二次函数图像对称变换前后系数的关系(专题)
(完整word版)二次函数图象与各项系数之间关系知识点,文档

二次函数的图象与各项系数之间的关系1.二次项系数 a二次函数y ax2bx c 中, a 作为二次项系数,显然 a 0.⑴当 a0 时,抛物线张口向上, a 的值越大,张口越小,反之 a 的值越小,张口越大;⑵当 a0 时,抛物线张口向下, a 的值越小,张口越小,反之 a 的值越大,张口越大.总结起来, a 决定了抛物线张口的大小和方向, a 的正负决定张口方向, a 的大小决定张口的大小.2.一次项系数 b在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴.⑴在 a0的前提下,当 b0时,b0,即抛物线的对称轴在y 轴左侧;2a当 b0时,b0,即抛物线的对称轴就是y 轴;2a当 b0时,b0,即抛物线对称轴在 y 轴的右侧.2a⑵在 a0的前提下,结论恰巧与上述相反,即当 b0时,b0,即抛物线的对称轴在y 轴右侧;2a当 b0时,b0,即抛物线的对称轴就是y 轴;2a当 b0时,b0,即抛物线对称轴在 y 轴的左侧.2a总结起来,在 a 确定的前提下, b 决定了抛物线对称轴的地址.ab 的符号的判断:对称轴xb0 ,在 y 轴左侧那么 ab 0 ,在 y 轴的右侧那么 ab2a概括的说就是“左同右异〞总结:3.常数项 c⑴当 c0 时,抛物线与y 轴的交点在x轴上方,即抛物线与y 轴交点的纵坐标为正;⑵当 c0 时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为 0 ;⑶当 c0 时,抛物线与y 轴的交点在x轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来, c 决定了抛物线与y 轴交点的地址.总之,只要 a ,b ,c 都确定,那么这条抛物线就是唯一确定的.二次函数图象的对称二次函数图象的对称一般有四种情况,可以用一般式或极点式表达1.关于 x 轴对称y ax2bx c 关于 x 轴对称后,获取的剖析式是y ax2bx c ;y a x h 2y a x h2 k 关于 x 轴对称后,获取的剖析式是k ;2.关于 y 轴对称y ax2bx c 关于y轴对称后,获取的剖析式是y ax2bx c ;y a x h 2y a x h2 k 关于y轴对称后,获取的剖析式是k ;3.关于原点对称y ax2bx c 关于原点对称后,获取的剖析式是y ax2bx c ;y a x h 2ya x h2 k 关于原点对称后,获取的剖析式是k ;依照对称的性质,显然无论作何种对称变换,抛物线的形状必然不会发生变化,因此 a永远不变.求抛物线的对称抛物线的表达式时,可以依照题意或方便运算的原那么,选择合适的形式,习惯上是先确定原抛物线〔或表达式的抛物线〕的极点坐标及张口方向,再确定其对称抛物线的极点坐标及张口方向,尔后再写出其对称抛物线的表达式.。
专题05二次函数中的平移、旋转、对称(五大题型)解析版

专题05二次函数中的平移、旋转、对称(五大题型)通用的解题思路:1.二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x–h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.3.二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。
4.二次函数图象的翻折与旋转y=a(x-h)²+k绕原点旋转180°y=-a(x+h)²-k a、h、k 均变号沿x 轴翻折y=-a(x-h)²-k a、k 变号,h 不变沿y 轴翻折y=a(x+h)²+ka、h 不变,h 变号题型一:二次函数中的平移问题1.(2024•牡丹区校级一模)如图,在平面直角坐标系xOy 中,抛物线21(0)y ax bx a a=+-<与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示).(2)当B 的纵坐标为3时,求a 的值;(3)已知点11(,2P a-,(2,2)Q ,若抛物线与线段PQ 恰有一个公共点,请结合函数图象求出a 的取值范围.【分析】(1)令0x =,求出点A 坐标根据平移得出结论;(2)将B 的纵坐标为3代入求出即可;(3)由对称轴为直线1x =得出212y ax ax a =--,当2y =时,解得1|1|a a x a ++=,2|1|a a x a-+=,结合图象得出结论;【解答】解:(1)在21(0)y ax bx a a =+-<中,令0x =,则1y a =-,∴1(0,)A a-,将点A 向右平移2个单位长度,得到点B ,则1(2,)B a-.(2)B 的纵坐标为3,∴13a-=,∴13a =-.(3)由题意得:抛物线的对称轴为直线1x =,2b a ∴=-,∴212y ax ax a=--,当2y =时,2122ax ax a=--,解得1|1|a a x a ++=,2|1|a a x a-+=,当|1|2a a a -+≤时,结合函数图象可得12a ≤-,抛物线与PQ 恰有一个公共点,综上所述,a 的取值范围为12a ≤-.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.2.(2024•平原县模拟)已知抛物线212:23C y ax ax a =++-.(1)写出抛物线1C 的对称轴:.(2)将抛物线1C 平移,使其顶点是坐标原点O ,得到抛物线2C ,且抛物线2C 经过点(2,2)A --和点B (点B 在点A 的左侧),若ABO ∆的面积为4,求点B 的坐标.(3)在(2)的条件下,直线1:2l y kx =-与抛物线2C 交于点M ,N ,分别过点M ,N 的两条直线2l ,3l 交于点P ,且2l ,3l 与y 轴不平行,当直线2l ,3l 与抛物线2C 均只有一个公共点时,请说明点P 在一条定直线上.【分析】(1)根据抛物线的对称轴公式直接可得出答案.(2)根据抛物线2C 的顶点坐标在原点上可设其解析式为2y ax =,然后将点A 的坐标代入求得2C 的解析式,于是可设B 的坐标为21(,)2t t -且(2)t <-,过点A 、B 分别作x 轴的垂线,利用4ABO OBN OAM ABNM S S S S ∆∆∆=--=梯形可求得t 的值,于是可求得点B 的坐标.