电力系统特高压输电系统及其关键技术
特高压输电系统及其关键技术-资料汇总

特⾼压输电系统及其关键技术-资料汇总输电条件:1.变压器——500kV 和750kV 变压器的研制和⽣产,已具备了研制特⾼压变压器的技术基础和条件。
2.避雷器——已经具备研制、⽣产超⾼压避雷器的能⼒。
近⼏年来国产500kV 避雷器已得到了⼴泛应⽤,最近⼜研制完成了750kV ⾦属氧化物避雷器(MOA)的研制,着重研究了避雷器的电位分布、热耗散特性、耐污特性、抗震性能等。
为研制特⾼压MOA 积累了⼀定的经验。
3.绝缘⼦设备——从国内技术⽔平和⽣产能⼒来看,已具备⽣产300kN、400kN、530kN 瓷绝缘⼦和300kN、400kN 玻璃绝缘⼦以及400kN 合成绝缘⼦的能⼒,其中瓷绝缘⼦可⽣产普通型、钟罩型、双伞型、三伞型,玻璃绝缘⼦可⽣产普通型、钟罩型,已有多家单位研制完成了750kV 线路合成绝缘⼦,⼀旦特⾼压⼯程上马,可满⾜特⾼压输电⼯程对绝缘⼦设备的需要。
4.输电线路设备——⽬前国内有⼀部分企业通过改进设备和技术改造,已具备⽣产600-1 400mm2 ⼤截⾯导线的能⼒,部分产品已应⽤于三峡、⼆滩电站等电⼒输出⼯程;⾦具制造能⼒与国外处于同⼀⽔平,有较多企业已⽣产出750kV 线路⾦具产品,部分企业已研制出1150kV 线路配套⾦具,并已应⽤在国内的特⾼压试验线段上;从国内各企业的制造⽔平来看,已具备⼤型铁塔的制造能⼒,可满⾜特⾼压线路杆塔的制造要求。
⽂献:特⾼压输电技术的发展关键技术与关键设备:1、技术因素(1)过电压影响设计防雷、绝缘:过电压、(原因(不同种类⼯频过电压、计算⽅法):特⾼压交流线路⼯频过电压研究;解决⽅案(⽐如:磁控电抗器):磁控电抗器对特⾼压输电线路⼯频过电压的抑制作⽤)1. ⾼压导致空⽓电离2. dv/dt过⼤,产⽣强磁场,与线路感应A.容升效应引起的⼯频电压升⾼特⾼压输电线路的容抗远⼤于线路感抗,电容效应尤为显著,必须考虑线路的分布参数特性。
均匀传输线路如图所⽰,图中分别为单位长度线路的电阻、电感、电导和电容。
特高压交流输电技术发展现状

特高压交流输电技术发展现状1. 引言1.1 特高压交流输电技术发展现状概述特高压交流输电技术是一种高端技术,能够实现跨越长距离传输大量电力,是电力系统中的重要组成部分。
随着社会经济的发展和电力需求的增加,特高压交流输电技术在近年来得到了迅速发展。
特高压交流输电技术通过提高输电电压和线路容量,减少输电损耗和占地面积,提高了电网的稳定性和可靠性,为我国电力供应的安全性和稳定性提供了有力保障。
特高压交流输电技术在促进电力资源优化配置、提高电网运行效率、促进节能减排等方面也发挥着重要作用。
当前,特高压交流输电技术已经成为电力行业发展的重要方向,受到了广泛关注和重视。
未来,随着技术的不断创新和完善,特高压交流输电技术将会继续发展壮大,为国家电力事业的发展做出更大贡献。
2. 正文2.1 特高压交流输电技术的历史发展特高压交流输电技术是电力传输领域的重要技术之一,经过多年的发展和进步,已经取得了许多重要的成就。
特高压交流输电技术的历史可以追溯到上世纪初,最早出现在欧洲和美国。
最初,特高压交流输电技术主要用于解决长距离电力传输的问题,例如将发电厂产生的电能传输到远离城市的地区。
随着工业化和城市化的发展,特高压交流输电技术得到了进一步的推广和应用。
在特高压交流输电技术的发展过程中,出现了许多关键的技术突破和挑战。
随着传输距离的增加和输电线路的容量要求不断提高,研究人员不断寻求提高传输效率和减少能量损失的方法。
特高压交流输电技术还面临着环境保护和电网安全等方面的挑战,需要不断创新和改进技术。
特高压交流输电技术的发展历程充满了挑战和机遇。
通过不断的创新和努力,特高压交流输电技术已经取得了长足的进步,为电力传输领域的发展做出了重要贡献。
在未来,特高压交流输电技术将继续发展,为建设清洁、高效的电力系统提供技术支持。
