函数的单调性课件

合集下载

函数的单调性(PPT课件)

函数的单调性(PPT课件)
3.7 函数的单调性
• 问题: 1.说出函数f(x)在某区间上是增(减) 函数的意义( 从代数及几何图像两方面说 明); • 2.函数f(x)的导数的几何意义是什么?
• 例子:函数的图像如图所示. • 考虑到曲线的切线的斜率就是函数的导 数, • 从图像可以看到: • 在区间(2,+∞)内,切线的斜率为正, 即f′(x) > 0,f(x)为增函数; • 在区间(- ∞ , 2 )内,切线的斜率为 负,即f′(x) < 0,f(x)为减函数.
• 练习:已知函数f(x)=x4+(2-a)x2+2-a,问
• 是否存在实数a,使f(x)在(-∞,-
• 是减函数,且在(-
)上
,0)上是增函数?
练习
• 1函数y=x-ex的增区间为 ,减区间 • • 2.函数y=x+ (k>0)的减区间 • • 3.确定下列函数的单调区间: • (1)y=x3-9x2+24x (2)y=x-x3 • 4.讨论二次函数y=ax2+bx+c(a≠0)的单调区间. • 5判断y=ex+e-x在(0,+∞)上
• 结论:一般地,设函数y=f(x)在某个区间 内可导, • 如果f′(x) > 0 ,则f(x)为增函数; • 如果f′(x) < 0 ,则f(x)为减函数。 • 如果在某个区间内恒有f′(x)=0 ,则f(x)为 常数函数。
2.应用:
• 例1.确定下列函数在哪个区间内是增函 数,哪个区间内是减函数。 • (1)y= x+ x ∈ (0,+∞) • • (2)y=2x3-6x2+7
小结:用导数判定函数单调性的 步骤(特别适合高次函数和复合 函数的单调性)

函数的单调性课件(共17张PPT)

函数的单调性课件(共17张PPT)
如果我们以x表示时间间隔(单位:h),y表示记忆保持量,则 不难看出,图3-7中,y是的函数,记这个函数为y =f(x).
这个函数反映出记忆具有什么规律?你能从中得到什么启发?
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
问题情境:我们知道,“记忆”在我们的学习过程中 扮演着非常重要的角色,因此有关记忆的规律一直都 是人们研究的课題。德国心理学家艾宾浩斯曾经对记 忆保持量进行了系统的实验研究,并给出了类似图37所示的记忆规律.
创设情境,生成问题 在在活初初动中中1,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
△x表示自变量x的增量,△y表示因变量y的增量. 这时,对于属于这个区间上的任意两个不相等的值x1,x2: 这个数是增函数的充要条件是yx >0; 这个数是增函数的充要条件是y <0.
x
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
因此,函数f(x)=3x+2在(- ,+ )上是增函数.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
数学Biblioteka 基础模块(上册)第三章 函数
3.1.3 函数的单调性

2024版《函数的单调性》全市一等奖完整版PPT课件

2024版《函数的单调性》全市一等奖完整版PPT课件

利用单调性证明不等式
1 2
构造函数 根据不等式的特点,构造一个与不等式相关的函 数。
判断函数单调性 通过求导或差分等方法判断所构造函数的单调性。
3
利用单调性证明不等式 根据函数的单调性,结合不等式的性质,证明不 等式成立。
2024/1/29
18
利用单调性解决实际应用问题
要点一
建立数学模型
要点二
判断函数单调性
2024/1/29
21
导数与微分在函数单调性研究中的应用
导数大于零的区间内函数单调 增加,导数小于零的区间内函 数单调减少。
2024/1/29
导数等于零的点为函数的驻点, 需要进一步判断其左右两侧导 数的符号来确定该点的单调性。
微分的概念可以应用于函数单 调性的研究,通过微分可以分 析函数的局部变化率,进而判 断函数的单调性。
14
指数函数与对数函数
对数函数 $y = log_a x$($a > 0, a neq 1$)的单调 性
当 $0 < a < 1$ 时,函数在 $(0, +infty)$ 上单调递减。
当 $a > 1$ 时,函数在 $(0, +infty)$ 上单调递增。
指数函数与对数函数的图像关于直线 $y = x$ 对称,即 互为反函数。
2024/1/29
19
05
函数单调性与其他知识点关联
2024/1/29
20
函数奇偶性与周期性对单调性影响
奇函数在对称区间上的单调性相 同,偶函数在对称区间上的单调
性相反。
周期函数在一个周期内的单调性 与整体单调性一致,可以通过研 究一个周期内的单调性推断整体
的单调性。

