平面图形的镶嵌

合集下载

镶嵌

镶嵌

还能找到能密铺的其他正多边形吗? 还能找到能密铺的其他正多边形吗?
• 要用正多边形镶嵌成一个平面的关键是看:这 要用正多边形镶嵌成一个平面的关键是看: 种正多边形的一个内角的倍数是否是360°, 种正多边形的一个内角的倍数是否是 ° 在正多边形里,正三角形的每个内角都是60° 在正多边形里,正三角形的每个内角都是 °, 正四边形的每个内角都是90° 正四边形的每个内角都是 °,正六边形的每 个内角都是120°,这三种多边形的一个内角 个内角都是 ° 的倍数都是360°,而其他的正多边形的每个 的倍数都是 ° 内角的倍数都不是360°,所以说:在正多边 内角的倍数都不是 ° 所以说: 形里只有正三角形、正四边形、 形里只有正三角形、正四边形、正六边形可以 密铺,而其他的正多边形不可密铺. 密铺,而其他的正多边形不可密铺.
做一做
正五边形可以密铺吗? 正五边形可以密铺吗?
1 3 2
正五边形不能密铺
正六边形可以密铺吗? 正六边形可以密铺吗?
正六边形的平面镶嵌
能否 平面 镶嵌
正三角形 能
图形
一个顶点周 围正多边形 的个数
6
正方形

4
正五边形
不能
正六边形

3
结论1: 结论 : 可以用同一种正多边形密铺的图形只有 正三角形,正四边形,正六边形. 正三角形,正四边形,正六边形 结论2: 结论 用一种形状 大小完全相同的三角形、 形状、 用一种形状、大小完全相同的三角形、四边形 也能进行平面镶嵌
图案(Ⅰ)
图案(Ⅱ)
60° 60°
每个顶点处正六边形1个,正三角形4个.
(3)正八边形和正方形 )
用正五边形和什么多边形能密铺? 用正五边形和什么多边形能密铺?

平面图形镶嵌说课稿比赛

平面图形镶嵌说课稿比赛

《平面图形的镶嵌》说课稿尊敬的各位评委、老师:大家好!我是来自八五九农场学校的数学教师李建莹,很荣幸能够参加此次说课大赛,今天我说课的内容是人教版七年级(下)第七章第四节——平面图形的镶嵌. 下面我将从以下几个方面对本课的设计进行详细的说明。

一、深入研究——说理念课程标准倡导“动手操作、自主探索、合作交流的学习方式,倡导在教师的指导下开展“数学知识的再创造学习活动”,培养学生的探究能力。

”因此,我在本课的设计中,以教师的“问题引导”为方向,以学生的“动手操作”为主线,由浅入深、循序渐进的设计流程,让学生亲历知识的再创造过程,在主动探索与合作交流中,体会数学的应用价值,实现规律在操作中发现,思维在交流中拓展,能力在应用中提升。

二、纵横联系——说教材“课题学习——镶嵌”是人教版七年级下册第七章第四节内容。

学生在本单元已经学习了三角形的有关概念和性质及多边形内角和、外角和公式。

镶嵌作为课题学习的内容,安排在本章的最后,体现了多边形内角和公式在实际生活中的应用。

通过课题的学习,学生可以经历从实际问题抽象出数学问题,建立数学模型,综合运用所学知识解决问题的全过程,从而加深对相关知识的理解,提高思维能力,获得分析问题的方法,对于今后的学习具有重要的意义。

三、结合实际——说学情本节课的教学对象为七年级学生,七年级学生对镶嵌的认识大多来源于生活中的感性认识,对其内在规律往往关注不够,因此需要教师通过创设问题情境,组织学生动手操作,在活动中与学生共同探究,充分利用本年级学生对生活有很强的好奇心,乐于探索,愿意与人合作的性格特点,加深学生对镶嵌的认识,发现其内在规律,将感性认识上升为理性认识,完成本节课的教学目标。

四、把握教材——说目标根据课程标准的要求,教学内容的特点以及七年级学生的认知水平,我确立了如下的教学目标:知识与技能目标:通过探索多边形平面镶嵌,知道三角形、四边形和正六边形可以平面镶嵌,并能运用这几种图形进行简单的镶嵌设计。

镶嵌 平面图形的镶嵌(A类基础)

