单片机外围电路扩展

合集下载

单片机数字输入输出接口扩展设计方法

单片机数字输入输出接口扩展设计方法

单片机数字输入输出接口扩展设计方法单片机作为一种常见的微控制器,其数字输入输出接口的扩展设计方法是我们在电子工程领域中经常遇到的任务之一。

在本文中,我们将讨论单片机数字输入输出接口的扩展设计方法,并探讨其中的原理和应用。

在单片机系统中,数字输入输出(I/O)接口在连接外围设备时起着至关重要的作用。

通过扩展数字 I/O 接口可以为单片机系统提供更多的输入输出通道,从而提高系统的功能和性能。

下面将介绍几种常见的单片机数字 I/O 接口扩展设计方法。

1. 并行输入输出接口扩展并行输入输出接口扩展是最常见和直接的扩展方法之一。

通常,单片机的内部I/O口数量有限,无法满足一些复杂的应用需求。

通过使用外部并行输入输出扩展芯片,可以将单片机的I/O口扩展到更多的通道,同时保持高速数据传输。

这种方法可以使用注册器和开关阵列来实现数据的输入和输出。

2. 串行输入输出接口扩展串行输入输出接口扩展是一种节省外部引脚数量的方法。

使用串行输入输出扩展器,可以通过仅使用几个引脚实现多个输入输出通道。

这种方法适用于具有较多外设设备且外围设备数量有限的应用场景。

通过串行接口(如SPI或I2C)与扩展器通信,可以实现高效的数据传输和控制。

3. 矩阵键盘扩展矩阵键盘扩展是一种常见的数字输入接口扩展方法。

很多应用中,需要通过键盘输入数据或控制系统。

通过矩阵键盘的使用,可以大大减少所需的引脚数量。

通过编程方法可以实现键盘按键的扫描和解码,从而获取用户输入的数据或控制信号。

4. 脉冲编码调制(PCM)接口扩展脉冲编码调制是一种常见的数字输出接口扩展方法。

它通过对数字信号进行脉冲编码,将数字信号转换为脉冲信号输出。

这种方法适用于需要输出多个连续的数字信号的应用,如驱动器或步进电机控制。

通过适当的电路设计和编程,可以实现高效的数字信号输出。

5. PWM(脉冲宽度调制)接口扩展PWM接口扩展是一种常用的数字输出接口扩展方法。

PWM技术通过改变信号的脉冲宽度来实现模拟信号输出。

第8章 89C51单片机的系统扩展

第8章 89C51单片机的系统扩展
I/O1 12 I/O2 13
GND 14
28 VCC 27 WE 26 NC 25 A8 24 A9 23 NC 22 OE 21 A10
20 CE 19 I/O7
18 I/O6 17 I/O5 16 I/O4 15 I/O3
图8-6 2817A引脚图
A0~A10
I/00~I/07 CE OE WE
2、2732EPROM存储器
2732是4K×8紫外线擦除电可编程只读存储 器。单一+5V供电,最大工作电流为100mA, 维持电流为35mA,读出时间为250ns。引 脚如图8-2。
2732
A7 1 A6 2
A5 3 A4 4 A3 5 A2 6 A1 7 A0 8 O0 9 O1 10 O2 11
允许快速写入,内部提供全部定时,给出查询标
志。
NC 1 A12 2 A7 3 A6 4
A5 5 A4 6 A3 7 A2 8 A1 9 A0 10
I/O0 11
I/O1 12 I/O2 13
GND 14
28 VCC 27 WE
A0~A12
26 NC
25 A8 I/00~I/07
24 A9
23 A11
8.1.1 程序存储器的分类
程序存储器ROM也称只读存储器。所谓只 读存储器是指ROM中的信息,一旦写入以 后,就不能随意更改,特别是不能在程序运 行过程中再写入新的内容,只能在程序执行 过程中读出其中的内容。
1、掩膜编程的ROM
其编程由半导体厂家完成,根据用户提出的存 储内容决定MOS管的连接方式,把存储内容 制作在芯片上,用户不能更改所存入的信息。
特点:适合于大批量生产,结构简单、集成度 高。成本高,只有大量生产定型ROM时才合 算。