2.2 特高压交流输电技术的主要应用领域1. 长距离输电:特高压交流输电技术能够实现长距离、大容量的电能输送,有效解决了远距离电力输送存在的能量损耗和输电效率低的问题。
新型电力系统中的特高压直流输电SLCC换流技术

新型电力系统中的特高压直流输电SLCC换流技术摘要:双碳背景下,大规模新能源通过电力电子变换器接入电网,将面临诸多挑战。
在送端电网,千万千瓦级新能源基地数以万计纯电力电子变流器组网的运行特性和稳定机理不明确,新能源发电基地与直流输电系统优化配置和协调稳定控制难度较大;在受端电网,中国已经形成的多直流复杂电网在不断增加接纳直流输电容量的同时,将进一步叠加高比例新能源电力,现有的直流输电控制保护技术和多直流电网安全运行控制技术难以支撑电网安全稳定运行;在环境条件方面,超高海拔、高地震烈度、高宇宙射线和高盐雾等苛刻环境条件将对直流输电装备和基础材料提出更高要求。
基于此,本篇文章对新型电力系统中的特高压直流输电SLCC换流技术进行研究,以供参考。
关键词:电力系统;特高压直流输电;SLCC换流技术引言上世纪末至今,中国直流输电事业飞速发展,从技术落后到技术引领,成为世界上建设直流工程数量最多、电压等级最高(1100kV)、技术种类最多的直流输电国家。
直流输电是我国能源的骨干运输通道,在能源输送方面将发挥着不可替代的作用。
针对大规模清洁能源并网、传输、消纳等问题,直流输电将是进一步提升清洁能源利用率、充分满足未来电力需求、助力新型电力系统建设的必要手段。
新型电力系统的构建离不开直流输电,同时也将对直流输电的发展产生深远影响。
我国电力系统跨省跨区输电通道建设加快。
新型电力系统能有力推动直流送端风光火储一体化发展,通过采取增加火电调峰深度、配置储能、优化直流曲线等综合措施,提升输电通道清洁电量占比。
我国电力系统输电通道清洁能源比例提升。
1特高压直流输电技术概述通过进一步研究高压直流输电技术,确保国家能源资源的合理开发和利用,解决自然资源和能源分配不均的问题,现在可以进行高压直流输电,即800kV以上的电压直流输电的工作原理是:在用电流变换器改造交流电源之前对其进行改造,强调运输过程中的稳定性和安全性,应用该技术可以节省设备的地面空间,减少交通损失,满足中国各地区每年日益增长的用电需求。
特高压输电技术

特高压输电技术特高压输电技术是一项能够实现远距离输电的重要技术,它以其高电压、高效率和低损耗的特点,正在成为现代电力系统中的重要组成部分。
本文将从特高压输电技术的原理、应用和发展前景等方面进行阐述。
一、特高压输电技术的原理特高压输电技术是指采用极高的输电电压进行远距离输电的技术,其核心原理是利用高电压降低输电线路上的电流,从而降低传输损耗和线路成本。
相比于传统的输电技术,特高压输电技术具有以下几个特点:1. 高电压:特高压输电技术采用超过1000千伏的高电压进行输电,相较于通常采用的500千伏输电电压,电流相应减小一半,从而降低了传输损耗和线路压降。
2. 高效率:特高压输电技术采用了直流输电方式,相较于交流输电方式,直流输电具有更高的输电效率。
此外,特高压输电技术还能够实现多线路并行输电,进一步提高了输电效率。
3. 低损耗:由于采用了高电压和直流输电方式,特高压输电技术能够降低电阻损耗、感应损耗和电容损耗,从而减少了电能的损失和物料的消耗。
二、特高压输电技术的应用特高压输电技术目前已经广泛应用于各个国家的电力系统中,其应用领域包括远距离输电、风电、太阳能等可再生能源的集中接入以及智能电网的建设等方面。
1. 远距离输电:特高压输电技术能够实现长距离的电能输送,有效解决了远离能源中心地区的能源短缺问题。
通过特高压输电线路,能够将发电站产生的电能迅速传输到远离发电站的用电负荷中心,满足远距离电力输送的需求。
2. 可再生能源集中接入:随着可再生能源的发展,特高压输电技术成为其大规模集中接入电网的关键技术。
