2020海南卷高考数学试题

合集下载

2020年海南省高考数学试卷(新高考全国Ⅱ卷)(原卷版)

2020年海南省高考数学试卷(新高考全国Ⅱ卷)(原卷版)

心,A 是圆弧 AB 与直线 AG 的切点,B 是圆弧 AB 与直线 BC 的切点,四边形 DEFG 为矩形,BC⊥DG,垂
足为 C,tan∠ODC= 3 , BH∥DG ,EF=12 cm,DE=2 cm,A 到直线 DE 和 EF 的距离均为 7 cm,圆孔半 5
径为 1 cm,则图中阴影部分的面积为________cm2.
4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成
一个球(球心记为 O),地球上一点 A 的纬度是指 OA 与地球赤道所在平面所成角,点 A 处的水平面是指过点
A 且与 OA 垂直的平面.在点 A 处放置一个日晷,若晷面与赤道所在平面平行,点 A 处的纬度为北纬 40°,则
数据估计出 R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加 1 倍需要的时间约为(ln2≈0.69) ()
A. 1.2 天
B. 1.8 天
C. 2.5 天
D. 3.5 天
7.已知 P 是边长为 2 的正六边形 ABCDEF 内的一点,则 AP AB 的取值范用是( )
三、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13.斜率为 3 的直线过抛物线 C:y2=4x 的焦点,且与 C 交于 A,B 两点,则 AB =________.
14.将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{an},则{an}的前 n 项和为________. 15.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧 AB 所在圆的圆
i 1
i 1
A. 若 n=1,则 H(X)=0
B. 若 n=2,则 H(X)随着 p1 的增大而增大

2020年海南省新高考数学试卷(新高考)含详细解析

2020年海南省新高考数学试卷(新高考)含详细解析

2020年海南省新⾼考数学试卷⼀、选择题(本题共8⼩题,每⼩题5分,共40分.在每⼩题给出的四个选项中,只有⼀项符合题⽬要求的)1.(5分)设集合A={2,3,5,7},B={1,2,3,5,8},则A∩B=()A.{1,3,5,7}B.{2,3}C.{2,3,5}D.{1,2,3,5,7,8}2.(5分)(1+2i)(2+i)=()A.4+5i B.5i C.﹣5i D.2+3i3.(5分)在△ABC中,D是AB边上的中点,则=()A.2+B.﹣2C.2﹣D.+24.(5分)⽇晷是中国古代⽤来测定时间的仪器,利⽤与晷⾯垂直的晷针投射到晷⾯的影⼦来测定时间.把地球看成⼀个球(球⼼记为O),地球上⼀点A的纬度是指OA与地球⾚道所在平⾯所成⻆,点A处的⽔平⾯是指过点A且与OA垂直的平⾯.在点A处放置⼀个⽇晷,若晷⾯与⾚道所在平⾯平⾏,点A处的纬度为北纬40°,则晷针与点A处的⽔平⾯所成⻆为()A.20°B.40°C.50°D.90°5.(5分)某中学的学⽣积极参加体育锻炼,其中有96%的学⽣喜欢⾜球或游泳,60%的学⽣喜欢⾜球,82%的学⽣喜欢游泳,则该中学既喜欢⾜球⼜喜欢游泳的学⽣数占该校学⽣总数的⽐例是()A.62%B.56%C.46%D.42%6.(5分)要安排3名学⽣到2个乡村做志愿者,每名学⽣只能选择去⼀个村,每个村⾥⾄少有⼀名志愿者,则不同的安排⽅法共有()A.2种B.3种C.6种D.8种7.(5分)已知函数f(x)=lg(x2﹣4x﹣5)在(a,+∞)上单调递增,则a的取值范围是()A.(2,+∞)B.[2,+∞)C.(5,+∞)D.[5,+∞)8.(5分)若定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,则满⾜xf(x ﹣1)≥0的x的取值范围是()A.[﹣1,1]∪[3,+∞)B.[﹣3,﹣1]∪[0,1]C.[﹣1,0]∪[1,+∞)D.[﹣1,0]∪[1,3]⼆、选择题(本题共4⼩题,每⼩题5分,共20分.在每⼩题给出的选项中,有多项符合题⽬要求.全部选对的得5分,有选错的得0分,部分选对的得3分)9.(5分)我国新冠肺炎疫情进⼊常态化,各地有序推进复⼯复产,下⾯是某地连续11天复⼯复产指数折线图,下列说法正确的是()A.这11天复⼯指数和复产指数均逐⽇增加B.这11天期间,复产指数增量⼤于复⼯指数的增量C.第3天⾄第11天复⼯复产指数均超过80%D.第9天⾄第11天复产指数增量⼤于复⼯指数的增量10.(5分)已知曲线C:mx2+ny2=1.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为C.若mn<0,则C是双曲线,其渐近线⽅程为y=±xD.若m=0,n>0,则C是两条直线11.(5分)如图是函数y=sin(ωx+φ)的部分图象,则sin(ωx+φ)=()A.sin(x+)B.sin(﹣2x)C.cos(2x+)D.cos(﹣2x)12.(5分)已知a>0,b>0,且a+b=1,则()A.a2+b2≥B.2a﹣b>C.log2a+log2b≥﹣2D.+≤三、填空题(本题共4⼩题,每⼩题5分,共20分)13.(5分)已知正⽅体ABCD﹣A1B1C1D1的棱⻓为2,M、N分别为BB1、AB的中点,则三棱锥A﹣NMD1的体积为.14.(5分)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=.15.(5分)将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}的前n项和为.16.(5分)某中学开展劳动实习,学⽣加⼯制作零件,零件的截⾯如图所示.O为圆孔及轮廓圆弧AB所在圆的圆⼼,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂⾜为C,tan∠ODC=,BH∥DG,EF=12cm,DE=2cm,A到直线DE和EF的距离均为7cm,圆孔半径为1cm,则图中阴影部分的⾯积为cm2.四、解答题(本题共6⼩题,共70分.解答应写出⽂字说明、证明过程或演算步骤.)17.(10分)在①ac=,②c sin A=3,③c=b这三个条件中任选⼀个,补充在下⾯问题中,若问题中的三⻆形存在,求c的值;若问题中的三⻆形不存在,说明理由.问题:是否存在△ABC,它的内⻆A,B,C的对边分别为a,b,c,且sin A=sin B,C =,_______?注:如果选择多个条件分别解答,按第⼀个解答计分.18.(12分)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)求a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1.。