函数单调性课件(公开课)

函数单调性课件(公开课)

定义法
总结词
通过函数定义判断单调性
详细描述
在区间内任取两个数$x_{1}$、$x_{2}$,如果$x_{1} < x_{2}$,都有$f(x_{1}) leq f(x_{2})$,则函数在这个区间内单调递增;如果$x_{1} < x_{2}$,都有$f(x_{1}) geq f(x_{2})$,则函数在这个区间内单调递减。
感谢您的观看
03 函数单调性的应用
单调性与最值
总结词
单调性是研究函数最值的重要工 具。
详细描述
单调性决定了函数在某个区间内的 变化趋势,通过单调性可以判断函 数在某个区间内是否取得最值,以 及最值的位置。
举例
对于函数f(x)=x^2,在区间(-∞,0) 上单调递减,因此在该区间上取得 最大值0。
单调性与不等式证明
单调递减函数的图像
在单调递减函数的图像上,随着$x$的增大,$y$的值减小,图像 呈现下降趋势。
单调性转折点
在单调性转折点上,函数的导数由正变负或由负变正,对应的函数 图像上表现为拐点或极值点。
02 判断函数单调性的方法
导数法
总结词
通过求导判断函数单调性
详细描述
求函数的导数,然后分析导数的符号,根据导数的正负判断函数的增减性。如 果导数大于0,则函数在该区间内单调递增;如果导数小于0,则函数在该区间 内单调递减。
总结词
单调性是证明不等式的重要手段。
详细描述
通过比较函数在不同区间的单调性,可以证明一些不等式。例如,如果函数f(x)在区间[a,b]上 单调递增,那么对于任意x1,x2∈[a,b],有f(x1)≤f(x2),从而证明了相应的不等式。
举例
利用函数f(x)=ln(x)的单调递增性质,可以证明ln(x1/x2)≤(x1-x2)/(x1+x2)。

函数的单调性_PPT课件

函数的单调性_PPT课件

同理可得f(x)在(0, a]上是减函数.
当x<0时,由奇函数的性质知函数f(x)
在(-∞, a]上是增函数,在[ ,a0)上是 减函数.
综上,函数f(x)在[ a ,0),(0, a]
上是减函数,在(-∞, ]a ,[ ,a+∞)上是增 函数.
18
【评注】研究函数的单调性一般有两种方 法,即定义法和导数法.定义法是基础,掌握定 义法的关键是作差(f(x2)-f(x1)),运算 的结果可以判断正、负.本题判断正、负的依据 是代数式“x1x2-a”,处理这个代数式的符号是 一个难点,要有一定的数学功底作基础.把x1、 x2看成自变量,则转化为判断“x2-a”的符号, 于是转化为判断“x ”的 符a 号,自然过渡 到x= 是函数a单调区间的分界点.
0(x [2, ,
3a 0
))
解得-4<a≤4.
所以实数a的取值范围是(-4,4].
28
【评注】利用函数单调性讨论参数的取 值范围是高考试题考查能力的知识结合点, 一般要弄清三个环节:(1)考虑函数的定义 域,保证研究过程有意义.本题中,不能忽视 u=x2-ax+3a>0;(2)保证常见函数的单调区间 与题目给出的单调区间的同一性.本题中, [ a ,+∞)上是单调增区间与[2,+∞)一致; (32)注意防止扩大参数的取值范围,本题中, u(2)>0.
1 2
.
33
题型5 抽象函数的单调性
已知函数f(x)的定义域为
(0,
+∞),当x>1时,f(x)>0,且对于任意的正
数x,y都有f(xy)=f(x)+f(y).
(1)证明:函数f(x)在定义域上是增函 数;

