非平衡电桥工作原理
非平衡电桥的原理和应用

非平衡电桥的原理和应用电桥的的基本原理是通过桥式电路来测量电阻,从而得到引起电阻变化的其它物理量,如温度、压力、形变等,桥式电路在检测技术、传感器技术中的应用非常广泛。
根据电桥工作时是否平衡来区分,可将电桥分为平衡电桥与非平衡电桥两种。
平衡电桥一般用于测量具有相对稳定状态的物理量,非平衡电桥往往和一些传感器元件配合使用.某些传感器元件受外界环境(压力、温度、光强等)变化引起其内阻的变化,通过非平衡电桥可将阻值转化为电压输出,从而达到观察、测量和控制环境变化的目的。
非平衡电桥在传感技术中已得到广泛应用,非平衡电桥电路是传感技术中的重要组成部分。
【实验目的】1.了解与掌握非平衡电桥的工作原理,研究非平衡电桥的电压输出特性。
2.掌握与学习用非平衡直流电桥电压输出方法测量电阻的基本原理和操作方法。
3.初步学习非平衡电桥的设计方法,根据不同被测对象灵活选择不同的桥路形式进行测量。
【实验仪器】FQJ型非平衡直流电桥、升温加热炉与温度控制器、待测电阻。
【实验原理】1.非平衡电桥的工作原理非平衡电桥的原理图如图5.7.1所示,当调节R1、R2和R3,使桥的B、D两端电势相等,这时电桥达到平衡。
如果将平衡电桥中的待测电阻换成电阻型传感器,当外界条件(如温度、压力、形变等)改变时,传感器阻值会有相应变化,B、这时电桥处于非平衡状态。
D两端电势不再相等,假设B、D之间有一负载电阻Rg,其输出电压SAg图5.7.1 非平衡电桥Ug。
如果使R1、R2和R3保持不变,那么Rx变化时Ug也会发生变化。
根据Rx与Ug的函数关系,通过检测桥路的非平衡电压Ug,能反映出桥臂电阻Rx的微小变化,测量外界物理量的变化,这就是非平衡电桥工作的基本原理。
当桥臂电阻取不同的值时,电桥可以分为三类:(1)等臂电桥:R1?R2?R3?Rx?R(2)输出对称电桥,也称卧式电桥:R1?Rx?R,R2?R3?R?,且R?R?。
(3)电源对称电桥,也称立式电桥:R3?Rx?R,R1?R2?R?,且R?R?。
非平衡电桥实验报告

非平衡电桥实验报告一、实验目的二、实验原理1.电桥的基本原理2.非平衡电桥的工作原理三、实验器材和仪器1.电源2.电桥仪器3.标准电阻箱四、实验步骤1.搭建非平衡电桥电路图2.调节标准电阻箱,使得非平衡电桥平衡并记录相应数据。
3.改变标准电阻箱的数值,再次记录数据。
五、实验结果与分析六、误差分析及改进措施七、结论一、实验目的:通过搭建非平衡电桥并记录相应数据,了解非平衡电桥的工作原理,并掌握使用非平衡电桥进行测量的方法。
二、实验原理:1. 电桥的基本原理:在一个由四个导体组成的闭合回路中,将两个相邻导体之间接入一个测量元件(如热敏电阻),另外两个导体之间接入一个校正元件(如可变电阻),当校正元件调节到某一特定数值时,测量元件输出为零。
此时称为“平衡状态”。
2. 非平衡电桥的工作原理:非平衡电桥是在电桥的基础上,将校正元件换成了待测元件(如电容、电感等),通过改变待测元件的数值,使得热敏电阻输出一个非零值。
此时称为“非平衡状态”。
三、实验器材和仪器:1. 电源2. 电桥仪器3. 标准电阻箱四、实验步骤:1. 搭建非平衡电桥电路图。
2. 调节标准电阻箱,使得非平衡电桥平衡并记录相应数据。
3. 改变标准电阻箱的数值,再次记录数据。
五、实验结果与分析:根据实验步骤所记录的数据,可以计算出待测元件的数值。
通过比较实际值和理论值之间的差异,可以分析误差来源。
六、误差分析及改进措施:误差来源主要包括仪器本身精度限制、环境因素干扰等。
改进措施包括选用精度更高的仪器、加强环境控制等。
七、结论:通过本次实验,我们了解了非平衡电桥的工作原理,并掌握了使用非平衡电桥进行测量的方法。
同时,我们也认识到了误差来源和改进措施的重要性。
非平衡电桥实验报告