2020学年普通高等学校招生全国统一考试(海南卷)理数-含答案

2020学年普通高等学校招生全国统一考试(海南卷)理数-含答案

绝密★启用前2020年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试题和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试题上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试题上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题 共50分)一、 选择题:本大题共12小题。

每小题5分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M={x|(x-1)2 < 4,x ∈R },N={-1,0,1,2,3},则M ∩N =()(A ){0,1,2}(B ){-1,0,1,2}(C ){-1,0,2,3}(D ){0,1,2,3}(2)设复数z 满足(1-i )z=2 i ,则z = ( )(A )-1+i (B )-1-i (C )1+i (D )1-i(3)等比数列{a n }的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1=( )(A ) (B ) (C ) (D )(4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β。

直线l 满足l ⊥m ,l ⊥n ,,则( )(A )α∥β且l ∥α (B )α⊥β且l ⊥β(C )α与β相交,且交线垂直于l (D )α与β相交,且交线平行于l(5)已知(1+ɑx )(1+x )5的展开式中x 2的系数为5,则ɑ=( ) (A )-4 (B )-3 (C )-2 (D )-1(6)执行右面的程序框图,如果输入的N=10,那么输出的S=(A ) (B )(C ) (D )1313-1919-,l l αβ⊄⊄11112310++++11112!3!10!++++11112311++++11112!3!11!++++(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分 别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四 面体三视图中的正视图时,以zOx 平面为投影面,则得到正视 图可以为(A) (B) (C) (D)(8)设a=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a (C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a=(A)(B) (C)1(D)2(10)已知函数f(x)=x 3+ax 2+bx+c ,下列结论中错误的是 (A )x α∈R,f(x α)=0 (B )函数y=f(x)的图像是中心对称图形 (C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减 (D )若x 0是f (x )的极值点,则()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩1412∃()0'0f x =(11)设抛物线y 2=3px(p>0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为(A )y 2=4x 或y 2=8x (B )y 2=2x 或y 2=8x (C )y 2=4x 或y 2=16x (D )y 2=2x 或y 2=16x (12)已知点A (-1,0);B (1,0);C (0,1),直线y=ax+b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是(A )(0,1)(B)( C) (D)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

2020年普通高等学校招生全国统一考试(新高考全国卷Ⅱ)(海南卷)数学试题(解析版)

2020年普通高等学校招生全国统一考试(新高考全国卷Ⅱ)(海南卷)数学试题(解析版)

绝密★启用前 考试时间:2020年7月7日15:00-17:00 2020年普通高等学校招生全国统一考试(海南卷)(新高考全国卷Ⅱ)数学试题(解析版)试卷总分150分, 考试时间120分钟1.设集合{|13}A x x =≤≤,{|24}B x x =<<,则A B ⋃=( )A.{|23}x x <≤B.{|23}x x ≤≤C.{|14}x x ≤<D.{|14}x x <<答案:C解析:由题可知{|14}A B x x ⋃=≤<,∴选C. 2.212i i-=+( ) A.1B.1-C.iD.i -答案:D解析:2(2)(12)512(12)(12)5i i i i i i i i ----===-++-. 3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A.120种B.90种C.60种D.30种答案:C解析:126560C C ⋅=.4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间,把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面,在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为( )A.20︒B.40︒C.50︒D.90︒答案:B解析:如图所示,由题意可知直线l 与AC 夹角α,即为所求角,∴40DAO α=∠=︒,故选B.。

2020年普通高等学校招生全国统一考试数学理(海南)解析版

2020年普通高等学校招生全国统一考试数学理(海南)解析版

2020年普通高等学校招生全国统一考试(海南卷)数学(理工农医类)第I 卷一, 选择题:(本大题共12题,每小题5分,在每小题给出的四个选项中 ,中有一项是符合题目要求的。

(1) 已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则N A C B =(A) }{1,5,7 (B) }{3,5,7 (C) }{1,3,9 (D) }{1,2,3 解析:易有N A C B =}{1,5,7,选A(2) 复数32322323i ii i+--=-+ (A )0 (B )2 (C )-2i (D)2 解析:32322323i i i i+--=-+()()()()32233223262131313i i i i ii ++---==,选D (3)对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断。

(A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关 解析:由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关,选C(4)双曲线24x -212y =1的焦点到渐近线的距离为(A )23 (B )2 (C 3 (D )1解析:双曲线24x -212y =1的焦点(4,0)到渐近线3y x =的距离为34023d ⨯-==选A(5)有四个关于三角函数的命题:1p :∃x ∈R, 2sin 2x +2cos 2x =122p : ∃x 、y ∈R, sin(x-y)=sinx-siny 3p : ∀x ∈[]0,π,1cos 22x - 4p : sinx=cosy ⇒x+y=2π其中假命题的是(A )1p ,4p (B )2p ,4p (3)1p ,3p (4)2p ,4p解析:1p :∃x ∈R, 2sin2x +2cos 2x =12是假命题;2p 是真命题,如x=y=0时成立;3p 是真命题,∀x ∈[]0,π,21cos 2sin 0sin sin sin 2xx x x x -≥===,=sinx ;4p 是假命题,22πππ≠如x=,y=2时,sinx=cosy,但x+y 。

2020年普通高等学校招生全国统一考试数学文试题(海南卷,解析版)

