数列的综合应用PPT课件
合集下载
[精]高三第一轮复习全套课件3数列:数列的综合应用
![[精]高三第一轮复习全套课件3数列:数列的综合应用](https://img.taocdn.com/s3/m/3eccd40a4a7302768e993947.png)
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
证明:①根据 S n a n
a 1 , ( n 1) 得 an=a+(n─1) 2b, S n S n 1 , ( n 2 )
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
例 6 数列{an}的前 n 项和 Sn=na+(n─1)nb,(n=1,2,…),a,b 是常数,且 b≠0, ①求证{an}是等差数列; ②求证以(an,Sn/n─1)为坐标的点 Pn 都落在同一直线上,并求出直线方程; ③设 a=1,b=1/2,C 是以(r,r)为圆心,r 为半径的圆(r>0),求使得点 P1,P2,P3 都落 在圆外的 r 的取值范围
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
解:①依题意,由{an}是等差数列,有 ar+ar+2=2ar+1 (r∈N),即 x=─1 时,方程 成立,因此方程恒有实数根 x=─1; ②设公差为 d(化归思想),先解出方程的另一根 mr=─ar+2/ar, ∴ 1/(mr+1)=ar/(ar─ar+2)=─ar/(2d), ∴ 1/(mr+1+1)─1/(mr+1)= 〔─ar+1/(2d)〕─〔─ar/(2d)〕=─1/2, ∴ {1/(mr+1)}是等差数列
∴{an}是等差数列,首项为 a,公比为 2b
②由 x=an=a+(n─1)2b, y=Sn/n─1=a+(n─1)b 两式中消去 n,得:x─2y+a─2=0, (另外算斜率也是一种办法)
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
证明:①根据 S n a n
a 1 , ( n 1) 得 an=a+(n─1) 2b, S n S n 1 , ( n 2 )
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
例 6 数列{an}的前 n 项和 Sn=na+(n─1)nb,(n=1,2,…),a,b 是常数,且 b≠0, ①求证{an}是等差数列; ②求证以(an,Sn/n─1)为坐标的点 Pn 都落在同一直线上,并求出直线方程; ③设 a=1,b=1/2,C 是以(r,r)为圆心,r 为半径的圆(r>0),求使得点 P1,P2,P3 都落 在圆外的 r 的取值范围
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
解:①依题意,由{an}是等差数列,有 ar+ar+2=2ar+1 (r∈N),即 x=─1 时,方程 成立,因此方程恒有实数根 x=─1; ②设公差为 d(化归思想),先解出方程的另一根 mr=─ar+2/ar, ∴ 1/(mr+1)=ar/(ar─ar+2)=─ar/(2d), ∴ 1/(mr+1+1)─1/(mr+1)= 〔─ar+1/(2d)〕─〔─ar/(2d)〕=─1/2, ∴ {1/(mr+1)}是等差数列
∴{an}是等差数列,首项为 a,公比为 2b
②由 x=an=a+(n─1)2b, y=Sn/n─1=a+(n─1)b 两式中消去 n,得:x─2y+a─2=0, (另外算斜率也是一种办法)
新高考一轮复习人教A版专题三数列课件(36张)

则数列{an+bn}是首项为 1,公比为12的等比数列; 由①与②相减得 4(an+1-bn+1)=4(an-bn)+8, 即(an+1-bn+1)-(an-bn)=2(其中 n∈N*), 又 a1-b1=1-0=1,则数列{an-bn}是以 1 为首项,
以 2 为公差的等差数列.
(2)解:由(1)知,an+bn=1×12n-1(其中 n∈N*), ③ an-bn=1+(n-1)×2=2n-1(其中 n∈N*), ④ ③+④得 an=1×12n-21+2n-1=21n+n-21,(n∈N*), 即 bn=12n-1-an=12n-n+12,(n∈N*).
[例 2]在①2Sn=3n+1-3,②an+1=2an+3,a1=1 这两 个条件中任选一个,补充在下列问题中并解答.