非平衡电桥的应用实验目的:1.学习非平衡电桥的工作原理;2.学习和掌握非平衡电桥的应用;3.学习一些传感器的工作原理和不同的测量电路.实验原理:1.非平衡电桥的工作原理如图1所示,在惠斯顿电桥中:为稳压电源,和为固定电阻,为可变电阻,为电阻型传感器,为电桥输出电压.当时,电桥处于平衡状态,此时有(1)当时,电桥处于不平衡状态,则有在一定条件下,调整电桥达到平衡状态.由(1)式可见,此时电桥的平衡状态与电源无关;当外界条件改变时,传感器的阻值会有相应的变化,这时电桥平衡被破坏,桥路两端的电压也随之而变,由于桥路的输出电压能反映出桥臂电阻的微小变化,因此通过测量输出电压即可以检测外界条件的变化.这种在非平衡条件下工作的电桥称为非平衡电桥,这样的测量方法为非电量电测法.2.测量电路介绍如采用电阻式传感器作为被测对象,传感元件的引出线有以下几种方式:二线制、三线制和四线制.采用二线制接法(图1),虽然导线电阻会给测量带来影响,但在测量精度要求不高、测量仪器与被测传感元件距离较近时,常采用二线制.但如果金属电阻本身的阻值很小,那末引线的电阻及其变化也就不能忽视,例如对于Pt100铂电阻,若导线电阻为1 Ω,将会产生2.5 ℃的测量误差.为了消除或减少引线电阻的影响,通常的办法是采用三线联接法加以处理,如图2所示.工业热电阻目前大多采用的都是三线制接法.在三线制接线电路中,传感元件的一端与一根导线相接,另一端同时接两根导线.传感元件在与电桥配合时,与传感元件相接的三根导线粗细要相同,长度要相等,阻值要一致(图中r1,r2,r3即为引线电阻).其中一根引线与测量仪表连接,由于测量仪表的内阻很大,可认为流过r2的电流接近于零.另两根引线分别与电桥的两个相邻臂相连,这样引线电阻对测量就不会造成影响.数据处理原始数据:铂电阻热敏电阻21.8 10.49 106.985 24.3 49.12 2580.827 7.85627.7 14.34 109.930 32.5 61.36 1921.812 7.56132.2 16.55 111.625 38.4 67.11 1638.860 7.40237.1 19.09 113.575 43.3 73.45 1344.381 7.20441.6 21.32 115.290 48.1 77.41 1169.083 7.06446.3 23.71 117.131 52.8 80.93 1018.490 6.92650.9 26.07 118.952 57.6 84.71 861.982 6.75955.4 28.30 120.676 61.9 87.29 758.122 6.63160.3 30.74 122.565 66.4 89.56 668.655 6.50565.2 33.15 124.434 70.4 91.33 600.102 6.39769.3 35.29 126.096 74.3 92.95 538.264 6.28873.9 37.54 127.846 79.7 94.87 466.070 6.14479.6 40.32 130.012 84.2 96.22 416.005 6.03184.0 42.42 131.652 88.7 97.46 370.517 5.91588.9 44.80 133.512 94.7 98.82 321.166 5.77293.4 47.10 135.313 100.0 100.00 278.796 5.63098.2 49.65 137.314100.0 50.00 137.588铂电阻Y = A + B * XParameter Value Error------------------------------------------------------------A 0.37861 0.17259B 0.50103 0.00257------------------------------------------------------------R SD N P------------------------------------------------------------ 0.99979 0.26477 18 <0.0001------------------------------------------------------------0.00260.00270.00280.00290.00300.00310.00320.00330.00345.56.06.57.07.58.0L n (R )1/T1/T-Ln(R)图像 1/T-Ln(R)拟合姓名:马学喆班级:F0603028学号:5060309041Linear Regression: Y = A + B * XParameter Value Error------------------------------------------------------------ A 99.06951 0.11606 B 0.38839 0.00173------------------------------------------------------------R SD N P------------------------------------------------------------ 0.99984 0.17804 18 <0.0001------------------------------------------------------------与上面计算结果相同热敏电阻20304050607080901001104550556065707580859095100105U /m VT/℃5.56.06.57.07.58.0L n (R )1/TLinear Regressio:Y = A + B * XParameter Value Error------------------------------------------------------------A -3.11306 0.04377B 3265.33378 14.6359------------------------------------------------------------R SD N P------------------------------------------------------------0.99986 0.01153 16 <0.0001------------------------------------------------------------对于热敏电阻,有两边取对数,得则由热敏电阻lnR~1/T图像可知思考与讨论误差分析数据记录与处理上:1.由于公式里面有个电压不在测量数据内,因此,作的泰勒展开,发现展开到第三项时误差在要求范围内,故消去,在展开得到的系数,与标准吻合比较精确。
非平衡电桥的原理和应用实验

非平衡电桥的原理和应用实验非平衡电桥是一种利用电桥的非平衡状态来测量物理量的方法。
通常,电桥是由电阻、电容和电感元件组成的一种电路,用于测量物理量,如电阻、电容和电感。
在平衡状态下,电桥的两个相对端的电压相等,而在非平衡状态下,电桥的两个相对端的电压不相等。
非平衡电桥实验利用了这个原理,通过测量非平衡状态下的电压差来计算物理量的值。
1.搭建电桥电路:根据所测量的物理量的特性选择合适的电桥电路。
通常,电桥电路由一个待测量的电阻(物理量)和其他已知的电阻、电容或电感元件组成。
电桥的两个相对端分别连接到一个电源和一个测量仪器上。
2.调节电桥:调节已知元件的值,使电桥处于平衡状态。
平衡状态下,电桥的两个相对端的电压相等。
3.测量电压差:断开平衡状态,通过改变电源的电压或改变待测量物理量的值,使电桥处于非平衡状态。
此时,电桥的两个相对端的电压不相等。
4.计算物理量:根据非平衡状态下的电压差,使用相关的公式或表格计算出待测量物理量的值。
1.电阻测量:通过将待测电阻与已知电阻串联或并联,使用非平衡电桥实验可以测量待测电阻的值。
2.电容测量:通过将待测电容与已知电容串联或并联,使用非平衡电桥实验可以测量待测电容的值。
3.电感测量:通过将待测电感与已知电感串联或并联,使用非平衡电桥实验可以测量待测电感的值。
