电磁感应现象习题专项复习及答案
2025年高考人教版物理一轮复习专题训练—法拉第电磁感应定律自感和涡流 附答案解析

2025年⾼考⼈教版物理⼀轮复习专题训练—法拉第电磁感应定律、⾃感和涡流(附答案解析)1.(2023·北京卷·5)如图所⽰,L是⾃感系数很⼤、电阻很⼩的线圈,P、Q是两个相同的⼩灯泡,开始时,开关S处于闭合状态,P灯微亮,Q灯正常发光,断开开关( )A.P与Q同时熄灭B.P⽐Q先熄灭C.Q闪亮后再熄灭D.P闪亮后再熄灭2.(2023·江苏卷·8)如图所⽰,圆形区域内有垂直纸⾯向⾥的匀强磁场,OC导体棒的O端位于圆⼼,棒的中点A位于磁场区域的边缘。
现使导体棒绕O点在纸⾯内逆时针转动。
O、A、C点电势分别为φO、φA、φC,则( )A.φO>φC B.φC>φAC.φO=φA D.φO-φA=φA-φC3.(2023·⼭东德州市模拟)如图甲所⽰,正⽅形虚线框为匀强磁场区域的边界,取垂直纸⾯向⾥为正⽅向,磁感应强度B随时间t变化的规律如图⼄所⽰。
匝数为n、半径为r的导线圈恰好处于虚线框的外接圆上,导线圈与电阻箱R1、定值电阻R2组成回路,回路中的其他电阻不计。
以下说法正确的是( )A.R2中的电流⽅向先向左,再向右B.回路中的电动势为C.t=t0时刻,回路中的电流为零D.R1=R2时,R1消耗的电功率最⼤4.(2023·⼴东⼴州市⼀模)如图甲所⽰为探究电磁驱动的实验装置。
某个铝笼置于U形磁体的两个磁极间,铝笼可以绕⽀点⾃由转动,其截⾯图如图⼄所⽰。
开始时,铝笼和磁体均静⽌,转动磁体,会发现铝笼也会跟着发⽣转动,下列说法正确的是( )A.铝笼是因为受到安培⼒⽽转动的B.铝笼转动的速度的⼤⼩和⽅向与磁体相同C.磁体从图⼄位置开始转动时,铝笼截⾯abcd中的感应电流的⽅向为a→d→c→b→a D.当磁体停⽌转动后,如果忽略空⽓阻⼒和摩擦阻⼒,铝笼将保持匀速转动5.(多选)(2023·辽宁沈阳市模拟)电⼦感应加速器基本原理如图所⽰,图甲的上、下两个电磁铁线圈中电流的⼤⼩、⽅向可以变化,产⽣的感⽣电场使真空室中的电⼦加速。
电磁感应练习及答案

电磁感应练习一、选择题:1、发现电流磁效应的科学家是()A、安培B、法拉第C、奥斯特D、特斯拉2、如图所示,直导线及其右侧的矩形金属框位于同一平面内。
当导线中的电流发生如图所示的变化时,线框中感应电流与矩形线框受力情况,下列叙述正确的是()A、感应电流方向不变,线框所受合力方向不变B、感应电流方向改变,线框所受合力方向不变C、感应电流方向改变,线框所受合力方向改变D、感应电流方向不变,线框所受合力方向改变3、有一带电量为+q,重为G的小球,从两竖直的带电平行板上方h高处自由落下,两极板间匀强磁场的磁感应强度为B,方向如图示,则带电小球通过有电场和磁场的空间时()A、一定做曲线运动B、不可能做曲线运动C、有可能做匀速运动D、有可能做匀加速直线运动4、下面说法正确的是()A、自感电动势总是阻碍电路中原来电流增加B、自感电动势总是阻碍电路中原来电流变化C、电路中的电流越大,自感电动势越大D、电路中的电流变化量越大,自感电动势越大5、如图所示,电路甲、乙中,电阻R和自感线圈L的电阻值都很小,接通S,使电路达到稳定,灯泡D发光。
则()A、在电路甲中,断开S,D将逐渐变暗B、在电路甲中,断开S,D将先变得更亮,然后渐渐变暗C、在电路乙中,断开S,D将渐渐变暗D、在电路乙中,断开S,D将变得更亮,然后渐渐变暗6 如图乙所示,abcd是放置在水平面上且由导体做成的框架,质量为m的导体棒PQ和ab、cd接触良好,回路的总电阻为R,整个装置放在垂直于框架平面的变化的磁场中,磁场的磁感应强度变化情况如图甲所示,PQ始终静止,关于PQ与框架之间摩擦力F m在从零到t1时间内的变化情况,正确的是()A.F摩始终为零B.F摩一直减小C.F摩一直增大D.F摩先减小后增大7.