特高压输电技术能够将集中分布的可再生能源的电能汇集起来,并高效地传输到用电负荷中心,实现可持续能源的大规模利用。
3. 智能电网的建设:特高压输电技术也是智能电网建设中不可或缺的一部分。
特高压输电线路的建设适应了智能电网对大容量、高效率、低损耗的要求,能够优化电网结构,提高电网的可靠性和稳定性。
三、特高压输电技术的发展前景特高压输电技术作为一项成熟的高端技术,正在逐步应用于全球各个国家的电力系统中。
特高压直流输电技术及其应用

特高压直流输电技术及其应用一、概述特高压直流输电技术是一种高效能、低损耗、远距离长输、抗干扰能力强且可靠性高的电力输电技术。
特高压直流输电技术的应用不仅可以改善电网的无功角,提高稳定性,而且还可以优化电网的结构布局,提高电能利用率。
二、技术原理特高压直流输电技术是利用电力电子器件对交流电进行整流、变换、滤波处理后,形成直流电,再通过输电线路对直流电进行传输的一项新技术。
特高压直流输电系统主要由换流站、高压直流输电线路和终端换流站等组成。
电源通过换流站的交流侧接入,变为直流电后经过高压直流输电线路输送到接收站,再通过终端换流站变为交流电接入电网。
三、优点1. 低损耗:采用直流输电可避免交流输电过程中会产生的电抗、电流互感等损失。
2. 远距离高效能输电:直流输电线路作为可替代交流输电的新型电网架构,其输送长度远高于交流输电,可在远距离长距离输送电力。
3. 抗干扰能力强:特高压直流输电技术在功率变化、相位跳跃、短时间过载、负载波动以及输电线路受到外来干扰等情况下仍能保证良好的电能传输和供应。
4. 可靠性高:通过对换流站、输电线路、终端换流站等设备进行可靠性设计,并采取智能化技术,可确保特高压直流输电系统的稳定性和安全性。
四、应用1. 遥远地区电力输送:特高压直流输电技术能够长距离超远距离输送电力,为遥远地区的电力需求提供解决方案,并充分利用负载率,实现对电力资源的优化利用。
2. 解决电网瓶颈问题:特高压直流输电技术具有抗干扰能力强和输电长度远的特点,可以有效解决传统交流输电在电网瓶颈问题上的限制。
3. 可再生能源输送:随着可再生能源发电技术的不断发展,特高压直流输电技术可以用于传输风力发电、太阳能发电等可再生能源的电力。
4. 铝、铜资源集中地输电:利用特高压直流输电技术,可以将铝、铜等原材料在世界范围内集中输电,进一步实现资源优化布局。
五、发展前景特高压直流输电技术是未来电力送输的主要方向。
作为一项领先的电力技术,其优越的性能和可靠性,将推动电力输送的新型模式。
特高压直流输电

特高压直流输电理论绪论一·直流输电的发展概况世界上最早的直流输电是用直流发电机直接向直流负荷供电。
1882年,法国物理学家德普勒用装设在米斯巴赫煤矿中的直流发电机,以1,5~2.0kv电压,沿着57km 的电报线路,把电力送到在慕尼黑举办的国际展览会伤,完成了有史以来的第一次直流输电试验。
1912年采用直流发电机串联的方法,将直流输电的电压,功率和距离分别提高到125kv,20mw和225km。
由于直流电源和负荷均采用串联方法,运行方式复杂,可靠性差,因此直流输电在当时没有得到进一步的发展。
随着三相交流发电机,感应电动机和变压器的迅速发展,直流输电很快被交流输电所取代。
直到20世纪50年代大功率汞弧阀的问世。
直流输电技术才真正在工程中得到应用。
直流输电独特的优点:利用其迅速而精确地调节能力可以提高与之并联的交流线路的稳定性和传输容量,将其作为大区电网件的联络线能迅速提高互联系统运行的可靠性和灵活性等。
电网的发展目标:百万伏级交流和±800KV级直流系统构成的特高压电网的发展目标二.特高压直流输电关键技术1,在1400~1500Km的距离输送大量的电力,从经济和环境等角度考虑,高于±660kv的特高压直流是优选的输电方式。
2.±800kv直流输电系统的设计,建设和运行在技术上是完全可行的,但应开展一些工程研究以进一步优化系统的性能和经济指标。