镶嵌 平面图形的镶嵌(A类基础)
每个顶点周围有一个正方形和两个正八边形
a教类
28
探究总结:
用两种正多边形经进行镶嵌可能的组合:
正三角形和正方形、正三角形和正六边形、 正方形和正八边形等
a教类
29
本节小结:
1、平面图形的镶嵌 2、平面图形镶嵌的条件 3、任意形状但全等的三角形都可以进行镶嵌
4、任意形状但全等的四边形也都可以进行镶嵌 5、用一种正多边形可以进行镶嵌的是:正三角形、 正方形、正六边形
正三角形
a教类
9
几个任意的全等三角形能否镶嵌?
a教类
10
只要保证每个拼接处的几个角恰好形成一个周角,
它们的和为3600;同一种任意三角形可以镶
嵌。
a教类
11
试着做做
只用同一种图形,哪些图形可以 镶嵌呢?
①请尝试用你准备的全等三角形进行 镶嵌!同一种任意三角形可以镶嵌。
②请尝试用你准备的四边形进行镶嵌!
6、用两种正多边形可以进行镶嵌的是:正三角形和正 方形、正三角形和正六边形、正方形和正八边形
a教类
30
课后思考:
正三角形和正十二边形能进行 镶嵌吗?
a教类
31
a教类
12
正四边形—正方形
a教类
13
同一种任意四边形能否镶嵌?
a教类
14
3 4 1
2
21
12 43
34
4 3 2
1
a教类
3 4
2
1
15
只要保证每个拼接处的几个角恰好形成一个周角, 它们的和为3600;
同一种任意四边形可以镶嵌。
a教类
16
试着做做
只用同一种图形,哪些图形可以 镶嵌呢?

《平面图形的镶嵌》教学课件

《平面图形的镶嵌》教学课件
正三角形、正方形、长方形、正六边形等。
镶嵌的条件
围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角。
学生心得体会分享
学生A
通过学习,我深刻理解了 平面图形镶嵌的原理和方 法,感受到了数学的美妙 和实用性。
学生B
在动手实践中,我发现了 很多有趣的镶嵌组合,对 平面图形的认识也更加深 入了。
学生C
节奏与韵律感营造方法
通过调整图形元素的间距、大小、形态和色彩等视觉属性,形成有规律 的排列组合和变化,营造出富有节奏感和韵律感的视觉效果。
03
节奏与韵律感在设计中的应用
如网页设计、UI设计、插画设计等,利用节奏和韵律感来增强视觉吸引
力和提升用户体验。
色彩搭配和视觉效果优化
色彩搭配原则
在平面图形镶嵌中,色彩搭配应遵循色彩的和谐与对比原则,通过合理的色彩组合来营造 出符合主题和氛围的视觉效果。
引导学生对自己的作品进行客观 评价,发现自己的优点和不足,
为今后的创作提供改进方向。
展示与交流
鼓励学生之间相互评价作品,发现 他人的优点并学习借鉴,同时提出 建设性的意见和建议,促进共同进
步。
互相评价
教师对学生的作品进行点评,肯定 学生的成绩和进步,指出存在的问 题并提出改进意见,引导学生不断 提高创作水平。
《平面图形的镶嵌》教学课件
contents
目录
• 平面图形镶嵌基本概念 • 常见平面图形镶嵌方法 • 美学原理在平面图形镶嵌中应用 • 创意设计实践:个性化平面图形镶嵌 • 评价标准及欣赏能力提升途径 • 课堂总结与拓展延伸
01 平面图形镶嵌基本概念
镶嵌定义及性质
镶嵌定义
用形状、大小完全相同的一种或 几种平面图形进行拼接,彼此之 间不留空隙、不重叠地铺成一片 ,这就是平面图形的镶嵌。

