件下溶解的囊材有聚丙烯酸
机
改
交
械
变
联
搅
条
固
拌
件
化
相分离
囊心物
囊材丰 囊材缺 富相
乏相 23
※1.单凝聚法(simple coacervation)
只有一种聚合物产生相分离的现象。 在高分子囊材(如明胶)溶液中加入凝聚 剂以降低高分子材料的溶解度而凝聚成囊的 方法。 凝聚剂:强亲水性电解质(Na2SO4水溶液 等)
强亲水性非电解质(乙醇等)
(一)天然高分子材料
最常用,性质稳定、无毒、成膜性好。 1.明胶:
胶原在酸或碱的条件
Mav=1.5-2.5万(因聚合度下不温和同断而裂异的产)物,
是一种水溶性蛋白合物。 碱法明胶(B型)的等电点:4.7-5.0 加甘油、丙二醇(增塑剂)改变弹性。
(一)天然高分子材料
明胶、阿拉伯胶
天然 海藻酸钠
壳聚糖
蛋白类及其他
羧甲基纤维素钠(CMC-Na)
半合成
纤维醋法酯(CAP) 乙基纤维素(EC)
甲基纤维素(MC)
羟丙甲纤维素(HPMC) 聚酰胺 不受pH影响 硅橡胶
非生物降解 一定pH下溶解 聚丙烯酸树脂、聚乙烯醇
合成
可生物降解
聚乳酸(PLA) 聚酯类 羟基乙酸(PGA) 聚碳酸酯乙交酯丙交酯共聚物(PLGA) 聚氨基酸
微囊的制备课件课件
02
研究高分子材料的合成及其在药物微囊制备中的应用,如聚丙
烯酸树脂、聚乙烯醇等。
多功能性材料
03
探索具有药物释放控制、抗氧化的多功能性材料在微囊制备中
的应用。
制备技术的改进与创新
乳化-溶剂挥发法
优化乳化-溶剂挥发法制备微囊的工艺条件,提高 药物包裹率和载药量。
喷雾干燥法
研究喷雾干燥法制备微囊的工艺参数对药物性能 的影响,提高粒径分布和药物释放性能。
喷雾干燥法简介
喷雾干燥法是一种常用的制备微 囊的技术,通过将液态或半固态 的物料雾化成微小液滴,然后与 热气流接触,使液滴迅速干燥,
形成微囊。
操作流程
将待包埋的蛋白质等生物活性物 质溶解或悬浮于溶剂中,然后通 过高压泵或旋转阀等装置将药液 雾化成微小液滴,与热气流接触
进行干燥。
技术特点
喷雾干燥法制备的微囊具有粒径 分布较窄、包埋率较高、工艺操 作简单等优点。但同时存在溶剂 残留、生产过程中易受污染等缺
微囊制备技术
03
喷雾干燥法
工艺流程
将囊心物与囊材溶液混合,通过喷头喷成小雾滴,在热风中干燥成微囊。
特点
喷雾干燥法制得的微囊产品为固体粉末,稳定性好,生产效率高,适合大规模生 产。但喷雾干燥过程中需要使用大量热风,干燥程度不易控制,囊心物活性可能 受到影响。
喷雾凝结法
工艺流程
将囊心物与凝结剂混合,通过喷头喷成小雾滴,在空气中凝结成微囊。
熔融法与凝聚法
工艺流程
将囊材加热至熔融状态,与囊心物混合 ,冷却固化成微囊;或将囊材溶于溶剂 中,加入囊心物,溶剂挥发后凝聚成微 囊。
VS
特点
熔融法与凝聚法制得的微囊形状完整、粒 径较小。但熔融法需要高温加热,对囊心 物活性可能产生影响;凝聚法中溶剂的使 用量较大,可能对环境产生污染。
微球制备工艺
微球制备工艺-乳化法高分子微球是采用已有的高分子材料,如天然高分子、生物可降解高分子、嵌段高分子材料为载体材料制备微球和微囊。
最常用的制备工艺是乳化-固化法制备的。
微球一般是用O/W或W/O型乳液法制备的实心颗粒称之为微球;用复乳法制备的颗粒一般带有空腔,称之为微囊,两者统称为微球。
乳化-固化法制备高分子微球、生物降解性高分子微球最常用的方法。
制备方法:将高分子材料溶解在有机溶剂或水溶剂中,按照粒径需求和高分子材料的物理化学性质,采用用不同的乳化方法制备成W/O型、O/W型、W/O/W型或O/W/O型乳液,制备乳液时,连续相中需加入乳化剂/稳定剂,使乳液稳定。
然后除去溶剂或物理/化学交联等方法固化得到微球。
微球的形成由成核过程与核成长过程组成,此过程决定微球粒径和粒径分布。
选择合适的制备工艺制备理想的微球。
乳化方法:1、机械搅拌法;2、均质乳化法;3、高压微射流法;4、超声乳化法;5、微孔膜乳化法;6、微流控法。
乳化方法及其制备的乳液特点机械搅拌法最常用的方法,采用搅拌桨将油相和水相混合并将大液滴破损成小液滴,搅拌速度越快获得的液滴越小,一般可以获得几微米至几百微米的液滴。
均质乳化法一种高速搅拌法,通过调节搅拌剪切速度,可获得几十纳米至几微米的微球,但是由于剪切速度高,耗能大并产热,易使对热敏感的API失活。
高压微射流在超高压(310MPa)压力作用下,乳液经过微孔径产生几倍音速的流体,从而达到分散和乳化的目的。
其耗能大并产热,易使对热敏感的API失活。
超声乳化法在超声波能量作用下,油水混合形成乳液。
其产热高,易使对热敏感的API失活,一般需求在容器周围放上冷却装置。
微孔膜乳化法分散相在驱动力下压过膜孔,通过分散相和膜孔之间的界面张力形成均一的液滴,用物理或化学方法固化后可得到均一的微球微流控法通过严格控制两相流动速度来制备粒径可控的液滴,粒径分布系数可达到5%以下。
微流控可实现粒径可控及形貌结构可控,但是现阶段还难以实现大规模制备。
药剂学-微囊与微球的制备
1、界面缩聚法(interface polycondensation)
2、辐射交联法
2020/3/17
微囊
31
二、微囊的制备-化学法
1、界面缩聚法
在分散相与连续相的界面上发生单体的缩聚反应.
