波动方程
波动方程的推导

波动方程的推导波动方程是描述波动现象的物理方程。
它可以通过将波动现象中的力学原理和波动定义相结合来推导。
假设有一绳子上的波动,考虑绳子上的一小段长度为∆x的振动。
假设这段绳子以垂直方向的位移y(x,t)进行振动,其中x是空间坐标,t是时间坐标。
根据胡克定律,当绳子受到横向力时,它会发生弹性偏离。
假设横向力的大小为T,根据牛顿第二定律,我们可以得到:T = μ∆x (∂²y/∂t²)其中μ是绳子的线密度,∆x是绳子上一小段的长度。
另外,波的传播速度可以表示为v = λf,其中v是波速,λ是波长,f是频率。
我们可以将波速表示为:v = ∆x/∆t其中∆t是绳子上一小段振动的时间。
利用以上相关关系,我们可以对位移函数y(x,t)进行泰勒展开,得到波动方程的推导:∂²y/∂t² = (1/v²) (∂²y/∂x²)代入前面的式子,可以得到:T/μ = (∂²y/∂x²)这就是波动方程的一维形式,也称为一维波动方程。
对于二维或三维的波动现象,可以相应地拓展波动方程。
对于二维情况,我们可以得到:T/μ = (∂²y/∂x²) + (∂²y/∂z²)其中y(x, z, t)描述了二维波浪的形成。
对于三维情况,我们可以得到:T/μ = (∂²y/∂x²) + (∂²y/∂y²) + (∂²y/∂z²)其中y(x, y, z, t)描述了三维空间中的波动现象。
总结起来,通过将胡克定律和波动定义相结合,可以推导出一维、二维或三维波动方程,用于描述波动现象的物理过程。
第四章分离变量法-波动方程

2 l nπ an = ∫ ϕ ( x ) sin xdx = 0 0 l l 2 l nπ bn = ∫0ψ ( x) sin l xdx nπ a
l l 2 2 nπ nπ = xdx + ∫ l (l − x) sin xdx ∫0 x sin nπ a l l 2
2l 2l 2 nπ = sin 2 2 nπ a n π 2 2
A+ B = 0 Ae
−λl
X ''( x) + λ X ( x) = 0
X (0) = 0,
X (l ) = 0
A=B=0
−λl
X =0
+ Be −
=0
2)λ = 0 3)λ > 0
A=0
X ( x) = Ax + B
A= B=0
X =0
方程通解为
X ( x) = A cos λ x + B sin λ x
∂ 2u ∂ 2u = a2 2 , 0 < x < l, t > 0 ∂t 2 ∂x t >0 u (0, t ) = 0, u (l , t ) = 0, ∂u ( x,0) u ( x,0) = ϕ ( x), = ψ ( x), 0 ≤ x ≤ l ∂t u ( x, t ) = X ( x )T (t ) X ′′ + λX = 0 ▪分离变量
而振幅依赖于点x的位置.
ml , m = 0,1,2,⋯ 弦上位于 x = 处的点在振动过程中保持 n
不动称为节点。这种形态的振动称为驻波。
t=t0时:
nπ un ( x, t0 ) = An cos(ωnt0 − θ n ) sin x l
第六章_波动方程

一、波动方程
7.2.3 一维势垒的简单讨论 粒子在I区,具有能量E>0。各区 的势垒如下,求粒子在各区出现 的几率。
0 (0<x<x1) [I区] V=
V2>E (x1<x<x2) [II区]
0 (x>x2) [III区]
一、波动方程 列出此问题的薛定谔方程:
2 d 2u V x u Eu 2 2m dx d 2u 2m 2 V E u 2 dx
此方程比较难解,令 x,
2
2
(1)
mk 2
4
那么
d 2u 2mE mk 2 2 2 2 4 u 0 2 d
(2)
一、波动方程 令括号内第二项的常数部分为1,用λ代替括号内第一项,那么 2化简为:
d 2u 2 u 0, 2 d
波动方程
一、波动方程
第七章 波动方程
波动方程(wave equation)是一种重要的偏微分方程,主要 描述自然界中的各种的波动现象,例如声波,光波和水波。波动方 程抽象自声学,电磁学,和流体力学等领域。
历史上许多科学家,如达朗贝尔、欧拉、丹尼尔²伯努利和拉格朗日等在研 究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。
px i x
所以动量px可以用算符 i 来表示。同理有 x
p y i y
pz i z
一、波动方程
那么
p p p p 2 2 2 x y z 2 2
2 2 2 2 2 x 2 y 2 z 2
波函数两边取对t的偏导
i E , t
第三章波动方程