设数列{an}的前 n 项和为 Sn,若________,bn=2na-n 6, 求数列{bn}的最大值.
解:若选择条件①,∵2Sn=3n+1-3, ∴2Sn+1=3n+2-3, 则 2Sn+1-2Sn=3n+2-3n+1,得 2an+1=3·3n+1-3n+1= 2×3n+1,则 an+1=3n+1,an=3n(n≥2), 故当 n=1 时,2S1=31+1-3 即 a1=S1=3,满足 an= 3n,∴an=3n,bn=2na-n 6=2n3-n 6. 令 2n-6>0,得 n>3,bn>0,令 2n-6<0,又 n∈N*, ∴0<n<3,bn<0.
①-②得34
n k 1
c
2k=41+422+423+…+42n-24nn-+11,
∴
n k 1
c
2k =
5 9
-
6n+5 9×4n
,
因
此
以 2 为公差的等差数列.
(2)解:由(1)知,an+bn=1×12n-1(其中 n∈N*), ③ an-bn=1+(n-1)×2=2n-1(其中 n∈N*), ④ ③+④得 an=1×12n-21+2n-1=21n+n-21,(n∈N*), 即 bn=12n-1-an=12n-n+12,(n∈N*).
[例 2]在①2Sn=3n+1-3,②an+1=2an+3,a1=1 这两 个条件中任选一个,补充在下列问题中并解答.
设数列{an}的前 n 项和为 Sn,若________,bn=2na-n 6, 求数列{bn}的最大值.
解:若选择条件①,∵2Sn=3n+1-3, ∴2Sn+1=3n+2-3, 则 2Sn+1-2Sn=3n+2-3n+1,得 2an+1=3·3n+1-3n+1= 2×3n+1,则 an+1=3n+1,an=3n(n≥2), 故当 n=1 时,2S1=31+1-3 即 a1=S1=3,满足 an= 3n,∴an=3n,bn=2na-n 6=2n3-n 6. 令 2n-6>0,得 n>3,bn>0,令 2n-6<0,又 n∈N*, ∴0<n<3,bn<0.
①-②得34
n k 1
c
2k=41+422+423+…+42n-24nn-+11,
∴
n k 1
c
2k =
5 9
-
6n+5 9×4n
,
因
此
第三章 第五节 数列的综合应用

首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
下一页
末 页
首 页
上一页
高考数学一轮复习 第六章 第5讲 数列的综合应用配套课件 理 新人教A版

考点自测
1.若数列{an}为等比数列,则下面四个命题:
①{a2n}是等比数列; ②{a2n}是等比数列; ③a1n是等比数列; ④{lg|an|}是等比数列.其中正确的个数是________.
答案 3
2.(2012·南京一模)若数列{an}满足:lg an+1=1+lg an(n∈N*), a1+a2+a3=10,则lg(a4+a5+a6)的值为________.
答案 (-∞,7]
5.(2012·盐城第一学期摸底考试)设等差数列{an}满足:公差 d∈N*,an∈N*,且{an}中任意两项之和也是该数列中的 一项.若a1=35,则d的所有可能取值之和为________.
解析 由题意知,an=35+(n-1)d.对数列{an}中的任意两 项ar,as其和为ar+as=35+35+(r+s-2)d,设at=35+(t -1)d,则35+(r+s-2)d=(t-1)d,即35=(t-r-s+1)d. 因为r,s,t,d∈N*,所以35是d的整数倍,即d所有可能 取值为1,3,9,27,81,243,和为364. 答案 364
∴{an}是以 a4 为首项,a2 为公比的等比数列.
(2)解 bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2. 当 a= 2时,bn=(2n+2)( 2)2n+2=(n+1)2n+2. Sn=2·23+3·24+4·25+…+(n+1)·2n+2,① 2Sn=2·24+3·25+4·26+…+n·2n+2+(n+1)·2n+3,② ①-②得 -Sn=2·23+24+25+…+2n+2-(n+1)·2n+3 =16+2411--22n-1-(n+1)·2n+3 =16+2n+3-24-n·2n+3-2n+3=-n·2n+3. ∴Sn=n·2n+3.