单片机的外围电路

单片机的外围电路

键盘电路设计要点
1 2
去抖处理
消除按键按下时的抖动,确保一次只识别一个按 键。
独立按键与矩阵按键的选择
根据按键数量和单片机I/O口资源选择合适的键 盘形式。
3
接口类型
根据单片机和键盘的接口类型选择合适的连接方 式,如直接连接或通过I2C、SPI等通信协议连接。
05
通信接口电路
通信接口电路的作用与类型
寻址方式
每个设备具有唯一的地址,通过地址码进行访问。
数据传输速率
最高可达400kHz。
06
外围电路的干扰与防护
外围电路的干扰来源与影响
01
02
03
04
电源噪声
由于电源线路上的电压波动和 电流脉冲,可能导致单片机工
作异常。
信号线耦合
信号线之间的电磁场相互作用 ,可能导致信号的畸变或噪声

接地回路
不同电路之间的地线连接可能 形成地线回路,导致噪声和干
扰。
空间辐射
来自其他电子设备或自然界的 电磁波可能对单片机产生干扰

干扰的防护措施
电源滤波
在电源入口处加入滤波 器,减少电源噪声的干
扰。
隔离与屏蔽
对容易受到干扰的信号 线进行隔离或屏蔽,降 低信号线耦合的影响。
合理的接地
采用单点接地、多点接 地或混合接地方式,减
少地线回路的干扰。
空间滤波
在单片机周围加装电磁 屏蔽材料,减少空间辐
单片机外围电路
• 单片机外围电路概述 • 电源电路 • 输入输出接口电路 • 显示与键盘电路 • 通信接口电路 • 外围电路的干扰与防护
01
单片机外围电路概述
定义与作用
定义

单片机外围电路

单片机外围电路

单片机外围电路
关于单片机外围电路
在当今信息技术发达的时代,单片机外围电路在电子产品中应用广泛。

形成电
子计算机等电子产品的基本框架,是一种由经过集成的半导体元件组成的外围系统的电路。

单片机外围电路的结构特点是,它由来自存储器和外部输入/输出设备的各个
端口连接而成,具有扩展着输入和输出逻辑端口的功能。

由于这种结构具有便携性、灵活性和兼容性,因此在工业设备、控制器和家用设备中广泛使用,在电子应用中具有广泛的用途。

单片机外围电路的主要功能由输入和输出部分来实现,它们共同构成外围电路
系统,以支持多种设备的工作。

输入部分,一般有时钟、计数器、定时器、复位电路等,实现单片机中的触发控制。

输出部分提供适当的脉冲信号,实现单片机数据和时钟信号的输出,控制外围设备的运转。

单片机外围电路在应用上具有诸多优越性,例如可靠性好,外围电路由容许芯
片和元件组成,每个元件都被严格测试,能够满足单片机在振荡运行中机械和热变化的要求。

另外,因其结构灵活,可以根据实际应用的需要,设计出不同的外围信号接口,从而有效保障应用的正常正确性。

此外,单片机外围电路与单片机一起构成的完整系统,可大大降低设计工作的复杂性和费用。

总的来说,单片机外围电路在电子器件工程领域具有广泛应用价值,是实现计
算机及其他电子产品顺利实现的必备元件,未来将更加发挥它的重要作用。

单片机的IO扩展

单片机的IO扩展

8.3 用51单片机的串行口扩展并行口
串口的方式0用于I/O扩展。方式0为同步移位寄存器工作方
式,波特率为fosc/12。数据由RXD端(P3.0)输入,同步移
位时钟由TXD端(P3.1)输出。
1. 用74LS165扩展并行输入口
如图8-13,用51单片机的串口扩展两个8位并行输入口。
• 74LS165是8位并行输入串行输出的寄存器。当74LS165的S/L#端由高到低 跳变,并行输入端的数据被置入寄存器;
MOVX @DPTR,A
;WR#为低,数据经74LS273口输出
第26页/共97页
【例8-1】 程序编写程序把按钮开关状态通过图8-12的发光二
极管显示出来。
程序如下:
DDIS: MOV DPTR,#0FEFFH ;输入口地址→DPTR
LP: MOVX A,@DPTR
;按钮开关状态读入A中
MOVX @DPTR,A
关状态。 • 当某条输入口线的按钮开关按下时,该输入口线为低电平,读入单片机后
,其相应位为“0”,然后再将口线的状态经74LS273输出,某位低电平时 二极管发光,从而显示出按下的按钮开关的位置。
第24页/共97页
【例8-1】 分析 该电路的工作原理如下
• 当P2.0=0,RD#=0(WR#=1)时,选中74LS244芯片,此时若无按钮开关按 下,输入全为高电平。当某开关按下时则对应位输入为“0”,74LS244的 输入端不全为“1”,其输入状态通过P0口数据线被读入AT89S51片内。
8.1 单片机的系统扩展概述
1. 系统扩展的含义
在单片机芯片外加相应的芯片、电路,使得有关功能得以扩 充,称为系统扩展。
系统扩展包括:外部存储器扩展,I/O接口扩展,总线扩展 等