拉普拉斯算子: 拉普拉斯算子: 1 ∂ 1 ∂ 1 ∂u ∂u ) + (sin α ∇ 2u = 2 ( r 2 r ∂r r ∂α ∂r r ⋅ sin α ∂α ∂u ∂ u ↓← = =0 ∂ α ∂β
2 1 ∂u ∂ 2 u 2 ∂u 2 ∂ u )= 2 + = 2 ( 2r +r 2 r ∂r r ∂r ∂r ∂r
13
3.2 无限大、均匀各向同性介质中的球面波
2、坐标变换和球坐标下球面纵波的传播方程解 、
已知球面纵波传播波动方程如下: 已知球面纵波传播波动方程如下: ∂ 2ϕ − VP2 ∇ 2ϕ = 0 ∂t 2 此式是直角坐标系中的波动方程, 此式是直角坐标系中的波动方程,需转换到球 坐标系中, 坐标系中,即
为了定量地描述微观粒子的状态,量子力学中引入了 为了定量地描述微观粒子的状态, 波函数,并用ψ表示。一般来讲,波函数是空间和时间 波函数, 表示。一般来讲, 的函数,并且是复函数,即ψ=ψ(x,y,z,t)。 的函数,并且是复函数,
7
无限大、 3.1 无限大、均匀各向同性介质中的平面波
一、沿任意方向传播的平面波
如果使 t −
播的波,即向震源方向传播的波,称为聚会波。聚会波只存在于t 播的波,即向震源方向传播的波,称为聚会波。聚会波只存在于t为 负值的情况,这与实际不合,则该波是不存在的。 负值的情况,这与实际不合,则该波是不存在的。
16
因此,上式又可写为: 因此,上式又可写为:
ϕ=
ϕ
1 r ) = c1 ( t − r r VP
10
无限大、均匀各向同性介质中的波动方程的解有两组。 无限大、均匀各向同性介质中的波动方程的解有两组。 第一组解: 第一组解:当 V = V p = ( λ + 2 µ ) / ρ 时,
第2章波动方程

2.齐次方程的初值问题(Cauchy 问题)
考察问题
⎧⎪ ⎨ ⎪⎩
utt
u(
− a2uxx =
x,0) = ϕ (
0,
x)
,
ut
( x,0)
x ∈ \, t > 0,
=ψ ( x), x∈\.
利用齐次波动方程的通解表达式:
(1.1)
u( x, t ) = F ( x − at ) + G ( x + at ) ,
u = F ( x − at ) , a > 0
显然是弦振动方程的解。给 t 以不同的值,就可以看出作一维自由振动的物体在各时刻的相
应位置。在 t = 0 时, u = F ( x ) 对应于初始的振动状态,而 u = F ( x − at ) 作为 ( x, u ) 平
面 上 的 曲 线 是 曲 线 u = F ( x ) 向 右 平 移 了 at 个 单 位 , 所 以 齐 次 弦 振 动 方 程 的 形 如
=
1 2a
⎧∂
⎨ ⎩
∂t
ϕ x+at (ξ )dξ +
x − at
ψ x + at
(ξ
)dξ
⎫ ⎬
.
x − at
⎭
u2 满足非齐次方程的初值问题
4
⎧⎪ ⎨ ⎪⎩
utt
u(
− a2uxx =
x, 0) = 0,
f ut
( (
x, x,
t), 0) =
x∈ 0,
\
, t> x∈
0, \.
为了求解(1.4),首先求解
条件无关。称这个三角形区域为区间 ⎡⎣ x1 , x2 ⎤⎦ 的决定区域。
第一章_波动方程

u ( 3) 2 x 0 y x 2u 2u 2u ( 4) 2 2 2 sin x xy y x
( 5)
2u x
2
2
3u x y
假定有垂直于x轴方向的外力存在,并设其线密度为F(x,t),则 弦段(x, x+Δx)上的外力为:
x x
x
F ( x ,t) dx
它在时间段(t, t+Δt)内的冲量为:
t x
t t x x
F ( x , t ) dx dt
数学物理方程
第一章 波动方程
于是有:
2 2 u ( x , t ) u ( x , t ) [ 2 T F ( x , t )] dx dt 0 2 t x t x t t x x
u T x
x a
k u x a
或
u u 0 x xa
数学物理方程
第一章 波动方程
§1.2 定解条件
同一类物理现象中,各个具体问题又各有其特殊性。边
界条件和初始条件反映了具体问题的特殊环境和历史,即
个性。 初始条件:够用来说明某一具体物理现象初始状态的条件。 边界条件:能够用来说明某一具体物理现象边界上的约束 情况的条件。 其他条件:能够用来说明某一具体物理现象情况的条件。
y
M'
T'
u ( x, t ) sin tan x u ( x dx, t ) sin ' tan ' x
ds
'
T
M
gds
x x dx x
数学物理方程
数理方程第2章波动方程