2020年普通高等学校招生全国统一考试数学文试题(海南卷,解析版)

2020年普通高等学校招生全国统一考试数学文试题(海南卷,解析版)第I 卷一, 选择题:(本大题共12题,每小题5分,在每小题给出的四个选项中 ,中有一项是符合题目要求的。

(1) 已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则A B =(A) }{3,5 (B) }{3,6 (C) }{3,7 (D) }{3,9 1.【答案】D【解析】集合A 与集合B 都有元素3和9,故A B =}{3,9,选.D 。

(2) 复数3223ii+=- (A )1 (B )1- (C )i (D)i - 2.【答案】C 【解析】3223i i +=-(32)(23)(23)(23)i i i i ++=-+694613i i ++-=i ,故选.C 。

(3)对变量,x y 有观测数据(1x ,1y )(1,2,...,10i =),得散点图1;对变量,u v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断。

(A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关 3.【答案】C【解析】图1的的散点分布在斜率小于0的直线附近,y 随x 的增大而减小,故变量x 与y 负相关;图2的的散点分布在斜率大于0的直线附近,u 随v 的增大而减小,故变量v 与v 正相关,故选C 。

(4)有四个关于三角函数的命题:1p :∃x ∈R, 2sin 2x +2cos 2x =122p : ,x y R ∃∈, sin()sin sin x y x y -=- 3p : ∀x ∈[]0,π,1cos 2sin 2x x -= 4p : sin cos 2x y x y π=⇒+= 其中假命题的是(A )1p ,4p (B )2p ,4p (3)1p ,3p (4)2p ,3p 4.【答案】A 【解析】因为2sin2x +2cos 2x =1,故1p 是假命题;当x =y 时,2p 成立,故2p 是真命题;21cos 21(12sin )22x x ---==|sinx |,因为x ∈[]0,π,所以,|sinx |=sinx ,3p 正确;当x =4π,y =94π时,有sin cos x y =,但2x y π+>,故4p 假命题,选.A 。

2020年普通高等学校招生全国统一考试(海南卷)数学【含解析】

2020年普通高等学校招生全国统一考试(海南卷)数学【含解析】

B 中:若 n 2 ,由题知 p1 p2 1,
H (X ) ( p1 log2 p1 p2 log2 p2 ) [ p1 log2 p1 (1 p1) log2 (1 p1)],
H (1 X ) [(1 p1) log2 (1 p1) p1 log2 p1] ,
∴ H ( X ) H (1 X ) ,∴B 错误.
2
3
∴| AB || AF | | BF | 4 4 16 . 33
14.将数列{2n 1} 与{3n 2}的公共项从小到大排列得到数列{an},则{an}的前 n 项和为
.
答案:
3n2 2n 解析:
∵ 2n 1 2(n 1) 1 , 3n 2 3(n 1) 1,∴数列{2n 1} 与{3n 2}的公共项是 6 的
∵ f (x) 为 R 上奇函数,在 (, 0) 单调递减,∴ f (0) 0 , (0, ) 上单调递减.
x 0
x 0

f
(2)
0 ,∴
f
(2)
0
,由
xf
(x
1)
0
,得
f
(x
1)
0

f
(x
1)
0

解得1 x 3 或 1 x 0 ,∴ x 的取值范围是[1, 0] [1, 3] ,∴选 D.
2020 年普通高等学校招生全国统一考试(海南卷)
数学
1.设集合 A {x |1 x 3} , B {x | 2 x 4} ,则 A B ( )
A.{x | 2 x 3} B.{x | 2 x 3} C.{x |1 x 4} D.{x |1 x 4} 答案: C 解析:
解析:
由图易知 T 2 ,则T , 2 2 ,由题意结合图像知,