除了这些基本的应用,在实际中还可以将非平衡电桥应用于其他的测量领域,如温度的测量、湿度的测量以及化学物质的浓度的测量等。
在这些应用中,根据待测量的特性,可以选择合适的电桥电路进行测量。
总结起来,非平衡电桥利用了电桥的非平衡状态来测量物理量的方法,在多个领域都有广泛的应用。
通过搭建电桥电路、调节电桥、测量电压差和计算物理量的值,可以实现对电阻、电容和电感等物理量的测量。
同时,非平衡电桥也可以应用于其他领域的测量,如温度、湿度和化学物质浓度等。
非平衡电桥的应用原理

非平衡电桥的应用原理1. 前言非平衡电桥是一种常用的电子测量仪器,用于测量电阻或其他物理量。
它能够通过无法理论预计或计算的方式,测量电阻值的变化或测量其他物理量的相对变化。
本文将介绍非平衡电桥的应用原理。
2. 电桥的基本原理非平衡电桥是基于电桥原理设计的一种测量仪器。
电桥是由四个电阻组成的电路,其中两个电阻相等,称为匹配电阻,另外两个电阻则是需要测量的电阻。
3. 非平衡电桥的工作原理非平衡电桥的工作原理基于电桥平衡和非平衡状态之间电流的变化。
在平衡状态下,电桥中的电流为零。
当测量电阻发生变化时,电流将不再为零,产生非平衡状态。
非平衡电桥会通过测量非平衡电流的大小来反映出电阻的变化。
4. 非平衡电桥的应用非平衡电桥在实际应用中有着广泛的用途。
4.1 温度传感器非平衡电桥可用于测量温度传感器的变化。
传感器的电阻会随着温度的变化而变化,通过非平衡电桥的测量,可以准确地反映出温度的变化情况。
4.2 气体传感器非平衡电桥也可用于测量气体传感器的变化。
气体传感器中的电阻会随着气体浓度的变化而变化,利用非平衡电桥的原理,可以实时监测气体的浓度。
4.3 压力传感器非平衡电桥还可以用于测量压力传感器的变化。
压力传感器的电阻随着压力的变化而变化,利用非平衡电桥的测量方式,可以实时监测压力的变化情况。
4.4 液位传感器非平衡电桥还可用于测量液位传感器的变化。
液位传感器中的电阻会随着液位的变化而变化,通过非平衡电桥的测量,可以准确地反映出液位的变化情况。
5. 总结非平衡电桥是一种常用的电子测量仪器,通过测量非平衡电流的大小来反映电阻或其他物理量的变化。
其应用广泛,包括温度传感器、气体传感器、压力传感器和液位传感器等。
通过应用非平衡电桥的原理,我们可以实时监测和测量各种物理量的变化情况,为科研和工程应用提供了便利。
直流非平衡电桥

设备无法启动
检查电源是否正常,检查设备 内部是否有短路或开路现象,
修复或更换损坏的部件。
THANKS
感谢观看
可调元件
除了可调电阻外,还可以采用其他可调元件,如可变电容、电感等,用于实现 电桥平衡。这些元件的调节范围应满足测量需求,并具有较高的稳定性和精度。
指示器及保护装置
指示器
用于显示电桥是否处于平衡状态。常用的指示器有检流计、 光电指示器等。当电桥平衡时,指示器应无偏转或发出信号 。
保护装置
为防止电桥过载或短路而损坏,应设置相应的保护装置。例 如,在电源回路中串联保险丝或自动开关,以便在电流过大 时自动切断电源。此外,还可以在桥臂上并联限流电阻或采 用其他限流措施,以保护电桥免受损坏。
调节电桥平衡
通过调节电阻箱中的电阻值, 使得电流表的示数为零,此时 电桥达到平衡状态。
改变条件重复实验
改变电源电压或电阻箱的阻值, 重复以上步骤进行多次实验。
数据记录表格设计
| 序号 | 电源电压(V) | 电阻箱阻值(Ω) | 电 压表示数(V) | 电流表示数(A) |
01
|1|||||
03
02
03
直流非平衡电桥测量原理 及方法
测量原理分析
直流非平衡电桥的基本原理
01
利用电桥平衡条件进行测量,当电桥平衡时,对角线上的两个
电阻的电压相等。
电阻变化对电桥平衡的影响
02
当待测电阻发生变化时,会打破电桥的平衡状态,从而产生输
出电压。
灵敏度与测量精度的关系
03
电桥的灵敏度决定了测量精度,灵敏度越高,测量精度也越高。
惠斯通电桥
一种常用的电桥类型,由四个电 阻组成,通过调节可变电阻使电 桥平衡,从而测量未知电阻。
非平衡电桥