π
2π sin x,"" l
kπ 2 π 1,cos l x, cos x,""cos l l
π
x,"
是[0, l]上的正交函数列
⎧l , m=n≠0 ⎪ l mπ nπ ⎪2 = cos cos ∫0 l x l xdx ⎨ l m = n = 0 ⎪ ⎪ ⎩0 m≠n
17
例:
2 ⎧ ∂ 2u u ∂ 2 = , t > 0, 0 < x < l a ⎪ ∂t 2 2 ∂x ⎪ ⎪ u (0, t ) = u ( l , t ) = 0, ⎨ ⎪ u ( x , 0) = x ( l − x ), ⎪ 2π x ⎪ u t ( x , 0) = sin l ⎩
kπ X k ( x) = Bk sin x l
所以定解问题的级数形式解为
u ( x, t ) = ∑ X k ( x)Tk (t )
k =1
kπ a kπ a ⎞ kπ ⎛ t + bk sin t ⎟ sin x = ∑ ⎜ ak cos l l ⎠ l k =1 ⎝ ak =Bk Ck ,bk =Bk Dk .
8π at 8π x u ( x, t ) = 3cos sin sin + 5 cos l l l l
π at
πx
23
• 其它边界条件的混合问题
2 ⎧ ∂ 2u u ∂ 2 x ∈ (0, l ), t > 0 ⎪ ∂t 2 = a ∂x 2 , ⎪ ⎪ ⎨u ( x, 0) = ϕ ( x), ut ( x, 0) = ψ ( x), x ∈ [0, l ] ⎪u (0, t ) = u (l , t ) = 0, t≥0 x x ⎪ ⎪ ⎩
波动方程

x at 0 0; 1 x at d x at / 2a; 0 x at 1 2a 1 / 2a; x at 1
%ex602; (p159) 无限长弦波动的解析解(初位移为0, 初速不为0) clear; M=100; N=80; a=1.0; L=10; T1=8; dx=L/M; dt=T1/N; x=-L:dx:L; t=0:dt:T1;[X,T]=meshgrid(x,t); xp=X+a*T; xp(find(xp<=0))=0; xp(find(xp>=1))=1; xm=X-a*T; xm(find(xm<=0))=0; xm(find(xm>=1))=1; S=(xp-xm)/(2*a); figure(1); h=plot(x,S(1,:),'linewidth',3); axis([-L L 0 .6]); set(h,'erasemode','xor'); for k=2:N+1; pause(0.01); set(h,'ydata',S(k,:)); drawnow; end;
2l Bn 2 2 cos3nπ / 7 cos4nπ / 7 nπa An 0;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波动方程
波动方程或称波方程(英语:Wave equation)由麦克斯韦方程组导出的、描述电磁场波动特征的一组微分方程,是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波和水波。
对于一个标量(quantity) 的波动方程的一般形式是:
这里a通常是一个固定常数,也就是波的传播速率(对于空气中的声波大约是330米/秒,参看音速)。
对于弦的振动,这可以有很大的变化范围:在螺旋弹簧上(slinky),它可以慢到1米/秒。
但若a作为波长的函数改变,它应该用
相速度代替:
注意波可能叠加到另外的运动上(例如声波的传播在气流之类的移动媒介中)。
那种情况下,标量u会包含一个马赫因子(对于沿着流运动的波为正,对于反射波为负)。
u = u(x,t),是振幅,在特定位置x和特定时间t的波强度的一个测量。
对于空气中的声波就是局部气压,对于振动弦就使从静止位置的位移。
是相对于位置变量x的拉普拉斯算子。
注意u可能是一个标量或向量。
波动方程抽象自声学,电磁学,和流体力学等领域。
用波动方程来描述杆的振动,包含的信息有:杆的初始位置,杆振动的振幅,频率等等。
波动方程的推导:声学基础上关于声学波动方程的推导,来自理想流体媒质的三个基本方程,运动方程、连续性方程和物态方程(绝热过程)。
而关于流体
力学也有三个方程,分别是质量守恒方程、动量守恒方程(N-S方程),以及能量守恒方程。
事实上,在绝热过程中,小扰动下的流体方程也可以推导出声学方程。
波动方程在经典物理和量子物理里面的意义不一样的,给出波动方程更好分析。
波动方程就是描述波动现象的偏微分方程,它的物理意义就太宽泛了。
不过波动方程一个很重要的性质是传播速度有限(不像热传导方程)。
电磁场的运动方程是波动方程这说明电磁相互作用只能以有限的速度传播(光速c),而没有瞬时的作用(即超距作用)。
这是导致狭义相对论建立的一个重要思想。