(2009·沈阳模拟)导体框架dabc构成的平面与水平面成θ角,质量为m的导体棒PQ 与导体轨道ad、bc接触良好而且相互垂直.轨道ad、bc平行,间距为L.abQP回路的面积为S,总电阻为R且保持不变.匀强磁场方向垂直框架平面斜向上,其变化规律如图乙所示.从t=0开始,导体棒PQ始终处于静止状态,图乙中θ为已知量,B0足够大,则()A .产生感应电流时,导体棒PQ 中的电流方向为由P 到QB .产生感应电流时,感应电流为恒定电流C .产生感应电流时,导体棒PQ 受到的安培力为恒力D .PQ 恰好不受摩擦力时,磁感应强度的大小为mgR cos θLS8.(6分)一个面积S =4×10-2m 2,匝数n =100匝的线圈,放在匀强磁场中,磁场方向垂直平面,磁感应强度的大小随时间变化规律如图所示,在开始2秒内穿过线圈的磁通量的变化率等于________,在第3秒末感应电动势大小为________.二、计算题:9、有一个1000匝的线圈,在0.4s 内穿过它的磁通量从0.02Wb 均匀增加到0.09Wb 。
电磁感应现象习题专项复习附答案

电磁感应现象习题专项复习附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L vθ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流EI R=,棒所受的安培力F BIL =联立可得22B L v F R =,由平衡条件可得F mgsin θ=,解得2mgRsin B L vθ(2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t则电容器板间电压为 U E BLv ='= 此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q则电路中电流Q C U CBL v i t t t ∆∆∆===∆∆∆,又va t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++所以金属棒做初速度为0的匀加速直线运动,ts末的速度gvtsinv atv CgRsinθθ'==+.考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.2.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。
高中物理电磁感应现象压轴题复习题及答案

高中物理电磁感应现象压轴题复习题及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。
(2)线圈中的电流大小。
(3)AB 边产生的焦耳热。
【答案】(1)22FR v B L =;(2)F I BL=;(3)4FL Q =【解析】 【分析】 【详解】(1)线圈向右匀速进入匀强磁场,则有F F BIL ==安又电路中的电动势为E BLv =所以线圈中电流大小为==E BLvI R R 联立解得22FRv B L =(2)根据有F F BIL ==安得线圈中的电流大小F I BL=(3)AB 边产生的焦耳热22()4AB F R L Q I R t BL v==⨯⨯ 将22FRv B L =代入得 4FL Q =2.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。
沿导轨方向建立x 轴,虚线EF 与坐标原点O 在一直线上,空间存在垂直导轨平面的磁场,磁感应强度分布为1()00.60.8()0T x B x T x -<⎧=⎨+≥⎩(取磁感应强度B垂直斜面向上为正)。