数列求和及综合应用中小学PPT教学课件

例题:冲刺强化训练(14)T12
前两小问略 下面主要研究第(3)问
第三部分:数列与其他知识的交汇综合
1
1 问1:能否相消?
Cn
2
3n1
1
3n
1
问2:是否需
要相消?
将Tn表示出来并不困难
解题目标?
Tn C1 C2 Cn
2n
1 32
1
1 30
1
1 33
1
1 32
1
1 3n 1
1 3n1 1
bn Sn Sn1(n 2)"
可化简得 2S 2Sn1 1 Sn • Sn1
1 11
Sn Sn1 2
Sn 与bn
关系?
第二部分:基本数列之间的综合
思路2: 由 Sn 进一步求 bn
1 n时需1 要注意什么?
1(n 1)
bn
2 n(n 1)
(n
2)
第二部分:基本数列之间的综合
第一课 文化与社会
画卷
“巨幅画轴” “巨幅画轴”
水墨画
海上丝绸之路
孔子三千弟子
活字印刷术
礼 乐
礼乐
太极
刘欢和莎拉.布莱曼唱起了《我和你》
刘欢和莎拉.布莱曼唱起了《我和你》
回忆:
1、第29届奥林匹克运文动会化开形幕式式多中,有 那些文艺节目?请写在文黑种化板多现上样。象无
n(n 1)
其中 (n 1)n 的大小理科生可以用数归法解决。 n n 1 也可得到第3项最大
第三部分:数列与其他知识的交汇综合
4、与解析几何知识的交汇综合
例:已知直线ln : y x 2n与圆Cn :
x2 y2 2an n 2交于不同的两点An , Bn,
前两小问略 下面主要研究第(3)问
第三部分:数列与其他知识的交汇综合
1
1 问1:能否相消?
Cn
2
3n1
1
3n
1
问2:是否需
要相消?
将Tn表示出来并不困难
解题目标?
Tn C1 C2 Cn
2n
1 32
1
1 30
1
1 33
1
1 32
1
1 3n 1
1 3n1 1
bn Sn Sn1(n 2)"
可化简得 2S 2Sn1 1 Sn • Sn1
1 11
Sn Sn1 2
Sn 与bn
关系?
第二部分:基本数列之间的综合
思路2: 由 Sn 进一步求 bn
1 n时需1 要注意什么?
1(n 1)
bn
2 n(n 1)
(n
2)
第二部分:基本数列之间的综合
第一课 文化与社会
画卷
“巨幅画轴” “巨幅画轴”
水墨画
海上丝绸之路
孔子三千弟子
活字印刷术
礼 乐
礼乐
太极
刘欢和莎拉.布莱曼唱起了《我和你》
刘欢和莎拉.布莱曼唱起了《我和你》
回忆:
1、第29届奥林匹克运文动会化开形幕式式多中,有 那些文艺节目?请写在文黑种化板多现上样。象无
n(n 1)
其中 (n 1)n 的大小理科生可以用数归法解决。 n n 1 也可得到第3项最大
第三部分:数列与其他知识的交汇综合
4、与解析几何知识的交汇综合
例:已知直线ln : y x 2n与圆Cn :
x2 y2 2an n 2交于不同的两点An , Bn,
苏教版高三数学复习课件5.5 数列的综合应用

6.数列的递推公式:如果已知数列{an}的第1项(或前几项),且任一项an与它的前一 项an-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的 递推公式. 7.数列的表示方法:列表法、图象法、通项公式法、递推公式法.
8.数列作为特殊的函数,在解决实际问题过程中有着广泛的应
用,如人口增长问题、存款利率问题、分期付款问题.利用等 差数列和等比数列还可以解决一些简单的已知数列的递推关系 求其通项公式等问题.