本科毕业论文题目:非平衡电桥及温度的测量学院:物理与电子科学学院班级:物理五班姓名:孟建超指导教师:孙祝职称:副教授完成日期: 2014 年 5 月 15 日非平衡电桥及温度的测量摘要:电桥是电路中常用的仪器之一,分为平衡电桥和非平衡电桥[1],主要用途是较为精确地测量电阻。
温度是热学中的一个基本物理量,日常生活中常用温度计测量温度,但是温度计测温的范围有限,测量精度也不高,而非平衡电桥则能在更大范围内更精确地测量温度。
本文主要介绍非平衡电桥的工作原理,以及怎样利用非平衡电桥测量温度,拓展了非平衡电桥的应用。
关键词:非平衡电桥原理;电阻测量;温度测量;实验设计目录引言 (1)1 非平衡电桥的工作原理 (1)1.1平衡电桥 (1)1.2 非平衡电桥 (1)1.3 非平衡电桥的桥路形式 (1)1.4非平衡电桥的输出 (2)2 测温原理 (3)2.1 用非平衡电桥测电阻 (3)2.2 用非平衡电桥测温度 (3)2.2.1 用线性电阻测温度 (3)2.2.2 用非线性电阻测温度 (4)3 用非平衡电桥测量温度实验设计 (5)3.1测量使用的仪器 (6)3.1.1 测量仪器 (6)3.1.2 使用仪器时的注意事项 (6)3.1.3 仪器使用前的准备 (6)3.2 测量内容及步骤 (6)4 小结 (8)引言温度是物体冷热程度的一个重要标志,是我们日常生活中很重要的一个热学量,它与人类的生产生活和科学研究有着密切的关系。
现代科学技术的迅猛发展,使温度的检测直接关系到生产状况和产品质量,许多精密仪器的温度测量都需要极高的精确度,因此温度测量的实验和应用也越来越复杂。
生活中测量温度的方法有很多种,经常使用到的主要是接触式测温和非接触式测温。
日常生活中最长用的温度计测温就属于接触式测温,但是在很多复杂的情况下并不能使用这种测温方法,例如测量工业炼钢炉的炉内温度不能把温度计放到炼钢炉内测量,这时就要用到非接触式方法测温。
非平衡直流电桥的原理和应用

非平衡直流电桥的原理和应用
非平衡直流电桥的原理是基于基尔霍夫第二定律,即在一个闭合回路内,电流的代数和为零。
电桥由四个电阻和一个未知元件构成,其中两个
电阻称为已知电阻,另两个电阻称为未知电阻。
电桥中通入一个已知电流,通过调节未知电阻或改变已知电阻的值,使电流从未知电阻的两个端点中
分流,使得电桥中的电流为零。
根据基尔霍夫第二定律,在电桥中的电流
为零时,可以通过测量电桥两侧的电压差来计算未知元件的参数。
1.电阻测量:通过非平衡电桥可以测量未知电阻的值。
在电桥平衡时,可以通过已知电阻与未知电阻的比例关系计算出未知电阻的值。
2.电容测量:非平衡电桥可以用于测量未知电容的值。
在电桥平衡时,通过改变电容器电极间的距离或改变电容量,可以测量未知电容的值。
3.电感测量:非平衡电桥可以用于测量未知电感的值。
在电桥平衡时,通过改变电感器中的铁心长度或改变电感器中的线圈匝数,可以测量未知
电感的值。
4.温度测量:非平衡电桥可以用于测量温度。
通过将温度传感器作为
未知元件接入电桥中,当电桥平衡时,可以测得温度的值。
5.湿度测量:非平衡电桥可以用于测量湿度。
通过将湿度传感器作为
未知元件接入电桥中,当电桥平衡时,可以测得湿度的值。
6.线性变换器:非平衡电桥还可以用于进行线性变换。
通过在电桥中
引入变压器并调节其参数,可以实现信号的线性放大或压缩。
总之,非平衡直流电桥是一种常用的测量电阻、电容、电感等参数的仪器。
它具有精度高、灵敏度好、稳定性强等优点,适用于各种工程领域的测量和控制应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
I g:输出电流、U g : 输出电压
2、非平衡电桥工作原理
设 Rx R1
R4 R2 K 电桥平衡时 R3 R1
R1
B
U
R2
A
R3
C
4
当电阻变化为 Rx R1 R1 时,电桥失去平衡。 实验中所用数字电压表 Rg R1 且令 则有: R1
D
R
E
K Ug E (1 K )(1 K )
R1
B
U
R2
A
R3
C
4
D
R
E
R1
B
U
