中国核电反应堆堆型剖析
我国主要核反应堆压力容器介绍及结构差异

我国主要核反应堆压力容器介绍及结构差异摘要:自改革开放以来,我国核电事业蓬勃发展,在迈入新世纪的十余年里,我国建设了大量的核电站,目前在役和在建的核电站主要为二代半和三代压水堆核电技术,本文在对压水堆反应堆压力容器进行介绍基础上,对比了不同堆型的反应堆压力容器的结构差异,为后续反应堆压力容器的制造积累了经验。
关键词:核电,反应堆压力容器,华龙一号1、概述随着人类社会的科技进步与发展,人类对能源的需求日益增大。
在人类使用的诸多能源中,电能作为能效利用率高,使用方便的二次能源,得到了广泛的应用。
目前,能够转化为电能的主要一次能源包括:煤炭,石油天然气、水力以及核能;此外,风能、太阳能、潮汐能和地热能等新能源也在逐渐的开发应用之中。
受到现阶段科技水平,制造成本以及地域资源等因素的限制和影响,新能源的应用还有很长的路需要走;而煤炭、石油天然气作为非可再生能源,随着人类的开发应用,会逐渐枯竭;水力能源又极大的受限于地域,发展空间有限。
而核能,作为一种清洁能源,相对于其它能源有十分明显的优势,目前我国已经探明的铀和钍的含量,可持续使用至少1000年,随着核聚变技术的逐步发展与成熟,核能将变为一种取之不尽,用之不竭的可再生能源,成为在未来照亮人类发展之路的普罗米修斯之火。
自上世纪80年代起,我国开始大力发展核电事业,经过30多年的持续发展,我国的核电事业已经由引进消化西方的核电技术转变为研发具有自主知识产权的核电技术。
目前,我国在役和在建的核电站主要为二代半和三代压水堆核电技术,具体堆型包括:CPR1000、CAP1000、CAP1400和华龙一号。
此外对于第四代核电技术,如快中子反应堆、高温气冷堆、熔盐堆和超临界水冷堆等的多种新型堆型,其相应的试验堆也都在开发和试制。
在新时代,我国的核电事业正向着百花齐放的总体布局飞速发展。
本文对压水堆的反应堆压力容器进行介绍,并通过对比CPR1000、CAP1000、CAP1400和华龙一号四种核反应堆压力容器结构差异,为后续三代、四代核反应堆压力容器的制造积累经验。
核反应堆结构-4

控制棒导向管 : 在标准的17×17燃料组件中,导向管占据24个栅元, 它们为控制棒插入和抽出提供导向的通道,导向管 由一整根锆-4合金管子制成.其下段在第一和第二 格架之间直径缩小,在紧急停堆时,当控制棒在导 向管内接近行程底部时,它将起缓冲作用,缓冲段 的过渡区呈锥形,以避免管径过快变化,在过渡区 上方开有流水孔,在正常运行时有一定的冷却水流 入管内进行冷却,而在紧急停堆时水能部分地从管 内流出,以保证控制棒的冲击速度被限制在棒束控 制组件最大的容许速度之内,又使缓冲段内因减速 而产生的最大压力引起导向管的应力不超过最大许 用应力.缓冲段以下在第一层格架的高度处,导向 管扩径至正常管径,使这层格架与上面各层格架以 相同的方式与导向管相连.
导向管与下管座的连接借助其螺纹塞头来实现,螺 纹塞头的端部带有一个卡紧的薄圆环,用胀管工具 使圆环机械地变形并镶入管座内带凹槽的扇形孔中; 螺纹塞头旋紧在合金端塞的螺孔中将导向管锁紧在 下管座中. 组件重量和施加在组件上的轴向载荷,经导向管传 递,通过下管座分部到堆芯下栅格板上.燃料组件 在堆芯中的正确定位由对角线上两个支撑脚上的孔 来保征,这两个孔和堆芯下栅格板上的两个定位销 相配合,作用在燃料组件上的水平载荷通过定位销 传送到堆芯支承结构上.