第6章 MCS-51单片机系统扩展技术

第6章  MCS-51单片机系统扩展技术

6.3 数据存储器扩展
6.3.1 静态RAM扩展电路
6.3.2 动态RAM扩展电路
返回本章首页
6.3.1 静态RAM扩展电路
常用的静态RAM芯片有6116,6264,62256等,其 管脚配置如图6-13所示。
1.6264静态RAM扩展 额定功耗200mW,典型存取时间200ns,28脚双列直插 式封装。表6-1给出了6264的操作方式,图6-14为6264静 态RAM扩展电路。
图 6 9
A EEPROM
28 17
扩 展 电 路
写入数据
不是指令
查询 中断 延时
2.2864A EEPROM 扩展
2864A有四种工作方式: (1)维持方式 (2)写入方式 (3)读出方式 (4)数据查询方式
图 6 12
28 64
返回本节
A EEPROM
扩 展 电 路
串行E2PROM简介 串行E2PROM占用引线少、接线简单,适用于作为数据存储 器且保存信息量不大的场合。 以AT93C46/56/57/66为例,它是三线串行接口E2PROM, 能提供128×8、256×8、512×8或64×16、128×16、256×16 位,具有高可靠性、能重复擦写100,000次、保存数据100年 不丢失的特点,采用8脚封装。
第6章 MCS-51单片机系统扩展技术
6.1 MCS-51单片机系统扩展的基本概念
6.2 程序存储器扩展技术
6.3 数据存储器扩展 6.4 输入/输出口扩展技术
T0 T1
时钟电路
ROM
RAM
定时计数器
CPU
并行接口 串行接口 中断系统
P0 P1 P2 P3
TXD RXD
INT0 INT1

一种基于LAB8000单片机实验箱的扩展电路板设计与实现

一种基于LAB8000单片机实验箱的扩展电路板设计与实现

5 2・
科 论坛

种基于L A B 8 0 0 0 单片机实验箱的 扩展电路板设计与实现
杨 金 泉
( 唐 山 学 院信 息 工 程 系 , 河北 唐 山 0 6 3 0 0 0 ) 摘 要: 本文介绍 了一种基 于 L A B 8 0 0 0单 片机 实验箱的扩展 电路板设计 , 针对L A B 8 0 0 0单 片机 实验箱 实验 内容的不足 , 开发设计 了 外 围扩 展 电路 板 。该 扩 展 电路 板 主要 由 包括 总 线 驱 动 器 、 实时 时钟 、 R S 4 8 5总线 、 L M3 5温 度 传 感 器及 放 大 、 直 流 电机 及 驱 动 、 字符 L C D 等 电路组成。该电路板 实用性强 , 进一步扩展 了 L A B 8 0 0 0单片机 实验 箱支持 的实验项 目, 实验效果 良好 。 关键词 : 单片机 ; 电路板 ; L A B 8 0 0 0 ; 实验箱 1概 述 用了 L M3 5 线 陛精密温度传感器 , L M3 5是美 国国家半导体公司( N s公 L AB 8 0 0 0单片机实验箱是南京伟福公 司生产的一种通用微控制 司注 产的系列精密集成电路温度传感 它的输出电压与摄氏温度线 器实验系统。 该实验系统支持 MC S 5 1 、 MC S 9 6 、 8 0 8 8 、 P I C等多种单片机 性成 比例( 1 0 m v / o C) , 因而 L M3 5优 于用开尔文标准的线性温度传感
作者简介 : 杨金泉( 1 9 6 3 一 ) , 男, 高级工程师 , 实验室主任 , 主要研 究单片机及 电子设计 自动化。
及微处理器的实验。该实验系统配有开关电源、 板上仿真器 、 可编程并 器 , L M 3 5 无需外部校准或微调来提供 ±1 / 4 ℃的常用的室温精度