2020年海南省新高考数学试卷-解析版

2020年海南省新高考数学试卷-解析版

2020年海南省新高考数学试卷一、选择题(本大题共8小题,共40.0分)1. (5分)设集合A ={2,3,5,7},B ={1,2,3,5,8},则A ∩B =( )A. {1,3,5,7}B. {2,3}C. {2,3,5}D. {1,2,3,5,7,8} 2. (5分)(1+2i)(2+i)=( )A. 4+5iB. 5iC. −5iD. 2+3i3. (5分)在△ABC 中,D 是AB 边上的中点,则CB⃗⃗⃗⃗⃗ =( ) A. 2CD ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ B. CD ⃗⃗⃗⃗⃗ −2CA ⃗⃗⃗⃗⃗ C. 2CD ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ D. CD ⃗⃗⃗⃗⃗ +2CA ⃗⃗⃗⃗⃗ 4. (5分)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A. 20°B. 40°C. 50°D. 90°5. (5分)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A. 62% B. 56% C. 46% D. 42%6. (5分)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( ) A. 2种 B. 3种 C. 6种 D. 8种7. (5分)已知函数f(x)=lg(x 2−4x −5)在(a,+∞)上单调递增,则a 的取值范围是( )A. (2,+∞)B. [2,+∞)C. (5,+∞)D. [5,+∞) 8. (5分)若定义在R 的奇函数f(x)在(−∞,0)单调递减,且f(2)=0,则满足xf(x −1)≥0的x 的取值范围是( )A. [−1,1]∪[3,+∞)B. [−3,−1]∪[0,1]C. [−1,0]∪[1,+∞)D. [−1,0]∪[1,3]二、不定项选择题(本大题共4小题,共20.0分)9. (5分)我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是( )A. 这11天复工指数和复产指数均逐日增加;B. 这11天期间,复产指数增量大于复工指数的增量;C. 第3天至第11天复工复产指数均超过80%;D. 第9天至第11天复产指数增量大于复工指数的增量;10.(5分)已知曲线C:mx2+ny2=1.()A. 若m>n>0,则C是椭圆,其焦点在y轴上B. 若m=n>0,则C是圆,其半径为√nC. 若mn<0,则C是双曲线,其渐近线方程为y=±√−mnxD. 若m=0,n>0,则C是两条直线11.(5分)如图是函数y=sin(ωx+φ)的部分图象,则sin(ωx+φ)=()A. B. C. D.12.(5分)已知a>0,b>0,且a+b=1,则()A. a2+b2≥12B. 2a−b>12C. log2a+log2b≥−2D. √a+√b⩽√2三、填空题(本大题共4小题,共20.0分)13.(5分)已知正方体ABCD−A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,则三棱锥A−NMD1的体积为.14.(5分)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=.15.(5分)将数列{2n−1}与{3n−2}的公共项从小到大排列得到数列{a n},则{a n}的前n项和为16.(5分)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=,BH//DG,EF=12cm,DE=2cm,A到直线DE和EF的距离均为7cm,圆孔半径为1cm,则图中阴影部分的面积为.四、解答题(本大题共6小题,共70.0分)17.(10分)在①ac=√3,②csinA=3,③c=√3b这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sinA=√3sinB,,_______?注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)求a1a2−a2a3+⋯+(−1)n−1a n a n+1.19. (12分)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO 2浓度(单位:μg/m 3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO 2浓度有关?附:K 2=n(ad−bc)2(a+b )(c+d )(a+c )(b+d )20.(12分)如图,四棱锥P−ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,QB=√2,求PB与平面QCD所成角的正弦值.21.(12分)已知椭圆C:x2a2+y2b2=1(a>b>0)过点M(2,3),点A为其左顶点,且AM的斜率为12.(1)求C的方程;(2)点N为椭圆上任意一点,求△AMN的面积的最大值.22.(12分)已知函数f(x)=ae x−1−lnx+lna.(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.答案和解析1.【答案】C【解析】 【分析】本题考查了集合的交集运算,属于基础题. 根据两集合的公共元素得出答案. 【解答】解:因为集合A ,B 的公共元素为:2,3,5 故A ∩B ={2,3,5}. 故选:C .2.【答案】B【解析】【分析】本题考查了复数运算,属于基础题. 根据复数的乘法公式计算.【解答】解:(1+2i)(2+i)=2+i +4i +2i 2=5i , 故选:B .3.【答案】C【解析】【分析】本题考查向量的表示,考查向量加法法则等基础知识,考查运算求解能力,是基础题. 利用向量加法法则直接求解. 【解答】解:在△ABC 中,D 是AB 边上的中点, 则CB ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ +DB ⃗⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ +AD⃗⃗⃗⃗⃗⃗ =CD⃗⃗⃗⃗⃗ +(AC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ ) =2CD ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ . 故选:C .4.