核燃料组件的"骨架"结构
前面已经讲到17×17型压水堆核燃料组件是由 包括定位格架,控制棒导向管,中子通量测量管, 上管座和下管座所组成的"骨架"结构和核燃料元 件组成. 定位格架 作用:燃料组件中,燃料棒沿长度方向由八层格架 夹住定位,这种定位使棒的间距在组件的设计寿期 内得以保持.格架的加紧力设计成既使可能发生的 振动减到最小,又允许有不同的热膨胀滑移,也不 致引起包壳的超应力. 结构外形:格架由锆-4合金条带制成,呈17×17正 方栅格排列,条带的交叉处用电子束焊双边点焊连 接,外条带比内条带厚,内条带的端部焊在条带上, 外条带端部由三道焊缝连接;使格架能在运输及装 卸操作过程中很好地保护燃料棒.
秦山三期CANDU核电厂堆芯结构

秦山三期CANDU核电厂堆芯结构摘要:详细描述了秦山三期CANDU核电厂的堆芯结构,堆内构件的组成及其功能。
这些堆内构件包括排管容器、堆腔室、燃料通道组件和反应性控制组件。
关键词:坎杜堆,排管容器,堆腔室,燃料通道组件,反应性控制组件1堆芯结构概述CANDU26反应堆堆芯的总体布置如图1所示。
反应堆堆芯组件包括:一个水平安置的不锈钢排管容器,排管容器内贯穿排列着380个排管,反应性控制机构在排管之间垂直或水平方向穿过排管容器。
整个反应堆组件安装在混凝土的排管容器室即堆腔室,并且由堆腔室两头的端屏蔽墙支撑。
图1 CANDU26反应堆堆芯总体布置图1———排管容器;2———排管容器外壳;3———排管容器管;4———嵌入环;5———换料机栅格板;6———端屏蔽延伸管;7———端屏蔽冷却管;8———进出口过滤器;9———钢球屏蔽;10———端部件;11———进水管;12———慢化剂出口;13———慢化剂入口;14———通量探测器和毒物注入;15———电离室;16———抗震阻尼器;17———堆室壁;18———通到顶部水箱的慢化剂膨胀管;19———薄防护屏蔽板;20———泄压管;21———爆破膜;22———反应性控制棒管嘴;23———观察口;24———停堆棒;25———调节棒;26———控制吸收棒;27———区域控制棒;28———垂直通量探测器;29———排管容器管板2排管容器和堆腔室图2是排管容器结构简图,排管容器的两头由端屏蔽墙封闭和支撑。
每个端屏蔽包括内管板和外管板,380根排管及内含的燃料通道贯穿通过,排管以中心间距为28.6cm的正方形栅格排列,管板同周边的壳体联结。
两头的端屏蔽墙一起为排管容器和燃料通道提供支撑,每个端屏蔽的内外管板之间填充有钢球和轻水,为工作人员提供屏蔽。
端屏蔽冷却是堆腔室冷却系统的一部分。
排管容器内充满低温低压的重水慢化剂,重水慢化剂从两边对应且呈扇形分布于壳体侧边的管嘴进入排管容器,从排管容器底部的两个出口排出。
反应堆结构课件3第三章

燃料元件包壳
材料: 锆-4 合金
燃料元件包壳壁厚的选择 结构强度 化学,腐蚀 一定的安全裕度
包壳内壁与燃料芯块的径向间隙 大小与间隙的导热系数 有密切关系,是影响芯块温度的重要因素,同时芯块的 各种特性如导热系数,裂变气体的释放,蠕变和塑性形 变等也都随温度变化。
17
“骨架”结构
定位格架
控制棒导管 中子通量测量导管 上管座 下管座
7:夹持线圈通电,夹持钩爪夹持驱动轴
如此循环动作,直到达到下降位置为止。 若要保持控制棒在某一位置时,仅传递线圈通电,传 递钩爪承载。 47
紧急停堆-控制棒自由落体
当要实行紧急停堆时,三个线圈 都断电,所有钩爪均脱开, 控制棒在重力作用下,快速 插入堆芯。
48
反应堆压力容器