51单片机外围电路

51单片机外围电路
74LS373
C y7 B A 0 y
/CE1 A12 A8 A7 8K×8 A0 /OE1 O0~O7
/CE7 A12 A8 A7 8K×8 A0 /OE1 O0~O7
MCS–51
74LS138
采用LS138译码器实现ROM扩展示意表
P2.7~P2.5
138 输出
静态LED数码显示电路(共阳极)
七段译码器
七段译码器
七段译码器
七段译码器
七段译码器
Vcc
BCD码 0000 0001 0010 0011 0100
返回
数码管(五)
由于静态显示占用的I/O 口线较多, CPU 的开销很大, 所以为了节省单片机的I/O 口线, 常采用动态扫描方式来作为LED 数码管的接口电路。 动态显示的接口电路是把所有LED的8 个笔划段a~g, dp 同名端连在一起, 而每一个显示器的公共极COM 端与各自独立的I/O 口连接。当CPU 向字段输出口送出字形码时, 所有显示器接收到相同的字形码, 但究竟是那个显示器亮, 则取决于COM 端, 而这一端是由I/O 口控制的, 所以我们就可以自行决定何时显示哪一位了。
MCS-51与32K ROM的连接
P2.7 : : : P2.0 P0.7 : : : P0.0 ALE /EA Psen
CE A14 : : A8 A7 O7 : : : : : : A0 O0 OE
返回
51单片机
程序存储器
数据存储器
数码管显示
键盘
电源模块
指示灯
AD转换
温度传感器
IIC总线
LCD液晶
最小系统板
指示灯电路(一)
一、电源指示灯 通常的指示灯电路是使用发光二极管,接法如下: 当电源正常工作时发光二极管就正常显示
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 0
0000H~ 0000H~ 07FFH
选中
未选中
1 1
0000000 0 8000H ~ 1111111 FFFFH 1
未选中
选中
外部ROM的容量扩展原理( 外部ROM的容量扩展原理(二)
若需要对2 若需要对2片以上的芯片扩展,可以通过译码电路实现。
MCS–51 P2.7 P2.6 P2.5 P2.4 P2.0 74LS138 C y7 B A
按键接口设计(一)
按键是人机会话的一个重要的输入工具。 常用按键举例 复位按键 功能转换按键 数据输入键盘 复位按键:对于MCS—51系列单片机的 复位按键:对于MCS—51系列单片机的 复位引脚RST上只要出现10ms以上的高电 复位引脚RST上只要出现10ms以上的高电 平,单片机就会实现复位。
返回
AD转换 数码管显示 程序存储器 温度传感器 键盘 51单片机 IIC总线 电源模块
数据存储器
指示灯 LCD液晶
最小系统板
指示灯电路(一)
一、电源指示灯 通常的指示灯电路是使用发光二极管,接 法如下:
当电源正常工作时发光二极管就正常显示
1.6.5 并行端口在使用时应注意的几个问题
“拉电流”还是“灌电流”----与大电流负载的 拉电流”还是“灌电流”----与大电流负载的 连接 (我们以美国ATMEL公司生产的AT8951为例) 我们以美国ATMEL公司生产的AT8951为例) 1, 使用灌电流的方式与电流较大的负载 使用灌电流的方式与电流较大的负载 直接连接时, 端口可以吸收约20mA的电流而保 直接连接时, 端口可以吸收约20mA的电流而保 证端口电平不高于0.45V(见右上图)。 证端口电平不高于0.45V(见右上图)。 2,采用拉电流方式连接负载时, 2,采用拉电流方式连接负载时, AT89C51所能提供“拉电流”仅仅为80µ AT89C51所能提供“拉电流”仅仅为80µA, 否则输出的高电平会急剧下降. 否则输出的高电平会急剧下降.如果我们采用右 下图的方式,向端口输出一个高电平去点亮 LED,会发现,端口输出的电平不是“ LED,会发现,端口输出的电平不是“1”而是 “0”! 当然,不是所有的单片机都是这样,PIC 当然,不是所有的单片机都是这样,PIC 单片机就可以提供30mA的拉电流和灌电流。 单片机就可以提供30mA的拉电流和灌电流。 单对于大多数IC电路,最好还是使用“灌电流” 单对于大多数IC电路,最好还是使用“灌电流” 去推动负载。 Vdd Vdd