5.北京市为成功举办2008年奥运会,决定从2003年到2007年5年间更新市内现 有全部出租车,若每年更新的车辆数比前一年递增10%,则2003年底更新的 车辆数约为现有总车辆数的________(参考数据1.14=1.46,1.15=1.61). 解析:设市内全部出租车辆为b,2003年底更新的车辆为a,则2004年更新的 车辆为a(1+10%),2005年更新的车辆为a(1+10%)2,2006年更新的车辆为 a (1+10%)3,2007年更新的车辆为a(1+10%)4,由题意可知: a+a·(1+10%) +a(1+10%)2+a·(1+10%)3+a·(1+10%)4=b, ∴a(1+1.1+1.12+1.13+1.14)=b⇒a·=b, ∴ 的16.4%. ≈16.4%.故2003年底更新的车辆数约为现有总车辆数
【例1】 设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和, 已知S3=7,且a1+3,3a2,a3+4构成等差数列. (1)求数列{an}的通项;(2)令bn=ln a3n+1,n=1,2,„,求数 列{bn}的前n项和Tn. 思路点拨:(1)由已知列出方程组求出公比q与首项a1; (2)结合对数的运算,判断数列{bn}是等差数列,再求和.
高中数学课件-第一部分 专题二 第二讲 递推公式、数列求和及综合应用

专题二
第二讲 递推公式、数列求和及综合应用
活用•经典结论 主观题•专项练 客观题·专项练
题型·综合练
专题•限时训练-13-
类型一
类型二
类型三
[感悟方法]
1.已知 Sn 求 an 的步骤 (1)求出 a1. (2)利用 an=Sn-Sn-1(n≥2)便可求出当 n≥2 时 an 的表达式. (3)对 n=1 时的结果进行检验,看是否符合 n≥2 时 an 的表达 式,如果符合,则可以把数列的通项公式整合;如果不符合,
专题二
第二讲 递推公式、数列求和及综合应用
活用•经典结论
主观题•专项练 客观题·专项练
题型·综合练
专题•限时训练-3-
4.常用的拆项公式(其中 n∈N*) (1)nn1+1=n1-n+1 1; (2)nn1+k= 1kn1-n+1 k; (3)2n-112n+1=122n1-1-2n1+1;
专题二
专题二
类型一
第二讲 递推公式、数列求和及综合应用
活用•经典结论 主观题•专项练 客观题·专项练
题型·综合练
专题•限时训练-9-
类型二
类型三
正确写出通项公式(用 n≥2,要验证 n=1)得 1 分
写出 bn 并正确裂项得 2 分 若 bn 正确,裂项不正确扣 1 分
正确写出求和公式得 2 分
正确写出结论(无论是否合并)得 2 分
所以 an=2n2-1(n≥2).(4 分)
又由题设可得 a1=2,符合上式,
从而{an}的通项公式为 an=2n2-1.(6 分)
专题二
类型一
第二讲 递推公式、数列求和及综合应用
活用•经典结论 主观题•专项练 客观题·专项练
高中数学复习课件-数列的综合应用

1 种重要思想:转化与化归的思想 数列求和把数列通过分组、变换通项、变换次序、乘以常数 等方法,把数列的求和转化为能使用公式求解或者能通过基本运 算求解的形式,达到求和的目的. 2 点特别注意:数列求和中应注意的两个问题
(1)错位相减法中两式相减后,一定成等比数列的有 n-1 项, 整个式子共有 n+1 项.
例 3 等差数列{an}的前 n 项和为 Sn.已知 a1=10,a2 为整数 且 Sn≤S4. (1)求{an}的通项公式; (2)设 bn=ana1n+1,求数列{bn}的前 n 项和 Tn.
[解] (1)由 a1=10,a2 为整数知,等差数列{an}的公差 d 为
整数.
且 Sn≤S4,故 a4≥0,a5≤0,
课后作业:
1.
数列
11,31,51,7 1 ,…的前 2 4 8 16
n
项和
Sn
为
2. 已知{an}是公差不为零的等差数列,a1=1,且 a2,a5,a14 成等比数列.