【答案】B【解析】【分析】本题是立体几何在生活中的运用,考查空间线面角的定义和求法,属于基础题.由纬度的定义和线面角的定义,结合直角三角形的性质,可得晷针与点A处的水平面所成角.【解答】解:可设A所在的纬线圈的圆心为Oˈ,OOˈ垂直于纬线所在的圆面,由图可得∠OHA为晷针与点A处的水平面所成角,又∠OAOˈ为40°且OA⊥AH,在Rt△OHA中,OˈA⊥OH,∴∠OHA=∠OAOˈ=40°,故选:B.5.【答案】C【解析】【分析】本题考查集合的应用,子集与交集、并集运算的转换,韦恩图的应用,是基本知识的考查.设只喜欢足球的百分比为x,只喜欢游泳的百分比为y,两个项目都喜欢的百分比为z,画出图形,列出方程求解即可.【解答】解:设只喜欢足球的百分比为x,只喜欢游泳的百分比为y,两个项目都喜欢的百分比为z,由题意,可得x+z=60,x+y+z=96,y+z=82,解得z=46.∴该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是46%.故选:C6.【答案】C【解析】【分析】本题考查不同的安排方法种数的求法,考查排列组合等基础知识,考查运算求解能力,是基础题.先把三名学生分成2组,再把2组学生分到两个村,利用排列组合知识直接求解.【解答】解:要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有:C32C11A22=6.故选:C.7.【答案】D【解析】【分析】本题考查复合函数单调性的求法,考查数学转化思想方法,是中档题.由对数式的真数大于0求得函数的定义域,令t=x2−4x−5,由外层函数y=lgt是其定义域内的增函数,结合复合函数的单调性可知,要使函数f(x)=lg(x2−4x−5)在(a,+∞)上单调递增,需内层函数t=x2−4x−5在(a,+∞)上单调递增且恒大于0,转化为(a,+∞)⊆(5,+∞),即可得到a的范围.【解答】解:由x2−4x−5>0,得x<−1或x>5.令t=x2−4x−5,∵外层函数y=lgt是其定义域内的增函数,∴要使函数f(x)=lg(x 2−4x −5)在(a,+∞)上单调递增, 则需内层函数t =x 2−4x −5在(a,+∞)上单调递增且恒大于0, 则(a,+∞)⊆(5,+∞),即a ≥5. ∴a 的取值范围是[5,+∞). 故选:D .8.【答案】D【解析】【分析】本题主要考查不等式的求解,结合函数奇偶性的性质,作出函数f(x)的草图,是解决本题的关键.难度中等.根据函数奇偶性的性质,然后判断函数的单调性,利用分类讨论思想进行求解即可. 【解答】解:∵定义在R 的奇函数f(x)在(−∞,0)单调递减,且f(2)=0,f(x)的大致图象如图:∴f(x)在(0,+∞)上单调递减,且f(−2)=0; 故f(−1)<0;当x =0时,不等式xf(x −1)≥0成立, 当x =1时,不等式xf(x −1)≥0成立,当x −1=2或x −1=−2时,即x =3或x =−1时,不等式xf(x −1)≥0成立, 当x >0时,不等式xf(x −1)≥0等价为f(x −1)≥0, 此时{x >00<x −1⩽2,此时1<x ≤3, 当x <0时,不等式xf(x −1)≥0等价为f(x −1)≤0, 即{x <0−2⩽x −1<0,得−1≤x <0,综上−1≤x≤0或1≤x≤3,即实数x的取值范围是[−1,0]∪[1,3],故选:D.9.【答案】CD【解析】【分析】本题考查折线图表示的函数的认知和理解,考查理解能力、识图能力、推理能力,难点在于指数增量的理解与观测,属于中档题.通过复工和折线图中都有递减的部分来判断A;根据第一天和第十一天两者指数差的大小来判断B;根据图象结合复工复产指数的意义和增量的意义可判断CD;【解答】解:由图可知,这11天的复工指数和复产指数有增有减,故A错;由折线的变化程度可见这11天期间,复产指数增量小于复工指数的增量,故B错误;第3天至第11天复工复产指数均超过80%,故C正确;第9天至第11天复产指数增量大于复工指数的增量,D正确;故选:CD.10.【答案】ACD【解析】【分析】本题考查圆锥曲线方程的定义,属于中档题.根据所给条件,逐一分析对应的方程形式,结合椭圆、圆、双曲线方程的定义进行判断即可.【解答】解:A.若m>n>0,则1m <1n,则根据椭圆定义,知x21m+y21n=1表示焦点在y轴上的椭圆,故A正确;B.若m=n>0,则方程为x2+y2=1n ,表示半径为√n的圆,故B错误;C.若m<0,n>0,则方程为x21m+y21n=1,表示焦点在y轴的双曲线,故此时渐近线方程为y=±√−mnx,若m>0,n<0,则方程为x21m+y21n=1,表示焦点在x轴的双曲线,故此时渐近线方程为y=±√−mnx,故C正确;D.当m=0,n>0时,则方程为y=±1√n表示两条直线,故D正确;故选:ACD.11.【答案】BC【解析】【分析】本题主要考查三角函数解析式的求解,结合函数图象求出函数的周期和ω,利用三角函数的诱导公式进行转化是解决本题的关键.比较基础.根据图象先求出函数的周期,和ω,利用五点法求出函数的φ的值,结合三角函数的诱导公式进行转化求解即可.【解答】解:由图象知函数的周期,即,即ω=2,由五点对应法得,得,则故选:BC.12.【答案】ABD【解析】【分析】本题考查的知识要点:不等式的性质的应用,基本不等式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.直接利用不等式的性质的应用和基本不等式的应用求出结果.【解答】解:①已知a>0,b>0,且a+b=1,所以(a+b)2≤2a2+2b2,则a2+b2⩾12,故A正确.②利用分析法:要证2a−b>12,只需证明a−b>−1即可,即a>b−1,由于a>0,b>0,且a+b=1,所以:a>0,b−1<0,故B正确.③log2a+log2b=log2ab⩽log2(a+b2)2=−2,故C错误.④由于a>0,b>0,且a+b=1,利用分析法:要证√a+√b⩽√2成立,只需对关系式进行平方,整理得a+b+2√ab⩽2,即2√ab⩽1,故√ab⩽12=a+b2,当且仅当a=b=12时,等号成立.故D正确.故选:ABD.13.【答案】13【解析】【分析】本题考查利用等体积法求多面体的体积,是基础的计算题.由题意画出图形,再由等体积法求三棱锥A−NMD1的体积.【解答】解:如图,∵正方体ABCD−A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,∴S△ANM=12×1×1=12,∴V A−NMD1=V D1−AMN=13×12×2=13.故答案为:13.14.【答案】163【解析】【分析】本题考查了抛物线的简单几何性质,直线与抛物线的位置关系的应用,考查了学生的计算能力,是中档题.