(3)设1(M x ,1)y ,2(N x ,2)y ,联立抛物线与直线1l 的方程可得出12x x k +=-,124x x =-.再利用直线2l 、直线3l 分别与抛物线相切可求得直线2l 、直线3l 的解析式,再联立组成方程组可求得交点P 的纵坐标为一定值,于是可说明点P 在一条定直线上.【解答】解:(1)抛物线1C 的对称轴为:212ax a=-=-.故答案为:1x =-.故答案为:1x =-.(2) 抛物线1C 平移到顶点是坐标原点O ,得到抛物线2C ,∴可设抛物线2C 的解析式为:2y ax = 点(2,2)A --有抛物线2C 上,22(2)a ∴-=⋅-,解得:12a =-.∴抛物线2C 的解析式为:212y x =-.点B 在抛物线2C 上,且在点A 的左侧,∴设点B 的坐标为21(,)2t t -且(2)t <-,如图,过点A 、B 分别作x 轴的垂线,垂足为点M 、N .ABO OBN OAM ABNMS S S S ∆∆∆=-- 梯形2211111()()22(2)(2)22222t t t t =⨯-⨯-⨯⨯-⨯+⨯--32311122424t t t t =--++++212t t =+,又4ABO S ∆=,∴2142t t +=,解得:13t +=±,4(2t t ∴=-=不合题意,舍去),则2211(4)822t -=-⨯-=-,(4,8)B ∴--.(3)设1(M x ,1)y ,2(N x ,2)y ,联立方程组:2122y xy kx ⎧=-⎪⎨⎪=-⎩,整理得:2240x kx +-=,122x x k ∴+=-,124x x =-.设过点M 的直线解析式为y mx n =+,联立得方程组212y xy mx n⎧=-⎪⎨⎪=+⎩,整理得2220x mx n ++=.①过点M 的直线与抛物线只有一个公共点,∴△2480m n =-=,∴212n m =.∴由①式可得:221112202x mx m ++⨯=,解得:1m x =-.∴2112n x =.∴过M 点的直线2l 的解析式为21112y x x x =-+.用以上同样的方法可以求得:过N 点的直线3l 的解析式为22212y x x x =-+,联立上两式可得方程组2112221212y x x x y x x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得1212212x x x y x x +⎧=⎪⎪⎨⎪=-⎪⎩,12x x k +=- ,124x x =-.∴(,2)2k P -∴点P 在定直线2y =上.(如图)【点评】本题考查了抛物线的对称轴、求二次函数的解析式、解一元二次方程、一元二次方程的根的情况、求直线交点坐标等知识点,解题的关键是利用所画图形帮助探索解法思路.3.(2024•和平区一模)已知抛物线21(y ax bx a =+-,b 为常数.0)a ≠经过(2,3),(1,0)两个点.(Ⅰ)求抛物线的解析式;(Ⅱ)抛物线的顶点为;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线.【分析】(Ⅰ)利用待定系数法即可求解;(Ⅱ)根据抛物线的顶点式即可求得;(Ⅲ)利用平移的规律即可求得.【解答】解:(1) 抛物线21y ax bx =+-经过(2,3),(1,0)两个点,∴421310a b a b +-=⎧⎨+-=⎩,解得10a b =⎧⎨=⎩,∴抛物线的解析式为21y x =-;(Ⅱ) 抛物线21y x =-,∴抛物线的顶点为(0,1)-,故答案为:(0,1)-;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线2(1)12y x =---,即2(1)3y x =--.故答案为:2(1)3y x =--.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象与几何变换,熟练掌握待定系数法是解题的关键.4.(2024•礼县模拟)如图,在平面直角坐标系中,抛物线23y ax bx =++交y 轴于点A ,且过点(1,2)B -,(3,0)C .(1)求抛物线的函数解析式;(2)求ABC ∆的面积;(3)将抛物线向左平移(0)m m >个单位,当抛物线经过点B 时,求m的值.【分析】(1)用待定系数法求函数解析式即可;(2)先求出点A 的坐标,然后切成直线BC 的解析式,求出点D 的坐标,再根据ABC ABD ACD S S S ∆∆∆=+求出ABC ∆的面积;(3)由(1)解析式求出对称轴,再求出点B 关于对称轴的对称点B ',求出BB '的长度即可;【解答】解:(1)把(1,2)B -,(3,0)C 代入23y ax bx =++,则933032a b a b ++=⎧⎨-+=⎩,解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数解析式为211322y x x =-++;(2) 抛物线23y ax bx =++交y 轴于点A ,(0,3)A ∴,设直线BC 的解析式为y kx n =+,把(1,2)B -,(3,0)C 代入y kx n =+得230k n k n -+=⎧⎨+=⎩,解得1232k n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+,设BC 交y 于点D,如图:则点D 的坐标为3(0,)2,33322AD ∴=-=,113()(31)3222ABC ABD ACD C B S S S AD x x ∆∆∆∴=+=-=⨯⨯+=,(3)211322y x x =-++ ,∴对称轴为直线122b x a =-=,令B 点关于对称轴的对称点为B ',(2,2)B ∴',3BB ∴'=,抛物线向左平移(0)m m >个单位经过点B ,3m ∴=.【点评】本题主要考查待定系数法求二次函数的解析式,二次函数图象与几何变换、二次函数的性质、三角形面积等知识,关键是掌握二次函数的性质和平移的性质.5.(2024•珠海校级一模)已知抛物线223y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)化成顶点是即可求解;(2)根据平移的规律得到2(1)4y x m =-+-+,把原点代入即可求得m 的值.