反应堆压力容器支撑和包容堆芯和堆内构件,工作在高压(15.5MPa左 右)、高温含硼酸水介质环境和放射性辐照的条件下,寿命不少于40 年。百万千瓦级核电厂压力容器高约13m,内径5m,筒体壁厚200mm, 总重约330t。
13
14
棒状燃料元件棒
结构组成
选材原则:限制燃料和包壳 的使用温度 包壳的作用以及选材特点 机械强度;第一道屏障 燃料芯块结构特点 锆氢反应?任何防止?1 2 集气空腔盒充填气体作用: 轴向空腔和径向间隙作用, 预冲压氦气技术作用 15
芯块的结构特点
结构尺寸:圆柱体形 何谓“环脊” 现象 为何采用碟形加倒角的 结构形式 如何防止辐照肿胀的破 坏: 1碟形加倒角 2制孔剂 芯块密度的选择
作用:
1 防止放射性外逸第二道屏障 2 压力边界 3 支承和固定作用 选材原则 1 高度的完整性 2 适当的强度和足够的韧性 3 低的辐照敏感性 4 导热性能好 5 便于加工制造,成本低 49
反应堆结构

反应堆结构反应堆结构及几种典型反应堆系统反应堆是核电站中的热源,其内部装有可以进行可控链式核反应的核燃料,源源不断地释放出能量。
核反应产生的热能通过载热剂传给汽轮机作功,汽轮机带动发电机,产生的电能被输送到电网。
反应堆由堆芯、压力容器、上部堆内构件和下部堆内构件等几部分组成。
反应堆安置在反应堆厂房(也称为安全壳)的正中,它的六条进出口接管管嘴支撑在作为一次屏蔽的混凝土坑(即堆坑)内,而堆坑位于一个大约10米深的反应堆换料水池的底部。
如下图它可分为反应堆堆芯、堆内构件、反应堆压力容器和顶盖控制棒驱动机构四部分。
下面主要介绍反应堆堆心和压力容器。
1、反应堆堆芯:核反应堆的堆芯位于压力容器中心,由157个几何形状及机械结构完全相同的燃料组件构成,核反应区高3.65m,等效直径3.04m 。
燃料核裂变释放出来的核能立即转变成热能,并由冷却剂导出。
1.1、燃料组件:燃料组件骨架由8个定位格架、24根控制棒导向管、一根中子通量测量管和上、下管座焊接而成。
其功用是确保组件的刚性,承受整个组件的重量和控制棒快速下插的冲击力,并准确引导控制棒束的升降,保证组件在堆内可靠工作和装卸料时的运输安全。
如下图定位格架由锆-4合金条带制成,这些条带装配成17×17的正方形栅格。
在格架栅元中,燃料棒由其中两边的弹簧夹顶在另两边的两个刚性凸台上,其共同作用使燃料棒保持中心位置。
弹簧夹由因科镍718薄片弯成开口环制成,然后将夹子跨在条带上夹紧定位,并在上下相接面上点焊。
这样形成的两个相背的弹簧分别顶住相邻栅元的两根燃料棒,自然抵消了作用在条带上的力。
每个燃料组件带有24个控制棒导向管,由锆-4合金制成,它们为控制棒的插入和提出导向。
其下部在第一和第二格架之间直径缩小,形成缓冲段,以便当控制棒紧急下落接近底部时起缓冲作用。
在缓冲段上部有流水孔,正常运行时冷却水流入管内,在控制棒下插时水能部分从管内排出。
缓冲段下部的管径扩至正常,使底层格架可以按上层格架的相同方式与导向管相连接。
反应堆堆型简介

CANDU的缺点
重水昂贵; 重水昂贵; 堆本体庞大; 堆本体庞大; 系统复杂; 系统复杂; 轻水堆的三条缺点, 也同样存在。 轻水堆的三条缺点,CANDU也同样存在。 也同样存在 其燃料转化比虽高于轻水堆, (其燃料转化比虽高于轻水堆,但还是不能 增殖) 增殖)
石墨沸水堆 RMBK
这是前苏联开发的一种用石墨作为慢化剂、 这是前苏联开发的一种用石墨作为慢化剂、 轻水作为冷却剂的核电站反应堆。 轻水作为冷却剂的核电站反应堆。发生切 尔诺贝利事故的就是这种反应堆。 尔诺贝利事故的就是这种反应堆。 这种堆毛病多多(参阅第七章的有关课件), 这种堆毛病多多(参阅第七章的有关课件), 今后不会再建了。 今后不会再建了。