3.基于目前的技术及可预见的发展,±1000kv的高压直流输电系统在理论上是可行的,但必须进行大量的研究开发工作。
4.目前看来,发展±1200kv直流输电系统是不切合实际的,即便将来通过大量深入细致的研究工作会有更好的设计,但仍然需有重大技术突破,才有可能进行较为经济的设计,,前景难以预测。
对±800kv高压直流输电工程关键技术问题的研究已经取得了一系列重大突破:1,特高压直流输电电压等级的研究。
特高压输电技术的研究与应用

特高压输电技术的研究与应用特高压输电技术是一种应用于电力输送的先进技术,通过采用超高电压等手段,实现远距离电力输送和能源互通。
随着我国经济的快速发展以及电力需求的增长,特高压输电技术正在日益受到重视并得到广泛应用。
本文将从特高压输电技术的概念、发展历程、技术特点、研究现状和应用前景等方面展开探讨,旨在深入了解该技术并探讨其在未来的发展方向。
特高压输电技术的概念特高压输电技术是指在传统高压输电技术基础上,将输电电压进一步提升至1000kV及以上的电压等级,以实现长距离、大容量能量传输的技术。
其主要特点是采用超高电压、超长距离传输、大容量输电和高可靠性等突出特点,被认为是未来电力输送的主要发展方向之一。
与传统的输电技术相比,特高压输电技术具有输电能力强、损耗低、占地面积小等显著优势。
特高压输电技术的发展历程特高压输电技术的发展可以追溯到上世纪60年代,当时欧洲国家率先开始研究并应用该技术。
随着我国电力事业的发展,特高压输电技术也在我国得到了广泛的应用和研究。
我国特高压输电技术的发展经历了不断的突破和创新,如我国首条1000kV特高压交流输电工程于1986年建成投运,标志着我国特高压输电技术取得重要突破。
特高压输电技术的技术特点特高压输电技术相较于传统高压输电技术,在输电电压、输电距离、输电容量和输电损耗等方面具有独特的技术特点。
首先,特高压输电技术采用更高的输电电压,可以实现更远距离的电力输送,同时减少线路损耗和提高输电效率。
其次,特高压输电技术可以实现更大容量的电力输送,满足日益增长的电力需求。
此外,特高压输电技术还具有输电线路占地面积小、环境影响小等显著优势,对于我国电力资源富集地区和负荷中心地区之间的电力输送具有重要意义。
特高压输电技术的研究现状目前,特高压输电技术在我国已经得到了广泛的应用,并取得了一系列重要研究成果。
我国特高压输电技术的研究主要集中在特高压输电线路设计、输电设备研发、电力系统稳定性和调控等方面。
特高压直流输电系统最后断路器保护及关键技术分析

特高压直流输电系统最后断路器保护及关键技术分析曹丹中国能源建设集团湖南火电建设有限公司Technology analysis of Last Circuit Breaker in Ultra High Voltage Direct Current SystemCao Dan(China Energy Engineering Group Hunan Power Construction Company Limited)摘要:特高压直流输电系统以其输电容量大、送电距离远等优点,目前已成为我国主要的电能传输方式。
当直流逆变站突然切除全部交流线路时,可能导致交流侧的电压急剧升高,破坏系统稳定性。
为此,逆变站配置的最后断路器保护用于快速识别交流侧突然甩负荷的场景,并迅速切断线路与阀组之间联系,从而保障整体系统的稳定运行。
本文对最后断路器保护进行介绍,分析了最后断路器保护运行过程中的相关技术,为相关工作者提供参考借鉴。
关键词:特高压直流输电系统,最后断路器保护1 引言我国幅员辽阔,东西部能源分配极度不平衡,风、光、煤炭等自然能源储备集中分布在西部地区,而高负荷、高密度的用电需求则集中在东部平原地区。
特/超高压直流输电线路以其造价相对较低,具备大容量、远距离的送电能力,且避免了交流输电系统的功角稳定问题,是我国目前交直流混联电网的主要输电网架[1]。