【解答】解:(1)2223(1)4y x x x =+-=+- ,∴抛物线的顶点坐标为(1,4)--.(2)该抛物线向右平移(0)m m >个单位长度,得到的新抛物线对应的函数表达式为2(1)4y x m =+--, 新抛物线经过原点,20(01)4m ∴=+--,解得3m =或1m =-(舍去),3m ∴=,故m 的值为3.【点评】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,求得平移后的抛物线的解析式是解题的关键.6.(2024•关岭县一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =;函数2y 与坐标轴的交点坐标为;(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.【分析】(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式即可求出b 、c 值,再转化为顶点式即可;(2)根据抛物线平移规则“左加右减”得到2y 解析式,令20y =求出与x 轴的交点坐标即可;(3)利用待定系数法求出直线AB 解析式,再根据直线平移法则“上加下减”得到直线平移后解析式,联立消去y ,根据判别式为0解出n 值即可.【解答】解:(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式得:2022b c b c -+=⎧⎨++=⎩,解得11b c =⎧⎨=-⎩,∴抛物线解析式为2219212()48y x x x =+-=+-.∴抛物线解析式为:21192()48y x =+-.(2)将二次函数1y 向左平移1个单位,得函数22592()48y x =+-,令20y =,则2592(048x +-=,解得112x =-,22x =-,∴平移后的抛物线与x 轴的交点坐标为1(2-,0)(2-,0).故答案为:22592()48y x =+-,1(2-,0)(2-,0).(3)设直线AB 的解析式为y kx b =+,将(1,0)A -,点(1,2)B 代入得:02k b k b -+=⎧⎨+=⎩,解得11k b =⎧⎨=⎩,∴直线AB 解析式为:1y x =+.将直线AB 向下平移(0)n n >个单位后的解析式为1y x n =+-,与函数2y 联立消去y 得:2592(148x x n +-=+-,整理得:22410x x n +++=,直线AB 与抛物线有唯一交点,△1642(1))0n =-⨯+=,解得1n =.【点评】本题考查了二次函数的图象与几何变换,熟练掌握函数的平移法则是解答本题的关键.7.(2024•温州模拟)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式.(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.【分析】(1)由题意可得点A 、B 的坐标,利用待定系数法求解二次函数的表达式即可解答;(2)根据二次函数图象平移规律“左加右减,上加下减”得到平移后的抛物线的表达式,再代入B 的坐标求解即可.【解答】解:(1)令0x =,则1222y x =-+=,(0,2)B ∴,令0y =,则1202y x =-+=,解得4x =,(4,0)A ∴,抛物线2y x mx =-+经过点A ,1640m ∴-+=,解得4m =,∴二次函数的表达式为24y x x =-+;(2)224(2)4y x x x =-+=--+ ,∴抛物线向左平移n 个单位后得到2(2)4y x n =--++,经过点(0,2)B ,22(2)4n ∴=--++,解得2n =±,故n 的值为2-2+【点评】本题考查待定系数法求二次函数解析式、一次函数图象上点的坐标特征、二次函数的图象与几何变换,二次函数图象上点的坐标特征等知识,熟练掌握待定系数法求二次函数解析式是解答的关键.8.(2024•巴东县模拟)已知二次函数2y ax bx c =++图象经过(2,3)A ,(3,6)B 、(1,6)C -三点.(1)求该二次函数解析式;(2)将该二次函数2y ax bx c =++图象平移使其经过点(5,0)D ,且对称轴为直线4x =,求平移后的二次函数的解析式.【分析】(1)运用待定系数法即可求得抛物线解析式;(2)利用平移的规律求得平移后的二次函数的解析式.【解答】解:(1)把(2,3)A ,(3,6)B 、(1,6)C -代入2y ax bx c =++,得:4239366a b c a b c a b c ++=⎧⎪++=⎨⎪-+=⎩,解得:123a b c =⎧⎪=-⎨⎪=⎩,∴该二次函数的解析式为223y x x =-+;(2)若将该二次函数2y ax bx c =++图象平移后经过点(5,0)D ,且对称轴为直线4x =,设平移后的二次函数的解析式为2(4)y x k =-+,将点(5,0)D 代入2(4)y x k =-+,得2(54)0k -+=,解得,1k =-.∴将二次函数的图象平移后的二次函数的解析式为22(4)1815y x x x =--=-+.【点评】本题考查了待定系数法求解析式,抛物线的性质,熟知待定系数法和平移的规律是解题的关键.9.(2024•郑州模拟)在平面直角坐标系中,抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B .(1)求抛物线的解析式;(2)直线y x m =+经过点A ,判断点B 是否在直线y x m =+上,并说明理由;(3)平移抛物线2y x bx c =-++使其顶点仍在直线y x m =+上,若平移后抛物线与y 轴交点的纵坐标为n ,求n 的取值范围.【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求得直线y x m =+的解析式,然后代入点B 判断即可;(3)设平移后的抛物线为2()1y x p q =--++,其顶点坐标为(,1)p q +,根据题意得出2221511()24n p q p p p =-++=-++=-++,得出n 的最大值.