现有一质量为10.3m =kg ,边长均为l =0.5m 的U 形框cdef 固定在导轨平面上,c 点(f 点)坐标为x =0。
U 形框由金属棒de 和两绝缘棒cd 和ef 组成,棒de 电阻为10.2R =Ω。
另有一质量为20.1=m kg ,长为l =0.5m ,电阻为20.2R =Ω的金属棒ab 在离EF 一定距离处获得一沿斜面向下的冲量I 后向下运动。
已知金属棒和U 形框与导轨间的动摩擦因数均为33μ=。
(1)若金属棒ab 从某处释放,且I =0.4N·s ,求释放瞬间金属棒ab 上感应电流方向和电势差ab U ;(2)若金属棒ab 从某处释放,同时U 形框解除固定,为使金属棒与U 形框碰撞前U 形框能保持静止,求冲量I 大小应满足的条件。
高中物理电磁感应练习题及答案

高中物理电磁感应练习题及答案一、选择题1、在电磁感应现象中,下列说法正确的是:A.感应电流的磁场总是阻碍原磁通量的变化B.感应电流的磁场方向总是与原磁场的方向相反C.感应电流的磁场方向总是与原磁场的方向相同D.感应电流的磁场方向与原磁场方向无关答案:A.感应电流的磁场总是阻碍原磁通量的变化。
2、一导体在匀强磁场中匀速切割磁感线运动,产生感应电流。
下列哪个选项中的物理量与感应电流大小无关?A.磁感应强度B.导体切割磁感线的速度C.导体切割磁感线的长度D.导体切割磁感线的角度答案:D.导体切割磁感线的角度。
二、填空题3、在电磁感应现象中,当磁通量增大时,感应电流的磁场方向与原磁场方向_ _ _ _ ;当磁通量减小时,感应电流的磁场方向与原磁场方向 _ _ _ _。
答案:相反;相同。
31、一根导体在匀强磁场中以速度v运动,切割磁感线,产生感应电动势。
如果只增大速度v,其他条件不变,则产生的感应电动势将_ _ _ _ ;如果保持速度v不变,只减小磁感应强度B,其他条件不变,则产生的感应电动势将 _ _ _ _。
答案:增大;减小。
三、解答题5、在电磁感应现象中,有一闭合电路,置于匀强磁场中,接上电源后有电流通过,现将回路断开,换用另一电源重新接上,欲使产生的感应电动势增大一倍,应采取的措施是()A.将回路绕原路转过90°B.使回路长度变为原来的2倍C.使原电源的电动势增大一倍D.使原电源的电动势和回路长度都增大一倍。
答案:A.将回路绕原路转过90°。
法拉第电磁感应定律是电磁学中的重要规律之一,它描述了变化的磁场产生电场,或者变化的电场产生磁场的现象。
这个定律是法拉第在1831年发现的,它为我们打开了一个全新的领域——电磁学,也为我们的科技发展提供了强大的理论支持。
在高中物理中,法拉第电磁感应定律主要通过实验和理论推导来展示,让学生们能够更直观地理解这个重要的规律。
高中的学生们已经对电场和磁场的基本概念有了一定的了解,他们已经掌握了电场线和磁场线的概念,以及安培定则等基本知识。
高一物理电磁感应现象练习题及答案

高一物理电磁感应现象练习题及答案练习题一:1. 一根导线以速度v穿过磁感应强度为B的均匀磁场,导线长度为L,角度θ为导线与磁场方向的夹角。
求导线在时间Δt内所受到的感应电动势。
答案:感应电动势E = B * v * L * sinθ2. 一根导线以速度v进入磁感应强度为B的均匀磁场,导线的长度为L。
当导线完全进入磁场后,突然停止不动。
求此过程中导线两端之间的电势差。
答案:电势差V = B * v * L3. 一个长度为L的导线以速度v匀速通过磁感应强度为B的均匀磁场,当导线通过时间Δt后,磁场方向突然发生改变。
求导线两端之间产生的感应电动势。
答案:感应电动势E = 2 * B * v * L4. 一根长度为L的导线以速度v与磁感应强度为B的均匀磁场垂直相交,导线所受到的感应电动势大小为E,如果将导线切成长度为L/2的两段导线,两段导线所受感应电动势的大小分别是多少?答案:每段导线所受感应电动势的大小都是E练习题二:1. 一台电动机的转子有60个磁极,额定转速为3000转/分钟。