实际上,目前的特/超高压直流输电线路仍然存在一些问题。
在其正常稳定运行的过程中,交流侧线路与换流阀之间的断路器维持闭合状态。
当逆变站设备发生某些故障,导致逆变站交流侧负荷突然全部丢失,即最后一条交流线路发生跳闸。
此时,由于换流母线上通常配有大量无功补偿设备,逆变器仍然继续运行,直流系统持续向逆变测输入电流,大量功率将流向无功补偿设备,从而导致交流电压急剧升高,危及一次设备的安全[2]。
随着我国特高压输电网架的迅速发展,当前的交直流混联系统结构愈加复杂。
逆变站作为特高压直流输电系统的关键核心,其交流侧的甩负荷问题不容忽视。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Beijing Jiaotong University 特高压输电系统及其关键技术姓名:TYP班级:电气0906学号:09291183指导老师:吴俊勇完成日期:2012.5.20一、特高压输电简介特高压输电指的是使用1000千伏及以上的电压等级输送电能。
特高压输电是在超高压输电的基础上发展的,其目的仍是继续提高输电能力,实现大功率的中、远距离输电,以及实现远距离的电力系统互联,建成联合电力系统。
特高压输电具有明显的经济效益。
据估计,1条1150千伏输电线路的输电能力可代替5~6条500千伏线路,或3条750千伏线路;可减少铁塔用材三分之一,节约导线二分之一,节省包括变电所在内的电网造价10~15%。
1150千伏特高压线路走廊约仅为同等输送能力的 500千伏线路所需走廊的四分之一,这对于人口稠密、土地宝贵或走廊困难的国家和地区会带来重大的经济和社会效益。
特高压输送容量大、送电距离长、线路损耗低、占用土地少。
100万伏交流特高压输电线路输送电能的能力(技术上叫输送容量)是50万伏超高压输电线路的5倍。
所以有人这样比喻,超高压输电是省级公路,顶多就算是个国道,而特高压输电是“电力高速公路”。
1000千伏电压等级的特高压输电线路均需采用多根分裂导线,如8、12、16分裂等,每根分裂导线的截面大都在6 00平方毫米以上,这样可以减少电晕放电所引起的损耗以及无线电干扰、电视干扰、可听噪声干扰等不良影响。
杆塔高度约40~50米。
双回并架线路杆塔高达90~97米。
二、特高压输电系统及关键技术简介特高压输电分为特高压直流输电和特高压交流输电两种形式。
1、特高压直流输电特高压直流输电(UHVDC)是指±800kV(±750kV)及以上电压等级的直流输电及相关技术。
特高压直流输电的主要特点是输送容量大、电压高,可用于电力系统非同步联网。
在我国特高压电网建设中,将以1000kV交流特高压输电为主形成特高压电网骨干网架,实现各大区电网的同步互联;±800kV特高压直流输电则主要用于远距离、中间无落点、无电压支撑的大功率输电工程。
1、特高压直流输电设备。
主要包括:换流阀、换流变压器、平波电抗器、交流滤波器、直流滤波器、直流避雷器、交流避雷器、无功补偿设备、控制保护装置和远动通信设备等。
相对于传统的高压直流输电,特高压直流输电的直流侧电压更高。
容量更大,因此对换流阀、换流变压器、平波电抗器、直流滤波器和避雷器等设备提出了更高的要求。
2、特高压直流输电的接线方式。
UHVDC一般采用高可靠性的双极两端中性点接线方式。
3、特高压直流输电的主要技术特点。
与特高压交流输电技术相比,UHVDC的主要技术特点为:(1)UHVDC系统中间不落点,可点对点、大功率、远距离直接将电力输送至负荷中心;(2)UHVDC控制方式灵活、快速,可以减少或避免大量过网潮流,按照送、受两端运行方式变化而改变潮流;(3)UHVDC的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电;(4)在交直流混合输电的情况下,利用直流有功功率调制可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,提高交流系统的动态稳定性;(5)当发生直流系统闭锁时,UHVDC两端交流系统将承受很大的功率冲击。