函数的基本性质ppt课件

函数的基本性质ppt课件
答案 [-2,+∞)
►单调性的两个易错点:单调性;单调区间.
(2)函数的单调递增(减)区间有多个时,不能用并集表示, 可以用逗号或“和”。
例如 函数 f(x)=x+1x的单调递增区间为________.
解析 由f(x)图象易知递增区间为(-∞,-1],[1,+∞). 答案 (-∞,-1],[1,+∞)
变式训练:
已知奇函数f (x)的定义域为- 2,2,且在区间 - 2,0上递减,则满足f (1 m) f (1 m2) 0的 实数m的取值范围是-1,1
题型五、函数的周期性解题方略
1.有关函数周期性的常用结论 (1)若 f(x+a)=f(x-a),则函数的周期为 2|a|; (2)若 f(x+a)=-f(x),则函数的周期为 2|a|; (3)若 f(x+a)=f(1x),则函数的周期为 2|a|; (4)若 f(x+a)=-f(1x),则函数的周期为 2|a|.
叫做f(x)的最小正周期.
题型归纳
题型一 判断函数的单调性 判断函数的单调性或求单调区间的方法 (1)利用已知函数的单调性. (2)定义法:先求定义域,再利用单调性定义.
(3) 图 象 法 : 如 果 f(x) 是 以 图 象 形 式 给 出 的 , 或 者 f(x)的图象易作出,可由图象的直观性写出它的单
域为[a-1,2a],则a=________,b=________.
解析 由定义域关于原点对称得 a-1+2a=0,解得 a=13,即
f(x)=13x2+bx+b+1,又 f(x)为偶函数,由 f(-x)=f(x)得 b=0.
答案
1 3
0
(2)若函数 f(x)为奇函数且在原点有意义,则 f(0)=0
[点评] 解题(1)的关键是会判断复合函数的单调性;解题(2) 的关键是利用奇偶性和单调性的性质画出草图.

函数的单调性ppt课件

函数的单调性ppt课件
应用实例
THANKS
感谢观看
定义法
通过求函数的导数来判断函数的单调性。如果函数的导数大于0,则函数在该区间内单调递增;如果函数的导数小于0,则函数在该区间内单调递减。
导数法
03
单调性在解决函数的零点问题中也有着重要的应用。通过判断函数的单调性,可以确定函数的零点所在的区间,进而求出函数的零点。
01
单调性在解决不等式问题中有着广泛的应用。通过判断函数的单调性,可以确定不等式的解集或解的范围。
成本效益分析
利用单调性,可以分析企业生产成本与收益之间的关系,制定合理的经营策略。
风险评估
在金融学中,单调性可用于评估投资风险,例如股票价格的变化趋势。
03
02
01
单调性与其他数学概念的关系
04
CATALOGUE
单调性与导数之间存在密切的联系,导数的符号决定了函数的增减性。
单调性是指函数在某个区间内的变化趋势,而导数则是函数在某一点的切线斜率。如果函数在某个区间内单调递增,则其导数在该区间内大于等于零;如果函数在某个区间内单调递减,则其导数在该区间内小于等于零。因此,通过求函数的导数,可以判断函数的单调性。
安静
一度1
01
2
02
on on
03
asiest s掏燕 credit, members on,
切实实地 金字,
on thebbbb斯特 to , therefore, ,2 core on鉴于后者 on, core yes on
,
, on the, core, credit. on buried.,,xe.
函数的单调性可以通过函数的导数来判断。如果函数的导数大于0,则函数在该区间内单调递增;如果函数的导数小于0,则函数在该区间内单调递减。

5.3.1函数的单调性(第一课时)课件(人教版)

5.3.1函数的单调性(第一课时)课件(人教版)