例: 水相 1,6-己二胺、碱 有机相 对苯二甲酰氯、氯仿
2020/3/17
微囊
26
液中干燥法
干燥工艺 包含两步
溶剂萃取过程(两液相之间) 溶剂蒸发过程(液相、气相之间)
连续干燥法
干燥方法 分类
2020/3/17
间歇干燥法
复乳法
微囊
适用于O/W、 W/O、O/O型等 乳剂
27
液中干燥法
连续干燥法
将囊材溶解在易挥发的溶剂中
间歇干燥法
将药物溶解或分散在囊材溶液中
基本概念
2
一、微型包囊技术
2、微囊的应用
(1)掩盖药物的不良气味及口味 (2)以提高药物的稳定性 (3)防止药物在胃内失活或减少对胃的刺激性 (4)使液态药物固态化便于应用与贮存 (5)制备缓释或控释制剂 (6)减少复方药物的配伍变化 (7)使药物浓集于靶区,提高疗效,降低毒副作用 (8)可将活细胞或生物活性物质包囊
化学法
界面缩聚法
2020/3/17
辐射交联法 微囊
8
二、微囊的制备-物理化学法
相分离法(phase separation)
在药物与材料的混合溶液中,加入另一种物质或不良 溶剂,或采用其它适当手段使材料的溶解度降低,自溶液 中产生一个新相(凝聚相) 。
2020/3/17
微囊
9
第18章 第四节:微囊与微球
(二)半合成高分子材料
1.羧甲基纤维素钠(CMC-Na): 常与明胶配合作复合囊材(CMC-Na︰明 胶= 2︰1)
2.甲基纤维素(MC): 用 量 为 10-30g/L , 亦 可 与 明 胶 、 CMCNa、聚维酮(PVP)等配合作复合囊材
3.乙基纤维素(EC): 遇强酸易水解,不适宜强酸性药物
使用带相反电荷的两种高分子材料作为复 合囊材,在一定条件下交联且药物凝聚成 囊的方法。 适合于难溶性药物的微囊化。
39
(1)原理
将溶液pH调至明胶的等电点以下使之带 正电荷(pH 4-4.5),阿拉伯胶仍带负电, 由于电荷互相吸引交联成正负离子的络合物, 溶解度降低而凝聚成囊,加水稀释,加甲醛 固化即得。
(二)半合成高分子材料
4.纤维醋法酯(CAP): pH>6时溶解可单独使用(30g/L左右) 或与明胶配合
5.羟丙甲纤维素(HPMC): 能溶于冷水成为粘性溶液 不溶于热水,长期贮存稳定
(三)合成高分子材料
1.非生物降解囊材: ①不受pH值影响的囊材有聚酰胺、硅橡胶
等 ②在一定pH条件下溶解的囊材有聚丙烯酸
常用的凝聚剂有各种醇类和电解质。 a.非电解质作凝聚剂:碳链愈长愈易凝聚; b.电解质作凝聚剂:
阴离子对胶凝起主要作用,强弱次序为: 枸橼酸>酒石酸>硫酸>醋酸>氯化物>硝酸>溴
化物>碘化物 阳离子也有胶凝作用,电荷数高胶凝作用强。 Na2SO4作凝聚剂,明胶溶液都易凝聚与pH无关。
②成囊的pH
不同明胶分子量、不同凝聚剂、成囊的pH不同
用乙基纤维素(EC)为囊材制备。 将地西泮分散在40g/L的EC丙酮溶液中,再于液 状石蜡中分散成O/O型乳状液,加蒸馏水(非溶剂) 使EC凝聚成囊,洗涤、干燥后得EC微囊,其载药较 大,释药较慢。