平面镶嵌的条件

平面镶嵌的条件

平面镶嵌的条件平面镶嵌是一种几何问题,即如何在平面上把多边形拼接成一个封闭的区域。

在这个问题中,我们需要考虑到多边形的边界线和内部空间的交错和重叠等因素,以保证拼接后的结果是合法的。

平面镶嵌的条件非常重要。

平面镶嵌的每个多边形都必须是凸多边形。

凸多边形是指平面上的一个区域,其中连接任意两个内部点的线段都在这个区域内。

在平面镶嵌中,凸多边形可以确保拼接后的图形不会出现奇怪的空洞或凹陷。

在计算过程中,凸多边形也更容易处理。

平面镶嵌中的每个多边形必须可以通过相邻多边形的公共边缝合在一起。

这就要求相邻多边形的公共边必须完全重合,并且两边的角度要相等。

这个条件是平面镶嵌中最基本的条件,也是每个多边形都需要满足的条件。

除了上述两个基本条件外,平面镶嵌中还需要满足一些其他的条件。

平面镶嵌中不能出现两个多边形的重叠部分,也不能出现两个多边形相交的情况。

这两个条件是保证拼接后的图形没有破损或重叠的关键条件。

如果不满足这些条件,拼接后的图形就可能出现错综复杂的情况,难以判定。

在平面镶嵌中,我们还需要考虑到多边形的方向。

通常情况下,我们规定多边形的内部在左边,而外部在右边。

这种规定是为了方便计算,使得我们可以通过向量或点积等方式来确定多边形的方向。

在将多边形放置在平面上进行拼接时,也需要考虑到这个方向性。

需要注意的是,平面镶嵌中的拼接结果可能不唯一。

即使是同样的凸多边形和相邻关系,可能也会有多种不同的拼接方式。

在进行平面镶嵌时,我们需要结合实际问题来选择最合适的拼接方式。

除了以上条件,平面镶嵌还需要满足一些其他的约束条件。

在某些情况下,平面镶嵌中的多边形必须被放置在特定的位置和方向上,或者必须满足特定的拓扑结构。

这些约束条件通常与实际应用有关,例如在设计地图、计算机芯片布线、制作纹理贴图等领域中都会涉及到平面镶嵌问题。

在实际应用中,平面镶嵌的计算通常会使用算法来实现。

常用的算法包括贪心算法、分治算法、动态规划等。

这些算法分别针对不同的问题和约束条件,采用不同的方法和策略进行求解。

平面图形的镶嵌ppt

平面图形的镶嵌ppt

剪出一些形状、大小完全相同 的任意三角形纸板,拼拼看,它们 能否镶嵌成平面图案?
剪出一些形状、大小完全相同 的任意四边形纸板,拼拼看,它们 能否镶嵌成平面图案?
D
4
A1
3C 2B
整个图案可以由一个基本图形通过平移、旋转 或对称得到。
探究二 哪两种正多边形可以组合镶嵌
镶嵌组合 正三边形 正四边形 正五边形 正六边形
0
5
10
15
20
用形状、大小 完全相同的一 种或几种平面 图形进行拼接, 彼此之间不留 空隙、不重叠 地铺成一片, 就是平面图形 的镶嵌.(也 叫平面图形的 密铺)
探究一 哪些正多边形可以单独镶嵌
每个内角和度数
正三角形
正四边形
能否镶嵌
正五边形
正六边形
能够单独镶嵌的正多边形只有正三角形、正方形和正六边形。 用一种正多边形能进行平面图形铺设的条件是:内角整除360度
….
能否组 合镶嵌? 正三边形
正四边形
正五边形
正六边形
……
平面镶嵌的条件
满足边长相等和每个公共顶点处几个内角 的和为360度,两个正多边形就进进行镶嵌。
1、边长相等。 2、每个公共顶点处几个内角的 和为360°。
用同一种大小相等的正多边形密铺成一个“环”, 我们称之为环形密铺
小结
• 从实际生 活出发• Biblioteka 面图形 的镶嵌• 图案设计
hanks
0
5
10
15
20

第六章综合与实践平面图形的镶嵌课件

第六章综合与实践平面图形的镶嵌课件

知2-练
2 阿男的父亲想购买同一种大小一样、形状相同
的地板砖铺设地面.阿男根据所学的知识告知
父亲,为了能够做到无缝隙、不重叠地铺设,
购买的地板砖形状不能是( )
A.正三角形
B.正方形
C.正五边形
D.正六边形
知2-练
3 用黑白两种颜色的正六边形地砖按如图所示的 规律拼成若干个图案: (1)第4个图案中有白色地砖________块; (2)第n个图案中有白色地砖________块.
知2-讲
导引:A、正三角形的一个内角度数为180°÷3=60°, 是360°的约数,能进行平面镶嵌;B、正六边形 的一个内角度数为180°-360°÷6=120°,是 360°的约数,能进行平面镶嵌;C、正方形的一 个内角度数为180°-360°÷4=90°,是360°的 约数,能进行平面镶嵌;D、正五边形的一个内角 度数为180°-360°÷5=108°,不是360°的约 数,不能进行平面镶嵌.
嵌而成,其中三个分别为正三角形、正方形、正
六边形,则另一个为( )
A.正六边形
B.正五边形
C.正方形
D.正三角形
知3-练
3 用正三角形和正六边形镶嵌,若每一个顶点周围
有m个正三角形,n个正六边形,则m,n满足的
关系式是( )
A.2m+3n=12
B.m+n=8
C.2m+n=6
D.m+2n=6
1. 用相同的正多边形镶嵌的条件: (1)边长要相等; (2)有公共顶点; (3)在公共顶点处各内角的和为360°.
知2-讲
1. 平面镶嵌的原则:环绕一点拼在一起的多边形的 内角加在一起恰好组成一个周角.
2. 平面镶嵌的常用方法: (1)只用一种正多边形; (2)同时用两种正多边形; (3)用非正多边形.