Aቤተ መጻሕፍቲ ባይዱ
转电路图 返回前一次
B
(参考讲义70页)
片外存储器访问时序说明
P0、P2口作地址和数据总线。其中P0口作为地址和数据复 P0、P2口作地址和数据总线。其中P0口作为地址和数据复 用总线,前半部(A段)作地址总线,后半部(B 用总线,前半部(A段)作地址总线,后半部(B段)作为 数据总线。 外部程序存储器ROM的操作步骤如下: 外部程序存储器ROM的操作步骤如下: 1,单片机必须为其提供完整的(15位)地址信息; ,单片机必须为其提供完整的(15位)地址信息; 2,ROM芯片的/CE 端=0,选中该芯片; ROM芯片的/CE =0,选中该芯片; 3,在满足上述条件的基础上,当ROM的/OE=0时(B时 ,在满足上述条件的基础上,当ROM的/OE=0时(B 间段),存储器输出数据的三态门打开,并将与输入地址 相对应的存储单元中的指令(数据)向外输出,单片机通 过P0口将指令送至CPU 内部。 P0口将指令送至CPU 74LS373锁存器: 74LS373锁存器:将A时间段P0口输出的低位地址进行保存, 时间段P0口输出的低位地址进行保存, 使ROM在B时间段仍然可以得到完整的地址信号。 ROM在
MCS-51单片机的系统扩展及应用 MCS-51单片机的系统扩展及应用
通过地址总线、数据总线和控制总线实现系统 的扩展 介绍外围电路的扩展
3.1:程序存储器的扩展 3.1:程序存储器的扩展 3.2:数据存储器的扩展 3.2:数据存储器的扩展 3.3:指示小灯 3.3:指示小灯 3.4:按键扩展 3.4:按键扩展 3.5:数码管应用 3.5:数码管应用 3.6:A/D转换器接口 3.6:A/D转换器接口 3.7: 3.7:温度传感器接口 3.8:IIC电路扩展 3.8:IIC电路扩展 3.9:液晶电路 3.9:液晶电路
MCS-51与 MCS-51与32K ROM的连接 ROM的连接
MCS-51
完整的地址 信号
27256 32K ROM
CE A14 : : A8 A7 : : : A0 OE /CE = P2.7(A15)
P2.7 : : : P2.0 P0.7 : : : P0.0 ALE /EA Psen
D7 Q7
由两片32K的ROM构成64K存储阵列与A15的 由两片32K的ROM构成64K存储阵列与A15的 关系表
A15 /CE A14~ A14~A8 P2口 P2口 0000000 0 1111111 1 0000000 0 1111111 1 A7~A0 A7~ P0口 P0口 0000000 0 1111111 1 地址范围 ROM1工作 ROM2工作 ROM1工作 ROM2工作 状态 状态
按键接口设计(二)
以下是一个典型的复位电路设计图:
按键接口设计(三)
复位电路的设计: 单片机的复位分为上电复位和按钮复位。 上电复位是指单片机在加电瞬间,要在 RST引脚上出现大于10ms的正脉冲,使单 RST引脚上出现大于10ms的正脉冲,使单 片机进入复位状态。 按钮复位是指用户按下“复位” 按钮复位是指用户按下“复位”按钮,使 单片机进入复位状态。
最小系统板
外扩
AD转换
数码管显示
程序存储器 温度传感器 51单片机 IIC总线
键盘
电源模块
数据存储器
指示灯 LCD液晶
3.1:程序存储器ROM的扩展 3.1:程序存储器ROM的扩展