R2
A
C
4
设Rx=R1
Rg:电表内阻
R3
D
R
Rx
R2 R3 E [ R2 R3 R4 R2 Rg ( R3 R4 )]I g R4 E [ R3 R4 ( R2 Rg )( R3 R4 )]I g R2 R3 R4 E [ R2 R3 R4 R2 Rg ( R3 R4 )]U g R4 Rg E [ R3 R4 ( R2 Rg )( R3 R4 )]U g
U g (V )
( R1 / R1 )
g U 作 ,由图中求出最大非线性误
差 SV 0 和零点灵敏度 D ,与理论值比较。
数据处理之二
2、测量铜电阻的电阻温度系数
次
数 1
2
3
4
5
6
7
89Biblioteka 10T (℃)U 0 (V )
用作图法和最小二乘法处理数据,进 而求出铜的电阻温度系数 。
问题思考
项目
实验原理 实验内容 数据处理 实验仪器 操作要点 问题思考
实验原理
1、非平衡电桥
调节4个电阻,使 B 、D 两点间等电势,则电桥处于平 衡态。若某一个臂或几个臂是 传感元件,其阻值可随待测物 理量的改变而变化,电桥处于 非平衡态,此时 B 、 D之间 电势不相等。电势差的大小反 映了电阻的变化情况。若在两 点间接入电流计,则有电流流 过。测量两点间的不平衡电压 (或电流),即可了解电路中 电阻的变化情况,从而获得待 测物理量的变化。
操作要点
实验中的4个电阻箱,由于 其仪器误差不一定一致,虽然4 个电阻箱示值一样,但是实际阻 值不一定相同,因此,组成电桥 后,应适当调节 2R ,以使电桥 达到平衡。
数据处理之一
1、研究非平衡电桥特性
R1 R2 R3 R4 400
E 4V
R1 () 404.0 408.0 412.0 416.0 420.0
0时
零点电压灵敏度:
SV 0
KE 2 (1 K )
K 1 时的极值
SV 0
E 4
(2)非线性误差
定义
D
U g U0 Ug
当K 1 时
D
2
4、金属电阻温度系数 对于多数金属电 阻,随温度的升高阻 值增加,在一定的温 度范围内,二者的关 系为:
对于本实验中所用 的金属电阻,在 -50℃~100℃的范围 内, 变化很小,可 视为常量:
大学物理实验
直流非平衡电桥
编制:张平伟
直流非平衡电桥
直流非平衡电桥相对平衡电桥而言,在 工程技术中应用更为广泛,比如有些电阻准 确度要求不高,但需要连续快捷的测量,就 要应用非平衡电桥。由于传感器的广泛应用, 在非平衡电桥中,某一个臂或几个臂可以是 传感元件,其阻值可随某一物理量的变化而 相应改变,用非平衡电桥可以快速连续地测 定其阻值的改变,因此可以得到该物理量的 变化信息,从而完成一定的测量。 本实验即应用非平衡电桥测量金属电阻 的温度系数。
本实验采用高内阻电压表测量UR 来确定电阻的变化。试改用电流表测 量IR 来测量电阻的变化。
B
U
R3
自组电桥
R2
取E 4V
取 4.0、 8.0、
R1
A
R1 R2 R3 R4 400
C
D
4
R
R1
12.0、 16.0、 20.0
记录各阻值下所对应的不 g U 平衡电压,作 图。
实验电路
E
实验内容之二
2、测量铜电阻的电阻温度系数
在原电路中用铜电阻代替 R1 ,将其 置于加热装置中,在室温下调电桥平衡。 然后加热铜电阻,每隔 5℃记录相应的U g 值 ,共测10个数据。 用作图法和最小二乘法处理数据,进 而求出铜的电阻温度系数 。
U
当 (1 K ) 时
U g U 0与 有
近似的线性关系:
K U0 E 2 (1 K )
设置
U与关系曲线
K 1。此时则有: R1 R2 R3 R4 R 时,
Ug
4 2
E 及
U0
4
E
3、非平衡电桥的工作特性
(1)输出电压灵敏度
定义 U SV
Rt R0 (1 t )
Rt : t℃时的阻值 R0 : 0℃时的阻值 :电阻的温度系数
Rt R0 R0t t
因此得到实验公式:
1 U0 E t 4
实验仪器
稳压电源 数字电压表
水银温度计 标准电阻箱(4个)
铜电阻样品
加热装置
实验内容之一
1、研究非平衡电桥特性