北师版数学八下《平面图形的镶嵌》教学设计

北师版数学八下《平面图形的镶嵌》教学设计

《平面图形的镶嵌》教学设计一、教材分析1.从教材编写角度看《平面图形的镶嵌》是北师大版数学教材八年级下册的一节综合实践课,本节课主要是让学生通过动手操作、小组合作、多媒体辅助(几何画板)等多种形式探究平面图形镶嵌的条件。

在此之前,学生已经学习了三角形的内角和、多边形的内角和等知识。

通过这个课题的学习,学生可以经历从实际问题抽象出数学问题,建立数学模型,综合应用已有知识解决问题的过程,从而加深对相关知识的理解,提高思维能力,获得分析问题的方法,对于今后的学习具有重要意义。

2.从在教材中的地位与作用看本综合与实践活动课具有一定的现实性,可以激发学生的学习兴趣,形成良好的数学观,同时也有利于发展学生的数学应用意识。

进行本节课的学习,需要学生对图形进行一定的分解、组合、拼接,需要进行图案设计等操作活动,同时也需要应用所学习的平面图形的有关知识,因此本节课还具有一定的实践性和综合性。

本节课需要学生经历一个具体的研究过程,探索过程中需要从事一定的归纳、猜想、验证、推理等思维活动,这都有助于丰富学生的数学活动经验,发展学生的推理能力,以及分析问题和解决问题的能力。

二、学情分析在学习本节课之前,学生经历了对平行四边形性质和判定的探索活动,并掌握了如何求解多边形的内角和以及外角和。

在本章前几节的综合实践活动中,学生体现出了较强的主动合作和实践动手能力,积累了丰富的探索图形性质的经验。

八年级学生对镶嵌的认识大多数来源于生活实际中的感性认识,对其内在规律关注不够,因而在本节课教学中教师应通过创设情境,组织学生动手活动,在活动中与学生共同探究,从而加深对镶嵌的认识,发现其内在规律,将感性认识上升为理性认识。

三、教学任务分析1.教学目标(1)知识传授:通过探索平面图形的镶嵌,认识多边形镶嵌平面的条件,并能运用其中的一种或几种图形进行平面图形镶嵌;了解构造基本镶嵌图案的一些方法。

(2)能力培养:经历动手拼、相互交流、展示成果等活动,探索发现多边形镶嵌的条件,培养学生发现问题、提出问题的能力,进一步发展探究意识,积累探究经验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

形状、大小完全相同的任意三角形能够进行 平面镶嵌
形状、大小完全相同的任意四边形能够进行
平面镶嵌
埃舍尔作品欣赏
埃舍尔作品欣赏
埃舍尔作品欣赏
埃舍尔作品欣赏
埃舍尔作品欣赏
我学会了……
我发现了……
布置作业
利用学过的几何图形和镶嵌 知识作一幅镶嵌图形,先在小组 内评选有创意的作品,后在班级 进行交流。
正三角形,正四边形,正六边形。
平面镶嵌的关键:
拼接点处几个角的和等于360°.
王老师能用两种或两种以上边长相等的正 多边形铺设地面吗?请你帮他设计图案。
用下列图形能否平面镶嵌?
1、形状、大小完全相同的任意三角形
2、形状、大小完全相同的任意四边形 如果能,你能发现什么规律? 如果不能,请说明理由。
北师大版八年级下册
郑州市第七中学 张园
用形状、大小完全相同的一种或几种 平面图形进行拼接,彼此之间不留空隙、 不重叠的铺成一片,就是平面图形的镶嵌.
平面镶嵌的条件:同一拼接点处的各 个角的和恰好等于360°.
王老师想要装修房子,哪种正多边形 地砖可以单独用来铺设地面?
结论:用一种正多边形平面镶嵌有三种源自况:
相关文档
最新文档