2、特高压交流输电特高压交流输电是指1000kV及以上电压等级的交流输电工程及相关技术。
特高压输电技术具有远距离、大容量、低损耗、节约土地占用和经济性等特点。
目前,对特高压交流输电技术的研究主要集中在线路参数特性和传输能力、稳定性、经济性以及绝缘与过电压、电晕及工频电磁场等方面。
特高压交流输电有以下几个参数:1、输电能力。
输电线路的传输能力与输电电压的平方成正比,与线路阻抗成反比。
一般来说,1100kV输电线路的输电能力为500kV输电能力的4倍以上,但产生的容性无功也为500kV输电线路的4.4倍及以上。
因此,特高压输电线路的输送功率较小时,送、受端系统的电压将升高。
为抑制特高压线路的工频过电压,需要在线路两端并联电抗器以补偿线路产生的容性无功。
2、线路参数特性。
特高压输电线路单位长度的电抗和电阻一般分别为500kV输电线路的85%和25%左右,但其单位长度的电纳可为500kV线路的1.2倍。
3、稳定性。
特高压输电线路的输电能力很大程度上是由电力系统稳定性决定的。
对于中、长距离输电(300km及以上),特高压输电线路的输电能力主要受功角稳定的限制(包括静态稳定、动态稳定和暂态稳定);对于中、短距离输电(80~300km),则主要受电压稳定性的限制;对于短距离输电(80km以下),主要受热稳定极限的限制。
4、功率损耗。
输电线路的功率损耗与输电电流的平方成正比,与线路电阻成正比。
在输送相同功率的情况下,1000kV输电线路的线路电流约为500kV输电线路的1/2,其电阻约为500kV 线路的25%。
因此,1000kV特高压输电线路单位长度的功率损耗约为500kV超高压输电的1/16。
5、经济性。
同超高压输电相比,特高压输电方式的输电成本、运行可靠性、功率损耗以及线路走廊宽度方面均优于超高压输电方式。
3、特高压直流和交流输电的优缺点比较特高压直流输电方面:经济方面优点:(1)线路造价低。
对于架空输电线,交流用三根导线,而直流一般用两根,采用大地或海水作回路时只要一根,能节省大量的线路建设费用。
对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。
(2)年电能损失小。
直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。
另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。
所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。
技术方面:(1)不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。
由此可见,在一定输电电压下,交流输电容许输送功率和距离受到网络结构和参数的限制,还须采取提高稳定性的措施,增加了费用。
而用直流输电系统连接两个交流系统,由于直流线路没有电抗,不存在上述稳定问题。
因此,直流输电的输送容量和距离不受同步运行稳定性的限制.还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。
(2)限制短路电流。
如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。
然而用直流输电线路连接两个交流系统,直流系统的“定电流控制’,将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。
(3)调节快速,运行可靠。
直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。