【解答】解:(1) 抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B ,∴12421b c b c -++=⎧⎨-++=⎩,解得21b c =⎧⎨=⎩,∴抛物线的解析式为:221y x x =-++;(2)点B 不在直线y x m =+上,理由:直线y x m =+经过点A ,12m ∴+=,1m ∴=,1y x ∴=+,把2x =代入1y x =+得,3y =,∴点(2,1)B 不在直线y x m =+上;(3)∴平移抛物线221y x x =-++,使其顶点仍在直线1y x =+上,设平移后的抛物线的解析式为2()1y x p q =--++,其顶点坐标为(,1)p q +, 顶点仍在直线1y x =+上,11p q ∴+=+,p q ∴=,抛物线2()1y x p q =--++与y 轴的交点的纵坐标为21n p q =-++,2221511(24n p q p p p ∴=-++=-++=-++,∴当12p =-时,n 有最大值为54.54n ∴ .【点评】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.10.(2024•鞍山模拟)已知抛物线2246y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)将二次函数的解析式改写成顶点式即可.(2)将抛物线与x 轴的交点平移到原点即可解决问题.【解答】解:(1)由题知,2222462(21)82(1)8y x x x x x =+-=++-=+-,所以抛物线的顶点坐标为(1,8)--.(2)令0y =得,22460x x +-=,解得11x =,23x =-.又因为将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,所以30m -+=,解得3m =.故m 的值为3.【点评】本题考查二次函数的图象与性质,熟知利用配方法求二次函数解析式的顶点式及二次函数的图象与性质是解题的关键.11.(2023•原平市模拟)(1)计算:3211()(5)|2|3--+---⨯-;(2)观察表格,完成相应任务:x3-2-1-012221A x x =+-21-2-1-①72(1)2(1)1B x x =-+--721-2-②2任务一:补全表格;任务二:观察表格不难发现,当x m =时代数式A 的值与当1x m =+时代数式B 的值相等,我们称这种现象为代数式B 参照代数式A 取值延后,相应的延后值为1:换个角度来看,将代数式A ,B 变形,得到(A =③2)2-,22B x =-将A 与B 看成二次函数,则将A 的图象④(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式P =⑤.【分析】(1)先算乘方,负整数指数幂,绝对值,再算乘法,最后算加减法即可求解;(2)①把1x =分别代入代数式A ,B 即可求得;②根据代数式B 参照代数式A 取值延后,相应的延后值为1,即可得出二次函数A 、B 平移的规律是向右平移1个单位,据此即可得出代数式P 参照代数式A 取值延后,延后值为3的P 的代数式.【解答】解:(1)原式19(5)2=-+--⨯19(10)=-+--1910=-++18=;(2)任务一:将1x =代入2212A x x =+-=;代入2(1)2(1)11B x x =-+--=-,故答案为:①2,②1-;任务二:将代数式A ,B 变形,得到2(1)2A x =+-,22B x =-将A 与B 看成二次函数,则将A 的图象向右平移1个单位(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式22(13)2(2)2P x x =+--=--.故答案为:①2;②1-;③1x +;④向右平移1个单位;⑤2(2)2P x =--.【点评】本题考查二次函数图象与几何变换,二次函数图象上点的坐标特征,理解题意,能够准确地列出解析式,并进行求解即可.12.(2024•南山区校级模拟)数形结合是解决数学问题的重要方法.小明同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:【观察探究】:方程2(||1)1x --=-的解为:;【问题解决】:若方程2(||1)x a --=有四个实数根,分别为1x 、2x 、3x 、4x .①a 的取值范围是;②计算1234x x x x +++=;【拓展延伸】:①将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?画出平移后的图象并写出平移过程;②观察平移后的图象,当123y时,直接写出自变量x 的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数21(|21)3y x =---+的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①由图象可知,当函数值为1-时,直线1y =-与图象交点的横坐标就是方程2(||1)1x --=-的解.故答案为:2x =-或0x =或2x =.(2)问题解决:①若方程2(|1)x a --=有四个实数根,由图象可知a 的取值范围是10a -<<.故答案为:10a -<<.②由图象可知:四个根是两对互为相反数.所以12340x x x x +++=.故答案为:0.(3)拓展延伸:①将函数2(||1)y x =--的图象向右平移2个单位,向上平移3个单位可得到函数21(|2|1)3y x =---+的图象,②当123y 时,自变量x 的取值范围是04x .故答案为:04x.【点评】本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.13.(2023•花山区一模)已知抛物线2y x ax b =++的顶点坐标为(1,2).(1)求a ,b 的值;(2)将抛物线2y x ax b =++向下平移m 个单位得到抛物线1C ,存在点(,1)c 在1C 上,求m 的取值范围;(3)抛物线22:(3)C y x k =-+经过点(1,2),直线(2)y n n =>与抛物线2y x ax b =++相交于A 、B (点A 在点B 的左侧),与2C 相交于点C 、D (点C 在点D 的左侧),求AD BC -的值.