求转子在额定转速下的转子导线所受的感应电动势大小。
答案:转子导线所受感应电动势的大小为ω * Magnetic Flux,其中ω为角速度,Magnetic Flux为磁通量。
转速为3000转/分钟,转速ω =2π * 3000 / 60。
由于转子有60个磁极,每转所经过的磁通量为60 * Magnetic Flux。
因此,转子导线所受感应电动势的大小为60 * 2π * 3000 / 60 * Magnetic Flux。
2. 一根长度为L的导线以角速度ω绕通过导线轴线的磁感应强度为B的磁场旋转。
求导线两端之间的电势差大小。
答案:电势差V = B * ω * L3. 一根输电线路的电阻为R,长度为L,电流为I。
如果在电力系统中,磁感应强度为B的磁场垂直于导线方向,求输电线路两端之间的感应电动势。
答案:感应电动势E = B * L * I4. 一块矩形线圈有N匝,每匝的边长为a和b,磁通量为Φ,求矩形线圈所受到的感应电动势。
物理电磁感应复习题集及答案

物理电磁感应复习题集及答案第一题:电磁感应基础知识1. 什么是电磁感应?2. 法拉第电磁感应定律是什么?3. 在一个圆形线圈中,磁场的变化如何影响感应电动势的大小?4. 什么是自感现象?5. 自感现象与互感现象有何异同?答案:1. 电磁感应是指当一个导体中的磁通量发生变化时,在导体中就会产生感应电动势和感应电流的现象。
2. 法拉第电磁感应定律是指导体中感应电动势的大小与磁场的变化率成正比,方向由右手定则确定。
3. 在一个圆形线圈中,磁场的变化越快,感应电动势就越大。
当磁场增强或减弱时,感应电动势的方向也会相应变化。
4. 自感现象是指一个导体中的电流变化时,导体本身会产生感应电动势和感应电流。
5. 自感现象与互感现象都是电磁感应现象,不同之处在于自感发生在导体本身,而互感发生在两个或多个相邻的线圈之间。
第二题:电磁感应的应用1. 什么是变压器?它如何工作?2. 什么是感应电动机?3. 什么是发电机?它是如何产生电能的?4. 什么是涡流?它对电磁感应有什么影响?5. 什么是励磁?6. 举例说明一种电磁感应的实际应用。
答案:1. 变压器是一种通过电磁感应原理来改变交流电压大小的电器设备。
它由一个主线圈和一个副线圈组成,通过磁场的感应作用,将输入电压变换为输出电压,实现电能的传输和变换。
2. 感应电动机是利用电磁感应原理来转换电能和机械能的装置。
它由一个定子和一个转子组成,当定子上的交流电流变化时,就会在转子上产生感应电流,从而使转子转动。
3. 发电机是一种将机械能转换为电能的装置。
它通过电磁感应原理,在导体中产生感应电动势,并通过电路系统将这种电动势转化为电流和电能的装置。
4. 涡流是指当导体中有磁场变化时,在导体内部会形成的电流环流动现象。
涡流的产生会导致能量损耗,并且会对电磁感应产生一定的影响。
5. 励磁是指为了使发电机和变压器等设备工作正常,需要通过外部电源向设备提供一定的励磁电流,以产生足够的磁场。
初三电磁感应练习题及答案

初三电磁感应练习题及答案练习题1:1. 一个导线以2.0m/s的速度从一个均匀磁场中通过,磁感应强度为0.4T,导线长度为0.5m。
求导线所受的感应电动势大小。
2. 一个长度为3.0m的导线以10m/s的速度垂直通过一个磁感应强度为1.5T的磁场,求导线两端之间的感应电势差。
3. 一个矩形导线框架的长边长度为2.0m,短边长度为0.5m,框架的整体电阻为6.0Ω。
当磁感应强度为0.8T时,框架被拉动,导线切割磁力线的速度恒定为3.0m/s。
求在导线上出现的电动势大小。