由题意求出直线AB的方程,联立直线和抛物线方程,利用抛物线的性质转化求解即可.【解答】解:由题意可得抛物线焦点F(1,0),直线l的方程为y=√3(x−1),代入y2=4x并化简得3x2−10x+3=0,设A(x1,y1),B(x2,y2),则x1+x2=103;x1x2=1,∴由抛物线的定义可得|AB|=x1+x2+p=103+2=163.故答案为:163.15.【答案】3n2−2n【解析】【分析】本题主要考查等差数列的性质以及求和公式,属于基础题.首先判断{a n}是以1为首项、以6为公差的等差数列,再利用求和公式,得出结论.【解答】解:将数列{2n−1}与{3n−2}的公共项从小到大排列得到数列{a n},则{a n}是以1为首项、以6为公差的等差数列,故它的前n项和为n×1+n(n−1)2×6=3n2−2n,故答案为:3n2−2n.16.【答案】【解析】【分析】本题考查直线与圆的位置关系,三角形的解法,考查分析问题解决问题的能力,是难题. 设大圆的半径为R ,利用已知条件求出OQ 、OD 的长,利用tan∠ODC =求出大圆的半径R ,再根据图中线段关系得出△AOH 为直角三角形,最后求解图中阴影部分的面积即可.【解答】解:作AM 垂直于EF ,交OH 、DG 于S 、N ,垂足为M ,过点O 作OQ 垂直于DQ ,垂足为Q ,∵A 到直线DE 和EF 的距离均为7cm ,∴EM =AM =7, 又∵EF =12,MN =DE =2,∴NG =MF =12−7=5,AN =AM −NM =7−2=5, ∴∠AGD =45°,∵BH // DG ,∴∠AHO =45°, 由于AG 是圆弧的切线,∴AG ⊥OA ,∠AOH =∠ACN =45°, 设大圆的半径为R ,则AS =OS =R√2, OQ =SN =5−R √2,DQ =DN −QN =7−R√2, ∵tan∠ODC =35,∴5−R√27−R √2=35,解得R =2√2,图中阴影部分面积分为扇形AOB 和直角△AOH 的面积减去小半圆的面积, 所以S 阴影=135360×π×(2√2)2+12×2√2×2√2−12×π×1=52π+4. 故答案为:52π+4.17.【答案】解:①ac=√3.△ABC中,sinA=√3sinB,即b=√33a,ac=√3,∴c=√3a,cosC=a2+b2−c22ab =a2+a23−3a22√3a23=√32,∴a=√3,b=1,c=1.②csinA=3.△ABC中,,∴a=6.∵sinA=√3sinB,即a=√3b,∴b=2√3.cosC=a2+b2−c22ab=36+12−c22×6×2√3=√32∴c=2√3.③c=√3b.∵sinA=√3sinB,即a=√3b,又∵c=√3b,与已知条件相矛盾,所以问题中的三角形不存在.【解析】本题主要考查解三角形中的正弦定理与余弦定理,熟练掌握余弦定理并灵活的应用是解本题的关键.①根据题意,结合正弦定理,可得b=√33a,c=√3a,结合,运用余弦定理cosC=a2+b2−c22ab,即可求得c=1.②根据题意,△ABC中,csinA=asinC,即可求得a=6,进而得到b=2√3.运用余弦定理cosC=a2+b2−c22ab,即可求得c=2√3.③根据c =√3b ,sinA =√3sinB 即a =√3b ,可列式求得cosC =√36,与已知条件矛盾,所以问题中的三角形不存在.18.【答案】解:(1)设等比数列{a n }的公比为q(q >1),则{a 2+a 4=a 1q +a 1q 3=20a 3=a 1q 2=8, ∵q >1,∴{a 1=2q =2, ∴a n =2·2n−1=2n .(2)a 1a 2−a 2a 3+⋯+(−1)n−1a n a n+1=23−25+27−29+⋯+(−1)n−1⋅22n+1, =23[1−(−22)n ]1−(−22)=85−(−1)n22n+35.【解析】本题考查等比数列的通项公式,前n 项求和公式,考查转化思想和方程思想,属于基础题.(1)根据题意,列方程组{a 2+a 4=a 1q +a 1q 3=20a 3=a 1q 2=8,解得a 1和q ,然后求出{a n }的通项公式;(2)根据条件,可知a 1a 2,−a 2a 3,…(−1)n−1a n a n+1,是以23为首项,−22为公比的等比数列,由等比数列求和公式,即可得出答案.19.【答案】解:(1)用频率估计概率,从而得到“该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150”的概率 P =32+18+6+8100=0.64;SO 2 PM2.5 [0,150](150,475][0,75] 64 16 (75,115]1010由K 2=n(ad−bc)2(a+b )(c+d )(a+c )(b+d )=100×(64×10−16×10)280×20×74×26=7.484>6.635,P(K 2≥6.635)=0.01;故有99%的把握认为该市一天空气中PM2.5浓度与SO 2浓度有关,【解析】本题考查了独立性检验的应用,用频率估计概率,属于基础题.(1)用频率估计概率,从而得到“该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150”的概率;(2)根据题目所给的数据填写2×2列联表即可;(3)计算K 的观测值K 2,对照题目中的表格,得出统计结论.20.【答案】解:(1)证明:过P 在平面PAD 内作直线l // AD ,由AD // BC ,可得l // BC ,即l 为平面PAD 和平面PBC 的交线, ∵PD ⊥平面ABCD ,BC ⊂平面ABCD ,∴PD ⊥BC , 又BC ⊥CD ,CD ∩PD =D ,∴BC ⊥平面PCD , ∵l // BC ,∴l ⊥平面PCD ;(2)如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D −xyz ,∵PD =AD =1,Q 为l 上的点,QB =√2, ∴PB =√3,QP =1,则D(0,0,0),A(1,0,0),C(0,1,0),P(0,0,1),B(1,1,0), 设Q(1,0,1),则DQ ⃗⃗⃗⃗⃗⃗ =(1,0,1),PB ⃗⃗⃗⃗⃗ =(1,1,−1),DC ⃗⃗⃗⃗⃗ =(0,1,0), 设平面QCD 的法向量为n⃗ =(a,b ,c), 则{n ⃗ ⋅DC ⃗⃗⃗⃗⃗ =0n ⃗ ⋅DQ ⃗⃗⃗⃗⃗⃗ =0,∴{b =0a +c =0,取c =1,可得n⃗ =(−1,0,1), ∴cos <n ⃗ ,PB ⃗⃗⃗⃗⃗ >=n⃗⃗ ⋅PB ⃗⃗⃗⃗⃗⃗ |n ⃗⃗ ||PB⃗⃗⃗⃗⃗⃗ |=√3·√2=√63, ∴PB 与平面QCD 所成角的正弦值为√63.