【分析】(1)根据对称轴公式以及当1x =时2y =,用待定系数法求函数解析式;(2)根据(1)可知抛物线2223(1)2y x x x =-+=-+,再由平移性质得出抛物线1C 解析式,然后把点(,1)c 代入抛物线1C ,再根据方程有解得出m 的取值范围;(3)先求出抛物线2C 解析式,再求出A ,B ,C ,D 坐标,然后求值即可.【解答】解:(1)由题意得,1212aa b ⎧-=⎪⎨⎪++=⎩,解得23a b =-⎧⎨=⎩;(2)由(1)知,抛物线2223(1)2y x x x =-+=-+,将其向下平移m 个单位得到抛物线1C ,∴抛物线1C 的解析式为2(1)2y x m =-+-,存在点(,1)c 在1C 上,2(1)21c m ∴-+-=,即2(1)1c m -=-有实数根,10m ∴- ,解得1m,m ∴的取值范围为1m;(3) 抛物线22:(3)C y x k =-+经过点(1,2),2(13)2k ∴-+=,解得2k =-,∴抛物线2C 的解析式为2(3)2y x =--,把(2)y n n =>代入到2(1)2y x =-+中,得2(1)2n x =-+,解得1x =1x =(1A ∴-,)n ,(1B +)n ,把(2)y n n =>代入到2(3)2y x =--中,得2(3)2n x =--,解得3x =或3x =+(3C ∴)n ,(3D +,)n ,(3(12AD ∴=+--=+,(1(32BC =+--=-+,(2(24AD BC ∴-=+--+=.【点评】本题考查二次函数的几何变换,二次函数的性质以及待定系数法求函数解析式,直线和抛物线交点,关键对平移性质的应用.14.(2023•环翠区一模)已知抛物线2y x bx c =++经过点(1,0)和点(0,3).(1)求此抛物线的解析式;(2)当自变量x 满足13x -时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x时,y 的最小值为5,求m 的值.【分析】(1)利用待定系数法求解;(2)先求出1x =-及3x =时的函数值,结合函数的性质得到答案;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为(2)2y x m l =---,利用二次函数的性质,当25m +>,此时5x =时,5y =,即(52)215m ---=,设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)21y x m =-+-,利用二次函数的性质得到2m l -<,此时1x =时,5y =,即(12)215m ---=,然后分别解关于m 的方程即可.【解答】解:(1) 抛物线2y x bx c =++经过点(1,0)和点(0,3),∴103b c c ++=⎧⎨=⎩,解得43b c =-⎧⎨=⎩,∴此抛物线的解析式为243y x x =-+;(2)当1x =-时,1438y =++=,当3x =时,91230y =-+=,2243(2)1y x x x =-+=-- ,∴函数图象的顶点坐标为(2,1)-,∴当13x -时,y 的取值范围是18y - ;(3)设此抛物线x 轴向右平移m 个单位后抛物线解析式为(2)y x m =--21-,当自变量x 满足15x时,y 的最小值为5,25m ∴+>,即3m >,此时5x =时,5y =,即(52)m --215-=,解得13m =+,23m =-(舍去);设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)y x m =-+21-,当自变量x 满足15x时,y 的最小值为5,21m ∴-<,即1m >,此时1x =时,5y =,即2(12)15m ---=,解得11m =-+,21m =--(舍去),综上所述,m 的值为3+1+【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式,也考查了二次函数的性质.15.(2023•南宁一模)如图1,抛物线21y x c =-+的图象经过(1,3).(1)求c 的值及抛物线1y 的顶点坐标;(2)当132x - 时,求1y 的最大值与最小值的和;(3)如图2,将抛物线1y 向右平移m 个单位(0)m >,再向上平移2m 个单位得到新的抛物线2y ,点N 为抛物线1y 与2y 的交点.设点N 到x 轴的距离为n ,求n 关于m 的函数关系式,并直接写出当n 随m 的增大而减小时,m 的取值范围.【分析】(1)把(1,3)代入抛物线解析式求得c 的值;根据抛物线解析式可以直接得到顶点坐标;(2)根据抛物线的性质知:当0x =时,1y 有最大值为4,当3x =-时,1y 有最小值为5-.然后求1y 的最大值与最小值的和;(3)根据平移的性质“左加右减,上加下减”即可得出抛物线2y 的函数解析式;然后根据抛物线的性质分两种情况进行解答:当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.【解答】解:(1)抛物线21y x c =-+的图象经过(1,3),∴当0x =时,2113y c =-+=,解得4c =.∴214y x =-+.顶点坐标为(0,4);(2)10-< ,∴抛物线开口向下.当0x =时,1y 有最大值为4.当3x =-时,21(3)45y =--+=-.当12x =时,21115()424y =-+=.∴当3x =-时,1y 有最小值为5-.∴最大值与最小值的和为4(5)1+-=-;(3)由题意知,新抛物线2y 的顶点为(,42)m m +,∴22()42y x m m =--++.当12y y =时,22()424x m m x --++=-+,化简得:2220mx m m -+=.又0m > ,∴112x m =-.∴2211(1)4(2)424y m m =--+=--+.当21(2)404m --+=时,解得12m =-;26m =, 104-<,∴抛物线开口向下.当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.∴综上所述2213,06413,64m m m n m m m ⎧-++<⎪⎪=⎨⎪-->⎪⎩ (或21|(2)4|)4n m =--+.当26m <<时,n 随m 的增大而减小.【点评】本题属于二次函数综合题,主要考查了二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的图象与性质以及二次函数最值的求法.