(1)求数列{an}的通项公式;
(2)求数列{ 1 }的前 anan+1
n
项和
Sn.
3. 设数列{an}满足 a1+3a2+32a3+…+3n-1an=n3,n∈N*.
=101-2n.当 n=1 时,满足上式. =2S50-(a1+a2+…+an)
综上 an=101-2n(n∈N*).
=2·(100·50-502)-(100n-n2)
(2)bn=|an|=120n1--1201n,,
=n2-100n+5000. 1≤n≤50,
n≥51.
综上有 Tn=1n02-0n1-00nn2,+5000,1≤n≤n≥505,1.
(1)求数列{an}的通项公式及前 n 项和 Sn; (2)设 bn=n+Sn c,若{bn}也是等差数列,试确定非零常数 c, 并求数列{bn·1bn+1}的前 n 项和 Tn.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)2+ 2×(
1 3
)3+ 3×(
1 3
)4+ … + (n- 1)(
1 3
)n+
题
讲 解
n(13)n+ 1,②
①-②得:
专
题 训
21 3Sn=3+
(13)2+
(13)3+
…
+
(13)n-
n(13)n+
1
练
13[1- =
(13)n] 1-
n(13)n+
1=12[1-
(13)n]-
n(13)n+
1,
1-3
.
第六章 ·专题研究二
专 题 讲 解
专
题 训
专题研究二 数列的综合应用
练
高三数学(人教版)
.
第六章 ·专题研究二
专
专题讲解
题
讲
题型一 等差、等比数列的综合应用
解
例1 已知等比数列{an}的公比为q,前n项的和为Sn,且S3,S9,S6成等差数
专
列.
题 (1)求q3; 训
练 (2)求证:a2,a8,a5成等差数列.
练
1
1
=a2(1-2-2×4)= 0,所以a2, a8,a5成等差数列.
探究1 等差、等比数列的基本计算问题,要搞清基
本量之间的关系, 熟练掌握基本公式与性质,正确
给出计算结果.
高三数学(人教版)
.
第六章 ·专题研究二
专 题
思考题1 (2010·全国卷Ⅰ,文)记等差数列{an}的前
讲 n项和为Sn.设S3= 12,且2a1, a2,a3+1成等比数列,求Sn. 解
题
1- q
1- q
1- q
讲 解
整理,得q3+q6= 2q9,由q≠ 0且q≠1,得q3=-12.
专
法二:由S3,S9, S6成等差数列,得S9-S3=S6- S9.
题
训
∴a4+ a5+a6+a7+ a8+a9=-(a7+a8+a9),
练
移项得a4+a5+ a6+2(a7+a8+ a9)=0,
∴(a4+ a5+a6)(1+ 2q3)=0. ∵a4+ a5+a6=a4(1+ q+q2)≠0,
专 题型三 数列与导数、解析几何的综合应用
题 讲 例3 (2011·皖南八校)设曲线y=x2+x+2-lnx在x=1处的切线为l,数列
【解析】 设数列{an}的公差为d.依题设有
专
题
2a1(a3+ 1)=a22,
训 练
a1+ a2+ a3=12,
a21+2a1d- d2+2a1=0, 即a1+ d= 4.
解得a1=1,d= 3,或a1=8, d=-4.
1 因此Sn=2n(3n- 1),或 Sn=2n(5- n).
高三数学(人教版)
∴1+ 2q3=0,∴q3=-12.
高三数学(人教版)
.
第六章 ·专题研究二
专 题
(2)证
明
:法一
:由
(1)知
,
a8=
a2×
q6=
1 4a2,
讲 解
a= 5
a× 2
q3=-12a2,
a8-
a2=
a5-
a8,
专
所以a2,a8,a5成等差数列.
题 训
法二:由(1)知,a2+a5-2a8= a2×(1+ q3-2q6)
【解析】 (1)法一:由S3,S9,S6成等差数列,
得S3+S6=2S9,
若q=1,则S3+S6=9a1,2S9=18a1,
由a1≠0,得S3+S6≠2S9,与题意不符,∴q≠1.