答案:1. 感应电动势的大小与磁感应强度、导线长度和导线在磁场中的速度有关。
根据公式E = B*d*l*v,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,v为导线长度。
将已知值代入计算,得到E = 0.4T * 0.5m * 2.0m/s = 0.4V。
故导线所受的感应电动势大小为0.4V。
2. 感应电势差的大小取决于磁感应强度、导线长度和导线在磁场中的速度之积。
根据公式∆V = B*l*v,其中B为磁感应强度,l为导线长度,v为导线在磁场中的速度。
将已知值代入计算,得到∆V = 1.5T * 3.0m * 10m/s = 45V。
导线两端之间的感应电势差为45V。
3. 在导线上出现的电动势大小取决于磁感应强度、导线长度、导线在磁场中的速度和导线的电阻之积。
根据公式E = B*d*l*v/R,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,R为导线的电阻。
将已知值代入计算,得到E = 0.8T * 3.0m * 2.0m * 0.5m/s / 6.0Ω = 0.8V。
在导线上出现的电动势大小为0.8V。
练习题2:1. 一个磁感应强度为0.5T的磁场垂直于一个半径为0.2m的圆环,圆环的电阻为2.0Ω。
圆环以5rad/s的角速度绕垂直磁场线旋转,求圆环上出现的感应电动势大小。
2. 一个长度为4.0m的直导线绕过一个半径为2.0m的圆形电感线圈,电感线圈中有100个匝。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应现象习题专项复习及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图所示,在倾角θ=10°的绝缘斜面上固定着两条粗细均匀且相互平行的光滑金属导轨DE 和GH ,间距d =1m ,每条金属导轨单位长度的电阻r 0=0.5Ω/m ,DG 连线水平,且DG 两端点接了一个阻值R =2Ω的电阻。
以DG 中点O 为坐标原点,沿斜面向上平行于GH 方向建立x 轴,在DG 连线沿斜面向上的整个空间存在着垂直于斜面向上的磁场,且磁感应强度大小B 与坐标x 满足关系B =(0.6+0.2x )T ,一根长l =2m ,电阻r =2Ω,质量m =0.1kg 的粗细均匀的金属棒MN 平行于DG 放置,在拉力F 作用下以恒定的速度v =1m/s 从x =0处沿x 轴正方向运动,金属棒与两导轨接触良好。
g 取10m/s 2,sin10°=0.18,不计其它电阻。
(提示:可以用F -x 图象下的“面积”代表力F 所做的功)求: (1)金属棒通过x =1m 处时的电流大小; (2)金属棒通过x =1m 处时两端的电势差U MN ; (3)金属棒从x =0到x =2m 过程中,外力F 做的功。
【答案】(1)0.2A ;(2)1.4V ;(3)0.68J 【解析】 【分析】 【详解】(1)金属棒连入电路部分产生的感应电动势为11(0.60.21)11V=0.8V E B dv ==+⨯⨯⨯根据闭合电路欧姆定律可得电流大小1100.2A2E I d R r xr l==++ (2)解法一:根据欧姆定律可得金属棒通过1m x =处时两端的电势差101(2)() 1.4V MN U I R xr B l d v =++-=解法二:根据闭合电路欧姆定律可得金属棒通过1m x =处时两端的电势差111(0.60.21)210.22V 1.4V 2MN d U B lv I r l =-=+⨯⨯⨯-⨯⨯= (3)金属棒做匀速直线运动,则有sin F mg BdI θ=+其中0(0.60.2)11A 0.2A32Bdv x I d x R r xr l+⨯⨯===+++ 可得0.300.04F x =+金属棒从x =0到x =2m 过程中,外力F 做的功0.300.382J 0.68J 2W Fx +==⨯=3.