难度偏大.16.(2023•奉贤区一模)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(3,0).(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果//DE AC ,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q的坐标.【分析】(1)利用待定系数法解答即可;(2)①依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质和平行线的性质求得点E ,F 坐标,再利用四边形ACDE 的面积DFC EFCA S S ∆=+平行四边形解答即可;②依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质,勾股定理求得点E 坐标和线段DE ,再利用等腰三角形的判定与性质求得线段FQ ,则结论可求.【解答】解:(1) 抛物线23y ax bx =++的对称轴为直线2x =,经过点(3,0)C ,∴229330b a a b ⎧-=⎪⎨⎪++=⎩,解得:14a b =⎧⎨=-⎩,∴抛物线的表达式为243y x x =-+;(2)①2243(2)1y x x x =-+=-- ,(2,1)A ∴-.设抛物线的对称轴交x 轴于点G ,1AG ∴=.令0x =,则3y =,(0,3)D ∴,3OD ∴=.令0y =,则2430x x -+=,解得:1x =或3x =,(1,0)B ∴.如果//DE AC ,需将抛物线向左平移,设DE 交x 轴于点F ,平移后的抛物线对称轴交x 轴于点H ,如图, 点C 的坐标为(3,0),3OC ∴=.由题意:45ACB ∠=︒,//DE AC ,45DFC ACB ∴∠=∠=︒.3OF OD ∴==,(3,0)F ∴-,由题意:1EH =,1FH EH ∴==,(4,1)E ∴--.//AE x 轴,//DE AC ,∴四边形EFCA 为平行四边形,2(4)6AE =--= ,616EFCA S ∴=⨯=平行四边形.1163922DFC S FC OD ∆=⨯⋅=⨯⨯= ,∴四边形ACDE 的面积6915DFC EFCA S S ∆=+=+=平行四边形;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,DQE CDQ ∠=∠,如图,当点Q 在x 轴的下方时,设平移后的抛物线的对称轴交x 轴于F ,由题意:1EF =.3OD OC == ,45ODC OCD ∴∠=∠=︒,45FCE OCD ∴∠=∠=︒,1CF EF ∴==,(4,1)E ∴-.CD ==,CE ==DE CD CE ∴=+=DQE CDQ ∠=∠ ,EQ DE ∴==1QF EF EQ ∴=+=,(4,1)Q ∴-;当点Q 在x 轴的上方时,此时为点Q ',DQ E CDQ ∠'=∠' ,EQ DE ∴'==,1Q F EQ EF ∴'='-=,(4Q ∴',1)-.综上,当DQE CDQ ∠=∠时,点Q 的坐标为(4,1)--或(4,1)-.【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法,三角形面积,直角三角形性质,勾股定理,相似三角形判定和性质等,解题的关键是熟练运用分类讨论思想和方程的思想解决问题.17.(2023•下城区校级模拟)如图已知二次函数2(y x bx c b =++,c 为常数)的图象经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标:(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q的横坐标:若不存在,请说明理由.【分析】(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,即可求解;(2)求出平移后的抛物线的顶点(1,5)m -,再求出直线AC 的解析式4y x =-,当顶点在直线AC 上时,2m =,当M 点在AB 上时,4m =,则24m <<;(3)设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,分三种情况讨论:当CE 为菱形对角线时,CP CQ =,22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,Q 点横坐标为1;②当CP 为对角线时,CE CQ =,22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,Q 点横坐标为2;③当CQ 为菱形对角线时,CE CP =,222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,Q点横坐标为3【解答】解:(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,∴4931c b c =-⎧⎨++=-⎩,解得24b c =-⎧⎨=-⎩,224y x x ∴=--,2224(1)5y x x x =--=-- ,∴顶点(1,5)M -;(2)由题可得平移后的函数解析式为2(1)5y x m =--+,∴抛物线的顶点为(1,5)m -,设直线AC 的解析式为y kx b =+,∴431b k b =-⎧⎨+=-⎩,解得14k b =⎧⎨=-⎩,4y x ∴=-,当顶点在直线AC 上时,53m -=-,2m ∴=,//AB x 轴,(1,1)B ∴--,当M 点在AB 上时,51m -=-,4m ∴=,24m ∴<<;(3)存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形,理由如下:设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,点E 在点C 下方,4t ∴<-,Q点在第四象限,01q ∴<<,①当CE 为菱形对角线时,CP CQ =,∴22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,解得334q