【解析】本题考查空间线面垂直的判定,以及线面角的求法,考查转化思想和向量法的运用,考查运算能力和推理能力,属于中档题.(1)过P在平面PAD内作直线l//AD,推得l为平面PAD和平面PBC的交线,由线面垂直的判定和性质,即可得证;(2)以D为坐标原点,直线DA,DC,DP所在的直线为x,y,z轴,建立空间直角坐标系D−xyz,求出Q(0,1,1),运用向量法,求得平面QCD的法向量,结合向量的夹角公式求解即可.21.【答案】解:(1)由题意可知直线AM的方程为:y−3=12(x−2),即x−2y=−4,当y=0时,解得x=−4,所以a=4,椭圆C:x2a2+y2b2=1(a>b>0)过点M(2,3),可得416+9b2=1,解得b2=12,所以C的方程:x216+y212=1.(2)设与直线AM平行的直线方程为:x−2y=m,当直线与椭圆相切时,与AM距离比较远的直线与椭圆的切点为N,此时△AMN的面积取得最大值.x−2y=m代入椭圆方程:x216+y212=1.化简可得:16y2+12my+3m2−48=0,所以△=144m2−4×16(3m2−48)=0,即m2=64,解得m=±8,与AM距离比较远的直线方程:x−2y=8,利用平行线之间的距离为:d=8+4√1+4=12√55,|AM|==3.所以△AMN的面积的最大值:12×3√5×12√55=18.【解析】本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法,椭圆的简单性质的应用,考查学生分析问题解决问题的数学素养,是偏难题.(1)利用已知条件求出A的坐标,然后求解b,得到椭圆方程.(2)设出与直线AM平行的直线方程,与椭圆联立,利用判别式为0,求出椭圆的切线方程,然后求解三角形的最大值.22.【答案】解:(1)当a=e时,f(x)=e x−lnx+1,∴f′(x)=e x−1x,∴f′(1)=e−1,∵f(1)=e+1,∴曲线y=f(x)在点(1,f(1))处的切线方程为y−(e+1)=(e−1)(x−1),当x=0时,y=2,当y=0时,x=−2e−1,∴曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积S=12×2×2e−1=2e−1.(2)方法一:由f(x)≥1,可得ae x−1−lnx+lna≥1,即e x−1+lna−lnx+lna≥1,即e x−1+lna+lna+x−1≥lnx+x=e lnx+lnx,令g(t)=e t+t,则g′(t)=e t+1>0,∴g(t)在R上单调递增,∵g(lna+x−1)≥g(lnx)∴lna+x−1≥lnx,即lna≥lnx−x+1,令ℎ(x)=lnx−x+1,∴ℎ′(x)=1x −1=1−xx,当0<x<1时,ℎ′(x)>0,函数ℎ(x)单调递增,当x>1时,ℎ′(x)<0,函数ℎ(x)单调递减,∴ℎ(x)≤ℎ(1)=0,∴lna≥0,∴a≥1,故a的范围为[1,+∞).方法二:由f(x)≥1可得ae x−1−lnx+lna≥1,即ae x−1−1≥lnx−lna,设g(x)=e x−x−1,∴g′(x)=e x−1>0恒成立,∴g(x)在(0,+∞)单调递增,∴g(x)>g(0)=1−0−1=0,∴e x−x−1>0,即e x>x+1,再设ℎ(x)=x−1−lnx,∴ℎ′(x)=1−1x =x−1x,当0<x<1时,ℎ′(x)<0,函数ℎ(x)单调递减,当x>1时,ℎ′(x)>0,函数ℎ(x)单调递增,∴ℎ(x)≥ℎ(1)=0,∴x−1−lnx≥0,即x−1≥lnx∵a>0,∴e x−1≥x,则ae x−1≥ax,此时只需要证ax≥x−lna,即证x(a−1)≥−lna,当a≥1时,∴a≥1,x(a−1)>0>−lna恒成立,当0<a<1时,x(a−1)<0<−lna,此时x(a−1)≥−lna不成立,综上所述a的取值范围为[1,+∞).方法三:由题意可得x∈(0,+∞),a∈(0,+∞),∴f′(x)=ae x−1−1,x易知f′(x)在(0,+∞)上为增函数,①当0<a<1时,f′(1)=a−1<0,f′(1)=ae1a−1−a=a(e1a−1−1)>0,a)使得f′(x0)=0,∴存在x0∈(1,1a当x∈(1,x0)时,f′(x)<0,函数f(x)单调递减,∴f(x)<f(1)=a+lna<a<1,不满足题意,②当a≥1时,e x−1>0,lna>0,∴f(x)≥e x−1−lnx,令g(x)=e x−1−lnx,∴g′(x)=e x−1−1,x易知g′(x)在(0,+∞)上为增函数,∵g′(1)=0,∴当x∈(0,1)时,g′(x)<0,函数g(x)单调递减,当x∈(1,+∞)时,g′(x)>0,函数g(x)单调递增,∴g(x)≥g(1)=1,即f(x)≥1,综上所述a的取值范围为[1,+∞).方法四:∵f(x)=ae x−1−lnx+lna,x>0,a>0,∴f′(x)=ae x−1−1x,易知f′(x)在(0,+∞)上为增函数,∵存在x0∈(0,+∞),使得f′(x0)=ae x0−1−1x0=0,则ae x0−1=1x0,则lna+x0−1=−lnx0,即lna=1−x0−lnx0,当x∈(0,x0)时,f′(x)<0,函数f(x)单调递减,当x∈(x0,+∞)时,f′(x)>0,函数f(x)单调递增,∴f(x)≥f(x0)=ae x0−1−lnx0+lna=1x0−lnx0+1−x0−lnx0=1x0−2lnx0+1−x0≥1∴1x0−2lnx0−x0≥0设g(x)=1x−2lnx−x,易知函数g(x)在(0,+∞)上单调递减,且g(1)=1−0−1=0,∴当x∈(0,1]时,g(x)≥0,∴x0∈(0,1]时,1x0−2lnx0−x0≥0,设ℎ(x)=1−x−lnx,x∈(0,1],∴ℎ′(x)=−1−1x<0恒成立,∴ℎ(x)在(0,1]上单调递减,∴ℎ(x)≥ℎ(1)=1−1−ln1=0,当x→0时,ℎ(x)→+∞,∴lna≥0=ln1,∴a≥1.【解析】本题考查了导数的几何意义,以及导数和函数的最值的关系,考查了运算求解能力,转化与化归能力,属于难题.(1)根据导数的几何意义即可求出切线方程,可得三角形的面积;(2)方法一:不等式等价于e x−1+lna+lna+x−1≥lnx+x=e lnx+lnx,令g(t)=e t+ t,根据函数单调性可得lna>lnx−x+1,再构造函数ℎ(x)=lnx−x+1,利用导数求出函数的最值,即可求出a的范围;方法二:构造两个基本不等式e x>x−1,x−1≥lnx,则原不等式转化为x(a−1)≥−lna,再分类讨论即可求出a的取值范围,方法三:利用分类讨论的思想,当0<a<1,此时不符合题意,当a≥1时,f(x)≥e x−1−lnx,令g(x)=e x−1−lnx,再根据导数和函数最值的关系即可证明,−2lnx0+1−x0≥1,方法四:先根据导数和函数的最值的关系求出f(x)≥f(x0)=1xlna=1−x0−lnx0,再求出x0的范围,再利用导数求1−x0−lnx0的范围,即可求出a 的范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线 AG 的 切点 , B 是 圆弧 AB 与 直线 BC 的 切点 , 四 边形 DEFG 为 矩形 , BC DG , 垂足 为 C , tan ODC 3 , 5