如图所示,空间存在竖直向下的匀强磁场,磁感应强度B =0.5T .在匀强磁场区域内,有一对光滑平行金属导轨,处于同一水平面内,导轨足够长,导轨间距L =1m ,电阻可忽略不计.质量均为m =lkg ,电阻均为R =2.5Ω的金属导体棒MN 和PQ 垂直放置于导轨上,且与导轨接触良好.先将PQ 暂时锁定,金属棒MN 在垂直于棒的拉力F 作用下,由静止开始以加速度a =0.4m /s 2向右做匀加速直线运动,5s 后保持拉力F 的功率不变,直到棒以最大速度v m 做匀速直线运动.(1)求棒MN 的最大速度v m ;(2)当棒MN 达到最大速度v m 时,解除PQ 锁定,同时撤去拉力F ,两棒最终均匀速运动.求解除PQ 棒锁定后,到两棒最终匀速运动的过程中,电路中产生的总焦耳热.(3)若PQ 始终不解除锁定,当棒MN 达到最大速度v m 时,撤去拉力F ,棒MN 继续运动多远后停下来?(运算结果可用根式表示)【答案】(1)25m /s m v = (2)Q =5 J (3)405m x = 【解析】 【分析】 【详解】(1)棒MN 做匀加速运动,由牛顿第二定律得:F -BIL =ma 棒MN 做切割磁感线运动,产生的感应电动势为:E =BLv 棒MN 做匀加速直线运动,5s 时的速度为:v =at 1=2m/s 在两棒组成的回路中,由闭合电路欧姆定律得:2E I R=联立上述式子,有:222B L atF ma R=+代入数据解得:F =0.5N5s 时拉力F 的功率为:P =Fv 代入数据解得:P =1W棒MN 最终做匀速运动,设棒最大速度为v m ,棒受力平衡,则有:0m mPBI L v -= 2mm BLv I R=代入数据解得:m v =(2)解除棒PQ 后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v ′,则有:2m mv mv '=设从PQ 棒解除锁定,到两棒达到相同速度,这个过程中,两棒共产生的焦耳热为Q ,由能量守恒定律可得:2211222m Q mv mv '=-⨯ 代入数据解得:Q =5J ;(3)棒以MN 为研究对象,设某时刻棒中电流为i ,在极短时间△t 内,由动量定理得:-BiL △t =m △v对式子两边求和有:()()m BiL t m v ∑-∆=∑∆ 而△q =i △t对式子两边求和,有:()q i t ∑∆=∑∆ 联立各式解得:BLq =mv m , 又对于电路有:2E q It t R==由法拉第电磁感应定律得:BLxE t= 又2BLxq R=代入数据解得:x =4.“801所”设计的磁聚焦式霍尔推进器可作为太空飞船的发动机,其原理如下:系统捕获宇宙中大量存在的等离子体(由电量相同的正、负离子组成)经系统处理后,从下方以恒定速率v 1向上射入有磁感应强度为B 1、垂直纸面向里的匀强磁场区域Ⅰ内.当栅极MN 、PQ 间形成稳定的电场后,自动关闭区域Ⅰ系统(关闭粒子进入通道、撤去磁场B 1).区域Ⅱ内有磁感应强度大小为B 2、垂直纸面向外的匀强磁场,磁场右边界是直径为D 、与上下极板相切的半圆(圆与下板相切于极板中央A ).放在A 处的放射源能够向各个方向均匀发射速度大小相等的氙原子核,氙原子核经过该区域后形成宽度为D 的平行氙粒子束,经过栅极MN 、PQ 之间的电场加速后从PQ 喷出,在加速氙原子核的过程中探测器获得反向推力(不计氙原子核、等离子体的重力,不计粒子之间相互作用于相对论效应).