1,在使用8031(无片内ROM)或大于4K程序存储器时, ,在使用8031(无片内ROM)或大于4K程序存储器时, 必须通过外接ROM来构成、扩充系统的程序存储区。 必须通过外接ROM来构成、扩充系统的程序存储区。 2,当使用外部存储器来扩展系统时,必须占用单片机的 P0、P2口作为外部电路的数据、地址总线。此时,P0、 P0、P2口作为外部电路的数据、地址总线。此时,P0、 P2口就不能作为通用的I/O端口。 P2口就不能作为通用的I/O端口。 3,在系统扩展时,外部电路与单片机连接的依据是单片 机访问外部存储器的时序,所以正确的理解时序是硬件电 路设计的关键。
P2.7~ P2.7~ P2.5 138 输 出 选中 ROM P2.4~P0.0 P2.4~ 有效地址范围
000 001 010 011 100 101 110 111
Y0=0 Y1=0 Y2=0 Y3=0 Y4=0 Y5=0 Y6=0 Y7=0
第1片 第2片 第3片 第4片 第5片 第6片 第7片 第8片
按键接口设计(五)
数据输入键盘
按键接口设计(六)
转电路图 转时序图
外部ROM的容量扩展原理( 外部ROM的容量扩展原理(一)
如何使用两片32K的ROM芯片扩展为64K的存储阵列。 如何使用两片32K的ROM芯片扩展为64K的存储阵列。
A15 P2口 口
/CE1 A14 A8
/CE2 A14 A8 A7
MCS - 51
74LS373 A7
P0口 口 A0 /EA ALE Psen /OE1 O0~O7 ~ A0 /OE2 O0~O7 ~
0000H~ 0000H~1FFFH E000H~FFFFH E000H~
小结:
1,单片机的P0、P2口作为地址数据总线; ,单片机的P0、P2口作为地址数据总线; 2,P0口为数据、地址复用总线,所以必须加入八位锁 P0口为数据、地址复用总线,所以必须加入八位锁 存器74LS373来锁存P0口的低八位地址。 存器74LS373来锁存P0口的低八位地址。 3,外接ROM是靠MOVC指令产生的Psen信号来打开数 ,外接ROM是靠MOVC指令产生的Psen信号来打开数 据三态门,使ROM中的指令通过P0口送入单片机内部。 据三态门,使ROM中的指令通过P0口送入单片机内部。 4,存储器的容量M与其地址线条数n的关系:M=2↑n ,存储器的容量M与其地址线条数n的关系:M=2↑n 5,当使用两片ROM扩展时,可以使用一个反向器实现容 ,当使用两片ROM扩展时,可以使用一个反向器实现容 量的扩展,通过ROM芯片的/CE端实现。 量的扩展,通过ROM芯片的/CE端实现。 6,当使用2片以上的ROM芯片扩展时,就要使用译码器 ,当使用2片以上的ROM芯片扩展时,就要使用译码器 实现存储容量的扩展,译码器的输入与高位地址相连接, 输出端分别与各ROM芯片的/CE连接(如图所示)。 输出端分别与各ROM芯片的/CE连接(如图所示)。 7,当外接ROM的高八位地址线与P2口高八位线没有完全 ,当外接ROM的高八位地址线与P2口高八位线没有完全 用足时,要注意外存储的地址重叠问题。
Px.y 灌电流方式 输出”0”点 亮LED
Vdd
Px.y
拉电流方式 输出高电平 点亮LED
返回
指示灯电路( 指示灯电路(二)
二、端口指示灯 可以将某一I/O口的输出端接在三极管 可以将某一I/O口的输出端接在三极管 的基极,如下图的接法(当LED0端的输入为 的基极,如下图的接法(当LED0端的输入为 高电平时,三极管饱和导通,此时三极管消耗 功率最小,LED 功率最小,LED亮)实现指示灯电路。 LED亮)实现指示灯电路。
按键接口设计(四)
功能转换按键:
此类按键主要是当I/O口用作多种用途时,可以使 此类按键主要是当I/O口用作多种用途时,可以使 用此类按键可以实现同一I/O口的复用。 用此类按键可以实现同一I/O口的复用。 如图所示:SW DIP- 的引脚1 如图所示:SW DIP-8的引脚1-8可以接某一 I/O口,当按键开关在不同的位置可以控制不同的 I/O口,当按键开关在不同的位置可以控制不同的 外部接口
相关文档
最新文档