BH // DG, EF 12cm, DE 2cm, A 到直线 DE 和 EF 的距离均为 7cm ,圆孔半径为 1cm ,则图中阴影部分的面积为 cm2
14、斜率为 3 的直线过抛物线 C : y2 4x 的焦点,且与 C 交于 A,B 两点,则 | AB |
15、将数列{2n -1}与 3n- 2}的公共项从小到大排列得到数列 an ,则 an 的前 n 项和为
16、某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,O 为圆孔及轮廓圆弧 AB 所在圆的圆心,A 是圆弧 AB 与直
2020 海南高考数学试题
1、设集合 A{2,3,5,7},B={1,2,3,5,8},则 A B =( )
A. {1,3,5,7} B. {2,3} C. { 2,3,5} D.{1,2,3,5,7,8}
2、 (1 2i)(2 i) =( )
A. 4 5i
B. 5i
C. - 5i
D. 2 3i
SO2 浓度(单位:g / m3 m ),得下表:
SO2
PM2.5
[0,50]
(50,15]
(150,475]
[0,35]
32
18
4
(35,75]
6
8
12
(75,115]
3
7
10
(1)估计事件“该市一天空气中 PM 2.5 浓度不超过 75,且 SO2 浓度不超过 150”的概率; (2)根据所给数据,完成下面的 2 2 列联表:
10、已知曲线 C : mx2 ny2 1 ( )
A.若 m n 0 ,则 C 是椭圆,其焦点在 y 轴上
B.若 m n 0 ,则 C 是圆,其半径为为 n C. 若 mn 0 ,则 C 是双曲线,其渐近线方程为 y m x
n D.若 m 0, n 0 ,则 C 是两条直线
11、右图是函数 y sin(x ) ,则 sin( x ) ( )
17、(10 分) 在①ac= 3 ,② c sin A 3,③c 3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求 c 的;
若问题中的三角形不存在,说明理由.
问 题 : 是 否 存 在 ABC , 它 的内角 A, B,C 的 对边分别 为 a, b, c ,且 sin A 3 sin B, C ,
SO2
PM2.5
[0,150]
(150,475]
[0,75]
(75,115]
(3)根据(2)中的列联表,判断是否有 99%的把握认为该市一天空气中 PM 2.5 浓度与 SO2 浓度有关?
附: K 2
n(ad bc)2
, P(K 2 k) 0.050 0.010 0.001
(a b)(c d )(a c)(b d )
k
3.841 6.635 10.828
20、(12 分)如图,四棱锥 P ABCD 的底面为正方形, PD 底面 ABCD .
设平面 PAD 与平面 PBC 的交线为 l . (1)证明: l 平面 PDC ; (2)已知 PD AD l ,Q 为 l 上的点,QB= 2 ,求 PB 与平面 QCD 所成角的正弦值.
喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 ( )
A.62
B.56
C.46
D.42
6、要安排 3 名学生到 2 个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( )
A.2 种
B.3 种
C.6 种
D.8 种
7、已知函数 f (x) lg(x2 4x 5) 在 (a,) 上单调递增,则 a 的取值范围是( )
A. (2,)
B. [2,)
C. (5,)
D. [5,)
பைடு நூலகம்
8、若定义在 R 上的奇函数 f (x) 在 (, 0) 单调递减,且 f (2) 0 ,则满足 xf (x 1) 0 的 x 的取值范围是( ) A. [1,1] [3, ) B. [3, 1] [0,1] C.[1, 0] [1, ) D. [1, 0] [1,3]
在点 A 处放置一个日晷,若晷面与赤道所在平面平行,点 A 处的纬度为北纬 40o ,则晷针与点 A 处的水平面所成角为( )
A. 20o
B. 40o
C. 50o
D. 90o
5、某中学的学生积极参加体育锻炼,其中有 96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既
A.
sin(x ) B .
sin(
2x)
C. cos(2x )
D . cos(5 2 x)
3
3
6
6
12、已知 a 0, b 0,且 a b1,则( )
A. a2 b2 1 B . 2ab 1
2
2
C. log2 a log2 b 2
D.
a
b
2
13、已知正方体 ABCD-A1B1C1D1 的棱长为 2,M、N 分别为 BB1、AB 的中点,则三棱锥 A-NMD1 的体积为
3、在 ABC 中,D 是 AB 边上的中点,则 CB =( )
A. 2 CD CA
B. CD 2 CA
C. 2 CD CA
D. CD 2 CA
4、日晷是中国古代用来测定时间的仪器,利用与晷面垂直的 晷针投射到晷面的影子来测定时间.把地球看成一个球(球心
记为 O),地球上一点 A 的纬度是指 OA 与地球赤道所在平面 所成角,点 A 处的水平面是指过点 A 且与 OA 垂直的平面.
?
6
注:如果选择多个条件分别解答,按第一个解答计分.
18、(12 分)已知公比大于 1 的等比数列{an} 满足 a2 a4 20, a3 8 (1)求{an} 的通项公式; (2)求 a1a2 a2a3 ... (1)n1anan1
19、(12 分) 为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了 100 天空气中的 PM 2.5 和
9.我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续 11 天复工复产指数折线图,下列说法正确的是( )
A. 这 11 天复工指数和复产指数均逐日增加; B. 这 11 天期间,复产指数增量大于复工指数的增量; C. 第 3 天至第 11 天复工复产指数均超过 80%;
D. 第 9 天至第 11 天复产指数增量大于复工指数的增量;
相关文档
最新文档