已知极板长RM =2D ,栅极MN 和PQ 间距为d ,氙原子核的质量为m 、电荷量为q ,求:(1)氙原子核在A 处的速度大小v 2; (2)氙原子核从PQ 喷出时的速度大小v 3;(3)因区域Ⅱ内磁场发生器故障,导致区域Ⅱ中磁感应强度减半并分布在整个区域Ⅱ中,求能进入区域Ⅰ的氙原子核占A 处发射粒子总数的百分比.【答案】(1)22B Dq m (2222112284B v qdm B D q m+(3)090FAN ∠= 13 【解析】 【分析】 【详解】(1)离子在磁场中做匀速圆周运动时:2222v B qv m r=根据题意,在A 处发射速度相等,方向不同的氙原子核后,形成宽度为D 的平行氙原子核束,即2D r = 则:222B Dqv m=(2)等离子体由下方进入区域I 后,在洛伦兹力的作用下偏转,当粒子受到的电场力等于洛伦兹力时,形成稳定的匀强电场,设等离子体的电荷量为q ' ,则11Eq B v q ='' 即11E B v =氙原子核经过区域I 加速后,离开PQ 的速度大小为3v ,根据动能定理可知:22321122Uq mv mv =- 其中电压11U Ed B v d ==联立可得2221123284B v qdm B D qv m+=(3)根据题意,当区域Ⅱ中的磁场变为2B '之后,根据2mvr B q =''可知,2r r D '==①根据示意图可知,沿着AF 方向射入的氙原子核,恰好能够从M 点沿着轨迹1进入区域I ,而沿着AF 左侧射入的粒子将被上极板RM 挡住而无法进入区域I .该轨迹的圆心O 1,正好在N 点,11AO MO D ==,所以根据几何关系关系可知,此时090FAN ∠=;②根据示意图可知,沿着AG 方向射入的氙原子核,恰好从下极板N 点沿着轨迹2进入区域I ,而沿着AG 右侧射入的粒子将被下极板SN 挡住而无法进入区域I .22AO AN NO D ===,所以此时入射角度030GAN ∠=.根据上述分析可知,只有060FAG ∠=这个范围内射入的粒子还能进入区域I .该区域的粒子占A 处总粒子束的比例为00601==1803η5.如图所示,在坐标xoy 平面内存在B=2.0T 的匀强磁场,OA 与OCA 为置于竖直平面内的光滑金属导轨,其中OCA 满足曲线方程,C 为导轨的最右端,导轨OA 与OCA 相交处的O 点和A 点分别接有体积可忽略的定值电阻R 1和R 2,其R 1=4.0Ω、R 2=12.0Ω.现有一足够长、质量m=0.10kg 的金属棒MN 在竖直向上的外力F 作用下,以v=3.0m/s 的速度向上匀速运动,设棒与两导轨接触良好,除电阻R 1、R 2外其余电阻不计,g 取10m/s 2,求:(1)金属棒MN 在导轨上运动时感应电流的最大值; (2)外力F 的最大值;(3)金属棒MN 滑过导轨OC 段,整个回路产生的热量. 【答案】(1)1.0A (2)20.0N (3)1.25J 【解析】 【分析】 【详解】(1)金属棒MN 沿导轨竖直向上运动,进入磁场中切割磁感线产生感应电动势.当金属棒MN 匀速运动到C 点时,电路中感应电动势最大,产生的感应电流最大.金属棒MN 接入电路的有效长度为导轨OCA 形状满足的曲线方程中的x 值.因此接入电路的金属棒的有效长度为L m =x m =0.5mE m =3.0V 且A(2)金属棒MN 匀速运动中受重力mg 、安培力F 安、外力F 外作用N N(3)金属棒MN 在运动过程中,产生的感应电动势有效值为金属棒MN 滑过导轨OC 段的时间为tms滑过OC 段产生的热量J.6.如图,水平面上有两根足够长的光滑平行金属导轨,导轨间距为l ,电阻不计,左侧接有定值电阻R ,质量为m 、电阻为r 的导体杆,以初速度v 0沿轨道滑行,在滑行过程中保持与轨道垂直且接触良好,整个装置处于方向竖直向上,磁感应强度为B 的匀强磁场中。