在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。
(4)没有电容充电电流。
直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。
(5)节省线路走廊。
按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。
然而 ,下列因素限制了直流输电的应用范围:(1)换流装置较昂贵。
这是限制直流输电应用的最主要原因。
在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。
这就引起了所谓的“等价距离”问题。
(2)消耗无功功率多。
一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。
(3)产生谐波影响。
换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。
(4)就技术和设备而言,直流波形无过零点,灭弧困难。
目前缺乏直流开关而是通过闭锁换流器的控制脉冲信号实现开关功能。
若多条直流线路汇集一个地区,一次故障也可能造成多个逆变站闭锁,而且在多端供电方式中无法单独地切断事故线路而需切断全部线路,从而会对系统造成重大冲击。
(5)从运行维护来说,直流线路积污速度快、污闪电压低,污秽问题较交流线路更为严重。
与西方发达国家相比,目前我国大气环境相对较差,这使直流线路的清扫及防污闪更为困难。
设备故障及污秽严重等原因使直流线路的污闪率明显高于交流线路。
(6)不能用变压器来改变电压等级。
直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。
与直流输电比较,现有的交流500kV输电(经济输送容量为1 000 kW,输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。
特高压交流输电方面:主要优点:(1)提高传输容量和传输距离。
随着电网区域的扩大,电能的传输容量和传输距离也不断增大。
所需电网电压等级越高,紧凑型输电的效果越好。
(2)提高电能传输的经济性。
输电电压越高输送单位容量的价格越低。
(3)节省线路走廊和变电站占地面积。
一般来说,一回1150 kV 输电线路可代替6回500 kV线路。
采用特高压输电提高了走廊利用率。
(4)减少线路的功率损耗, 就我国而言, 电压每提高1%,每年就相当于新增加500万kW的电力,500kV输电比1200kV的线损大5倍以上。
(5)有利于连网,简化网络结构,减少故障率。
特高压输电的主要缺点是系统的稳定性和可靠性问题不易解决。
自1965-1984年世界上共发生了6次交流大电网瓦解事故,其中4次发生在美国,2次在欧洲。
这些严重的大电网瓦解事故说明采用交流互联的大电网存在着安全稳定、事故连锁反应及大面积停电等难以解决的问题。
特别是在特高压线路出现初期,不能形成主网架,线路负载能力较低,电源的集中送出带来了较大的稳定性问题。
下级电网不能解环运行,导致不能有效降低受端电网短路电流,这些都威胁着电网的安全运行。
另外,特高压交流输电对环境影响较大。
由于交流特高压和高压直流各有优缺点,都能用于长距离大容量输电线路和大区电网间的互联线路,两者各有优缺点。
输电线路的建设主要考虑的是经济性,而互联线路则要将系统的稳定性放在第一位。
随着技术的发展,双方的优缺点还可能互相转化。
两种输电技术将在很长一段时间里并存且有激烈的竞争。
下面用一个特高压交流输电系统典例来说明特高压输电的相关技术。
A、背景介绍。
东京电力公司是日本最大电力公司,供电区域达3.9 万平方公里,包括东京都及其周边区域(大东京市)。
2008 财年净供电量为289TWh,占日本全国供电总量的33%东京电力公司的电力系统有下述几个特点:第一,电力需求集中在大东京市。