利用导数判断含参函数的单调性

2:函数
f
(
x
)
1 = ax
2-(
a+1)
x
+lnx
,a>0,试讨论函数
f(
x
)
的单调性.
2
解:函数的定义域为(0,+∞),
1 ax2-(a+1)x+1 (ax-1)(x-1)
f′(x)=ax-(a+1)+ =


x
x
x
1
1
1
1,
①当 0<a<1 时, >1,∴x∈(0,1)和( ,+∞)时,f′(x)>0;x∈ a 时,f′(x)<0,
a
a
1
1
0,
,1
∴函数 f(x)在 a 和(1,+∞)上单调递增,在 a 上单调递减,
利用导数判断含参函数的单调性
综上所述,
1
1
,+∞
1,
当 0<a<1 时,函数 f(x)在(0,1)和 a
上单调递增,在 a 上单调递减;
当 a=1 时,函数 f(x)在(0,+∞)上单调递增;
1
1
0,
,1
当 a>1 时,函数 f(x)在 a 和(1,+∞)上单调递增,在 a 上单调递减.
RART 02
函数的单调性与导数
函数的单调性
思考:视察下面一些函数的图象,探讨函数的单调性与导数的正负的关系.
y y=x
O
x
(1)
y
y=x2
O
x
(2)
y
y=x3
O
x
y y=x-1
O
x
(3)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则 y f (x) 是递增的.
(3) 反比例函数 f (x) 1 的单调递减区间是 x
(, 0) U(0, ) .
例题 判断并证明函数 f (x) 0.001x 1的单调性.
练习 证明函数 f (x) x 1 (x 0) 的单调性:
x
(1)在 (0,1) 上递减; (2)在 (1, ) 上递增.
思考
物理
k
0)
告诉我们,对于一定量的气体,当其体积 V 减
小时,压强 p 将增大.试用函数的单调性证明.
课堂小结 通过本节课的学习,你的主要收获有
哪些?
关键词: 三种语言,证明方法, 数学思想,情感体验,等.
课堂作业
(1)第38页 习题2-3 A组:3,5
(2)判断并证明函数 f (x) x 1 在 (, 0)
设函数的定义域为 I ,区间 D I . 在区间
D 上,若函数的图象(从左向右)总是上升的, 即 y随x的增大而增大,则称函数在区间 D 上 是递增的,区间 D 称为函数的单调增区间;
问题2 (1)下图是函数 y f (x)的图象,它 在定义域R上是递增的吗?
f (x) 0.001x 1
(2)函数 f (x) x 1 在区间(0, +) 上有何
能保证函数 y f (x) 在区间[a,b]上递增吗?
回顾 用“任意”代替一一验证
即 若任意 a A ,都有a B ,则 A B .
问题4 如何用数学语言精确刻画函数 y f (x) 在区间 D 上递增呢?
问题5 请你试着用数学语言定义函数 y f (x) 在区间 D 上是递减的.
实例 科考队对沙漠气候进行科学考察,下图 是某天气温随时间的变化曲线. 请你根据曲线 图说说气温的变化情况?
函数的单调性
问题1 函数是描述事物变化规律的数学模型. 如果清楚了函数的变化规律,那么就基本上 掌握了相应事物的变化规律. 在事物变化过 程中,保持不变的特征就是这个事物的性质.
观察下列函数图象,请你说说这些函数 有什么变化趋势?
单调性?
x
问题3 (1)如何用数学符号描述函数图象的 “上升”特征,即“y随x的增大而增大” ?
例如 函数 f (x) x2 在区间 [0, )上递增的.
动画演示“y随x的增大而增大”.
(4)已知 a x1 x2 x3 x4 b ,
若有 f (a) f (x1) f (x2 ) f (x3) f (x4 ) f (b) .
上的单调性.
x
探究题 向一杯水中加一定量的糖,糖加得越多
糖水越甜.请你运用所学的数学知识解释这 一现象.
判断题 你认为下列说法是否正确,请说明理 由(举例或者画图).
(1) 设函数 y f (x) 的定义域为 [a, ) ,若对 任意 x a ,都有 f (x) f (a) ,则 y f (x) 在 区间 [a, ) 上递增.
(2) 设函数 y f (x) 的定义域为R,若对任意
x1, x2 (a, ),且 x1 x2 ,都有 f (x1) f (x2 ),
相关文档
最新文档