堆、高温气冷堆) 高温气冷堆)
根据堆的用途分类
实验反应堆(用于科学实验、教学培训等) 实验反应堆(用于科学实验、教学培训等) 生产堆(生产军用钚) 生产堆(生产军用钚) 动力堆(发电,推进等; 地上,海洋,天空) 动力堆(发电,推进等; 地上,海洋,天空) 供热堆
实验反应堆
数量甚大, 种类繁多. 数量甚大 种类繁多 美国在三哩岛事故发生 之前,仅大学里用于教学科研的实验堆就有 之前 仅大学里用于教学科研的实验堆就有 好几十个. 好几十个 中国也有若干实验反应堆
反应堆的分类
世界上现有的, 曾经有过的,以及将来要建的 世界上现有的 曾经有过的 以及将来要建的 反应堆种类很多, 反应堆种类很多,对它们的分类也有不同 的分法。例如,可以 的分法。例如 可以 根据中子能谱分类 根据所用慢化剂分类 根据所用的冷却剂分类 根据堆的用途分类 。。。
根据中子能谱分类
热中子反应堆 快中子反应堆 中能中子反应堆(没有太多优点 没有太多优点) 中能中子反应堆 没有太多优点
第四代反应堆简介

平均功率密度
6-10 MWth/m3
电厂效率
>50%
学习文档
非常高温气冷堆〔VHTR〕的主要特点
先进的燃料材料〔碳化物、氮化物、金属陶瓷合 金等〕
高可用性和运行灵敏性
重要平安改进
高经济性
直接循环的能量转换
He作为冷却剂,出口温度>900℃
发电效率高〔>50%〕
热化学水裂解
出口温度高,制氢、热量直接利用〔原油精练和
反应堆主要参数
电站投资成本 冷却剂入口温度 冷却剂出口温度 压力 反应堆功率 燃料
参数值
$900/kW 280℃ 510℃ 25MPa
1700MWth UO2、铁素体-马氏体不锈钢或者镍合金包壳燃
料
平均功率密度 电厂效率 燃耗
~100 MWth/m3
44% ~45 GWD/MTHM
学习文档
超临界水冷堆〔SCWR〕的主要特点
储藏对环境的影响
燃料资源利用 废物数量 体积 热负荷 发射性
环境影响
经济性
安全、可靠性
防扩散能力 和实体保护 能力
EC1 寿命周期成本 EC2 投资风险 SR1 运行安全
及可靠性 SR2 堆芯破损
SR3 场外应急响应
EC1-1 建造成本
建造成本
EC1-2 生产成本
生产成本
EC2-1 建造时间 EC1-1建造成本
燃料元件设计先进 高热效率 电站结构简单 经济性高 X安性、运行稳定
学习文档
SCWR的堆芯设计-日本
学习文档
SCWR的堆芯设计-USA
学习文档
SCWR
堆内结构安排
学习文档
SCWR的平安壳改进
学习文档
三代核电反应堆压力容器结构对比

三代核电反应堆压力容器结构对比通过对国外核电技术的引进、消化和创新,我国核电已经走上了蓬勃发展的道路,目前我国主要建造的核电厂以三代核电为主。
主要分为CAP1000、AP1000和华龙一号等堆型,而其中反应堆压力容器是安置核反应堆并承受巨大运行压力的密闭主容器。
文章对比了以上几种堆型的反应堆压力容器结构特点,并分析了其中的优缺点。
标签:压力容器;AP1000;华龙一号1 概述我国的核电技术路线是在上世纪80年代确定走引进、消化、研发、创新的道路的。
经过20余年的努力,通过对引进的二代法国压水堆技术的消化吸收,取得了巨大的技术进步,实现了60万千瓦压水堆核电厂的设计能力。
21世纪初,我国又引进了目前世界上最先进的三代核电技术AP1000,并买断了西屋关于AP1000的技术资料,为形成具有自主知识产权的核电技术创造了条件。
目前我国在建和已经运行的堆型主要是AP1000、CAP1400和华龙一号。