p t =⎧⎪=-⎨⎪=-⎩(舍)或116p q t =-⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为1;②当CP 为对角线时,CE CQ =,∴22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,解得222q p t =⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为2,不符合题意;③当CQ 为菱形对角线时,CE CP =,∴222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,解得332p q t ⎧=⎪⎪=⎨⎪=-+⎪⎩(舍)或332p q t ⎧=-⎪⎪=-⎨⎪=--⎪⎩,Q ∴点横坐标为3-综上所述:Q 点横坐标为1或3-【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,菱形的性质,分类讨论是解题的关键.18.(2023•即墨区一模)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为243y x x =-+.已知二次函数2y ax bx c =++的图象经过点(0,3)A ,(1,0)B ,.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:(2,1)C -(答案不唯一);(2)当函数值6y <时,自变量x 的取值范围:;(3)如图1,将函数243(0)y x x x =-+<的图象向右平移4个单位长度,与243(4)y x x x =-+ 的图象组成一个新的函数图象,记为L .若点(3,)P m 在L 上,求m 的值;(4)如图2,在(3)的条件下,点A 的坐标为(2,0),在L 上是否存在点Q ,使得9OAQ S ∆=.若存在,求出所有满足条件的点Q 的坐标;若不存在,请说明理由.【分析】(1)只需填一个在抛物线图象上的点的坐标即可;(2)求出6y =时,对应的x 值,再结合图象写出x 的取值范围即可;(3)求出抛物线向右平移4个单位后的解析式为2(6)3y x =--,根据题意可知3x =时,P 点在抛物线2(6)3y x =--的部分上,再求m 的值即可;(4)分两种情况讨论:当Q 点在抛物线2(6)3y x =--的部分上时,设2(,1233)Q t t t -+,由212(1233)92OAQ S t t ∆=⨯⨯-+=,求出Q 点坐标即可;当Q 点在抛物线243y x x =-+的部分上时,设2(,41)Q m m m -+,由212(41)92OAQ S m m ∆=⨯⨯-+=,求出Q 点坐标即可.【解答】解:(1)(2,1)C -,故答案为:(2,1)C -(答案不唯一);(2)243y x x =-+ ,∴当2436x x -+=时,解得2x =2x =-∴当6y <时,22x <<+,故答案为:22x -<<+;(3)2243(2)1y x x x =-+=-- ,∴抛物线向右平移4个单位后的解析式为2(6)1y x =--,当3x =时,点P 在抛物线2(6)1y x =--的部分上,8m ∴=;(4)存在点Q ,使得9OAQ S ∆=,理由如下:当Q 点在抛物线2(6)1y x =--的部分上时,设2(,1235)Q t t t -+,212(1235)92OAQ S t t ∆∴=⨯⨯-+=,解得6t =+6t =,4t ∴<,6t ∴=-(6Q ∴-,9);当Q 点在抛物线243y x x =-+的部分上时,设2(,43)Q m m m -+,212(43)92OAQ S m m ∆∴=⨯⨯-+=,解得2m =+或2m =-4m ,2m ∴=+,2Q ∴,9);综上所述:Q 点坐标为(6,9)或2+,9).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,数形结合解题是关键.19.(2023•武侯区模拟)定义:将二次函数l 的图象沿x 轴向右平移t ,再沿x 轴翻折,得到新函数l '的图象,则称函数l '是函数l 的“t 值衍生抛物线”.已知2:23l y x x =--.(1)当2t =-时,①求衍生抛物线l '的函数解析式;②如图1,函数l 与l '的图象交于(M ,)n ,(,N m -两点,连接MN .点P 为抛物线l '上一点,且位于线段MN 上方,过点P 作//PQ y 轴,交MN 于点Q ,交抛物线l 于点G ,求QNG S ∆与PNG S ∆存在的数量关系.(2)当2t =时,如图2,函数l 与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC .函数l '与x 轴交于D ,E 两点,与y 轴交于点F .点K 在抛物线l '上,且EFK OCA ∠=∠.请直接写出点K 的横坐标.【分析】(1)①利用抛物线的性质和衍生抛物线的定义解答即可;②利用待定系数法求得直线MN 的解析式,设2(,23)P m m m --+,则得到(,2)Q m m -,2(,23)G m m m --,利用m 的代数式分别表示出PQ ,QG 的长,再利用同高的三角形的面积比等于底的比即可得出结论;(2)利用函数解析式求得点A ,B ,C ,D ,E ,F 的坐标,进而得出线段OA ,OC ,OD ,OE ,AC ,OF 的长,设直线FK 的解析式为5y kx =-,设直线FK 交x 轴于点M ,过点M 作MN EF ⊥于点N ,用k 的代数式表示出线段OM .FM ,ME 的长,利用EFK OCA ∠=∠,得到sin sin EFK OCA ∠=∠,列出关于k 的方程,解方程求得k 值,将直线FK 的解析式与衍生抛物线l '的函数解析式联立即可得出结论.。
初中数学《二次函数图像与系数的六种关系》含解析