由S3+S6=2S9,
高三数学(人教版)
.
第六章 ·专题研究二
专
得a1(1-
q3) +
a1(1-
q6)=2a1(1-
q9) .
专 题
∴f(n)=13×(13)n- 1,即f(n)=(13)n(n∈ N*).
训
练
(2)由 (1)知,an=n(13)n,
则
Sn=
1×
1 3
+
2×
(
1 3
)2+
3×
(
1 3
)3+
…
+
(n-
1)(
1 3
)n-
1+
n(13)n,①
高三数学(人教版)
.
第六章 ·专题研究二
专
1 3
Sn= 1× (
1 3
.
第六章 ·专题研究二
专 题型二 数列与函数的综合应用 题
讲
解
例2 已知函数f(x)对任意实数p, q都满足:f(p+q)
专
=f(p)· f(q),且 f(1)=13.
题
训
(1)当 n∈ N*时,求f(n)的表达式;
练
(2)设 an= nf(n)(n∈N*), Sn是数列{an}的前n项的和,
3 求证:Sn<4;
∴ Sn= 34-34(31)n- n2(13)n.
∵
n∈
N*,∴
3 Sn<4.
高三数学(人教版)
.
第六章 ·专题研究二
专 题 讲
nf(n+1) 1 (3)由题知,bn= f n =3n,
解
1 n(n+1) n(n+1)
1
11
专
则Tn=3×
2
=
6
,
∴Tn=
6(n-n+
). 1
题
111
1
1111 1
nf n+ 1 (3)设 bn= f n
(n∈ N*),数列{bn}的前n项和为
111
1
Tn,试比较T1+T2+T3+…+Tn与 6的大小.
高三数学(人教版)
.
第六章 ·专题研究二
专 题
∴f(n+ 1)=
1 3
f(n)(n∈ N*),∴数列{f(n)}(n∈ N*)是以
讲
解
1
1
f(1)=3为首项,3为公比的等比数列,
11
训 练
∴
T1+T2+
T3+…
+Tn
=
6(1-
2+2-
3+3
-
4+…
+n-n+
) 1
=6(1- 1 ). n+ 1
∵
n∈
N*,∴T11+T12+
1 T3+…
1 +Tn<6.
高三数学(人教版)
.
第六章 ·专题研究二
探究2 数列与函数的综合问题主要有以下两类:①已知函数条件,解决 专
题
数列问题,此类问题一般利用函数的性质、图象研究数列问题;②已知数
讲
列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、
解
求和方法对式子化简变形.
专 题
思考题2
已
知函数
f(x)=
ax的图
象过点
(1,
1 2
),
ቤተ መጻሕፍቲ ባይዱ
且
点
(n-1,
an n2
)(n∈
N*)在
训
练
函数f(x)=ax的图象上.
(1)求数列{an}的通项公式;
1 (2)令 bn= an+ 1-2an, 若数列 {bn}的 前 n项 和为 Sn,求 证: Sn<5.
【解】 (1)∵函数f(x)=ax的图象过点(1,21),
∴
1 a=2,f(x)=
(12)x.
高三数学(人教版)
.
第六章 ·专题研究二
专 题
又点(n-1,
an n2
)(n∈ N*)(在函数f(x)= ax的图象上,
讲 解
从
而ann2=21n-
1,即
an=
n2 2n-
1.
专 题
(n+ 1)2 n2 2n+ 1 (2)由 bn= 2n -2n= 2n 得,
训
练
35
2n+ 1
Sn=2+22+…+ 2n ,
1 35
2n- 1 2n+ 1
则2Sn=22+23+…+ 2n + 2n+ 1 ,
13
11
1 2n+ 1
两式相减得:2Sn=2+2(22+23+…+2n)- 2n+ 1 ,
2n+ 5 ∴Sn= 5- 2n ,∴ Sn<5.
高三数学(人教版)
.
第六章 ·专题研究二