AP1000是美国西屋公司研发的一种先进的“非能动型压水堆核电技术”;而CAP1400是国家核电技术公司吸收消化AP1000技術创新开发出的更大功率的非能动大型先进压水堆核电机组;华龙一号是我国吸收和创新最先进核电技术的产物,目前主要有两种分别是中核集团和中广核集团自主研发的具有完整自主知识产权的先进压水堆核电技术ACP1000和ACPR1000+。
ACP1000是中核集团在CP1000的基础上吸收AP1000核电技术研制的。
ACPR1000+是中广核在推进CPR1000核电技术的同时研发出来的。
反应堆压力容器是安置核反应堆并承受巨大运行压力的密闭容器,也称反应堆压力壳。
本文通过对比以上四种三代核电堆型反应堆压力容器的结构差异,为以后三代乃至四代核电反应堆压力容器设计提供充足的数据支持。
2 结构参数对比2.1 设计总参数如表1为四种堆型的反应堆压力容器的设计总参数,从表中看出,相比于AP1000和CAP1000,华龙一号采用了更高的水压试验压力,体现了更高的安全性,同时采用12根堆测接管以便于放置更多的测量设备来监测反应堆的运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优点
用天然铀作燃料(U-235含量0.711Wt%) 年容量因子高:坎杜(CANDU)反应
堆是采用不停堆换料运行方式,省去了 轻水堆大约每年一次的停堆换料时间 (一般约1.5~2.0个月)
其他先进反应堆
高温气冷堆 65MW快中子实验堆 低温供热堆
高温气冷堆
模块式球状高温气冷堆
特点
安全性好:在它 用氦气作冷却剂, 采用全陶瓷型的 球型燃料元件, 在出现严重事达700 -900℃,采用传统蒸汽循环发电效率 可以达到38%-40%,采用先进氦气循 环可以达到45%-47%
用途广泛:可用于 水热裂解制氢,为 未来氢能时代提供 清洁能源,以及煤 的气化液化等
重水堆
坎杜6型重水堆核电站采用天然铀作燃料。燃料产生的裂 变热量传输给流过燃料通道的加压重水(D2O)冷却剂, 冷却剂通过闭合回路将热量带到蒸汽发生器,将热量传输 给轻水。轻水沸腾产生蒸汽,驱动汽轮机和与其相连的发 电机,使发电机发电。蒸汽离开汽轮机后冷凝成水,并返 回到蒸汽发生器进行再循环。
中国核电发展现状
中国核电从自行设计、建造第一座30万千瓦 秦山核电站起,目前已建成浙江秦山、广东 大亚湾和江苏田湾三个核电基地。
截至2013年8月底,共有17台机组相继投入商 业运行,总装机容量约1475万千瓦。
已投运的核电机组
截至2013年12月,大陆共有17台核电机 组投入商业运行,分别是:浙江秦山一 期核电站、浙江秦山核电站二期 、浙 江秦山核电站三期、广东大亚湾核电站、 广东岭澳核电站一期、江苏田湾核电站 一期,广东岭澳核电站二期、浙江秦山 核电站二期扩建工程,福建宁德核电站 1号机组、辽宁红沿河核电站1号机组
中国核电反应堆堆型
我国是世界上少数几个拥有完整核工业体系 的国家之一。为推进核能的和平利用,上世 纪七十年代,国务院做出了发展核电的决定, 自1983年确定压水堆核电技术路线以来,目 前在压水堆核电站设计、设备制造、工程建 设和运行管理等方面已经初步形成了一定的 能力,为实现规模化发展奠定了基础。
中国大陆核电机组
压水堆
技术原理
采用高压水来冷却核燃料的一种反应堆,其 工作原理为:主泵将120~160个大气压的一 回路冷却水送入堆芯,把核燃料放出的热能 带出堆芯。
而后进入蒸汽发生器,通过传热管把热量传 给二回路水,使其沸腾并产生蒸汽;一回路 冷却水温度下降,进入堆芯,完成一回路水 循环;二回路产生的高压蒸汽推动汽轮机发 电,再经过冷凝器和预热器进入蒸汽发生器, 完成二回路水循环。