二次函数图像与系数的六种关系题型01a与图像的关系【典例分析】1(23-24九年级上·河北保定·期末)二次函数y=ax2的图象如图所示,则a的值可能为()A.2B.0C.-1D.-2【答案】A【分析】本题考查二次函数的图象与性质,根据二次函数的图象的开口方向求解即可.【详解】解:由图象知,二次函数y=ax2的图象开口向上,则a>0,故选项A符合题意,选项B、C、D不符合题意,故选:A2(2024九年级·全国·专题练习)在同一个平面直角坐标系中,二次函数y1=a1x2,y2=a2x2,y3=a3x2的图象如图所示,则a1,a2,a3的大小关系为.【答案】a3>a2>a1#a1<a2<a3【分析】本题考查了二次函数的性质,抛物线的开口方向和开口大小由a的值决定的,a 越大,开口越小,掌握抛物线的开口方向和开口大小由a的值决定是解题的关键.【详解】解:由抛物线开口方向可知,a1、a2、a3为正数,又由开口大小可得,a3>a2>a1,故答案为:a3>a2>a13(23-24九年级上·福建厦门·阶段练习)已知y=k+2x k2+k-4是二次函数,且当x<0时,y随x的增大而增大.求k的值,并画出它的图象;【答案】k=-3【分析】根据二次函数定义以及当x<0时,y随x的增大而增大.可得出函数解析式,再描点画图即可;【详解】解:由y=k+2x k2+k-4是二次函数,且当x<0时,y随x的增大而增大,得k2+k-4=2,k+2<0解得:k=-3或k=2(舍去);二次函数的解析式为y=-x2,如图所示:【变式演练】1(23-24九年级上·山东青岛·阶段练习)图中与抛物线y=13x2,y=2x2,y=-13x2,y=-2x2,的图象对应的是()A.①②④③B.②①④③C.①②③④D.②①③④【答案】B【分析】本题考查了二次函数的图象.抛物线的形状与a和a 有关,根据a 的大小即可确定抛物线的开口的宽窄.【详解】解:∵①②开口向上,则a>0,∵②的开口最宽,∴y=13x2是②,y=2x2是①,∵③④开口向下,则a<0,∵④的开口最宽,∴y=-13x2是④,y=-2x2是③,综上,依次②①④③,故选:B2(23-24九年级上·吉林松原·阶段练习)二次函数y=k+2x2的图象如图所示,则k的取值范围是.【答案】k>-2【分析】由图示知,该抛物线的开口方向向上,则系数k+2>0,据此易求k的取值范围.【详解】解:如图,抛物线的开口方向向上,则k+2>0,解得k>-2.故答案为:k>-2.【点睛】本题考查了二次函数的图象.二次函数y=ax2的系数a为正数时,抛物线开口向上;a为负数时,抛物线开口向下;a的绝对值越大,抛物线开口越小3(24-25九年级上·全国·假期作业)已知函数y=(m+3)x m2+3m-2是关于x的二次函数.(1)求m的值;(2)当m为何值时,该函数图像的开口向下?(3)当m为何值时,该函数有最小值?(4)试说明函数的增减性.【答案】(1)m=-4或m=1(2)当m=-4时,该函数图像的开口向下(3)当m=1时,原函数有最小值(4)见解析【分析】(1)由二次函数的定义可得m2+3m-2=2m+3≠0故可求m的值.(2)图像的开口向下,则m+3<0,结合(1)中的结果,即可得m的值;(3)函数有最小值,则m+3>0,结合(1)中的结果,即可得m的值;;(4)根据(1)中求得的m的值,先求出抛物线的解析式,函数的增减性由函数的开口方向及对称轴来确定.【详解】(1)根据题意,得m2+3m-2=2 m+3≠0,解得m1=-4,m2=1 m≠-3,∴当m=-4或m=1时,原函数为二次函数.(2)∵图像开口向下,∴m+3<0,∴m<-3,∴m=-4,∴当m=-4时,该函数图像的开口向下.(3)∵函数有最小值,∴m+3>0,则m>-3,∴m=1,∴当m=1时,原函数有最小值.(4)当m=-4时,此函数为y=-x2,开口向下,对称轴为y轴,当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小;当m=1时,此函数为y=4x2,开口向上,对称轴为y轴,当x<0时,y随x的增大而减小;当x>0时,y随x的增大而增大.【点睛】本题主要考查二次函数的性质,二次函数的最值,二次函数的增减性.二次函数的最值是顶点的纵坐标,当a>0时,开口向上,顶点最低,此时纵坐标为最小值;当a<0时,开口向下,顶点最高,此时纵坐标为最大值.考虑二次函数的增减性要考虑开口方向和对称轴两方面的因素,因此最好画图观察.题型02b与图像的关系【典例分析】1(21-22九年级上·安徽合肥·开学考试)已知二次函数y=-x2+2m-1x-3,当x>1时,y随x的增大而减小,则m的取值范围是()A.m<32B.m≤32C.m≤12D.m<-12【答案】B【分析】本题主要考查二次函数图象对称轴,增减性,解一元一次不等式的问题,根据题意可得二次函数图象的对称轴为x=2m-22,结合函数图象的增减性可得2m-12≤1,由此即可求解,掌握二次函数图象的性质,解不等式的方法是解题的关键.【详解】解:二次函数y=-x2+2m-3x-3中,a=-1<0,b=2m-1,c=-3,∴图象开口向下,对称轴为x=-2m-12×-1=2m-12,∵当x>1时,y随x的增大而减小,∴2m-12≤1,解得,m≤3 2,故选:B2(2023·九年级上·西藏日喀则·)已知抛物线γ=x²+mx的对称轴为直线x=2.则m的值是() A.-4 B.1 C.4 D.-1【答案】A【分析】本题考查了二次函数y=ax2+bx+c的图象与性质,对于二次函数y=ax2+bx+c,其对称轴为直线x=-b2a,据此即可求解.【详解】解:由题意得:抛物线γ=x²+mx的对称轴为直线:x=-b2a=-m2×1=-m2,∴-m2=2解得:m=-4故选:A3(23-24九年级上·安徽淮北·阶段练习)抛物线y=-x2+2ax+3的对称轴位于y轴的右侧,与x轴交于点A,B(点B在点A的右边),且AB=4.(1)此抛物线的顶点坐标为.(2)当-1≤x≤m时,-5≤y≤4,则m的值为.【答案】1,44【分析】(1)令y=0,则x2-2ax-3=0.设A x1,0,B x2,0,则x1+x2=2a,x1x2=-3.根据AB=4,得出x2-x1=4,结合完全平方公式得出x2-x12=x1+x22-4x1x2=16,求出a的值,即可求解;(2)根据二次函数的性质可得当x=1时,y取得最大值4.求出当x=-1时,y=0>-5,且-5≤y≤4,得出m>1,则当x=m时,y=-5,即可求解.【详解】解:(1)令y=0,则-x2+2ax+3=0,即x2-2ax-3=0.设A x1,0,B x2,0,则x1+x2=2a,x1x2=-3.∵AB=4,∴x2-x1=4,∴x2-x12=x1+x22-4x1x2=16,∴4a2+12=16,∴a=±1.∵抛物线的对称轴位于y轴的右侧,即a=1,∴y=-x2+2x+3=-x-12+4,∴抛物线的顶点坐标为1,4.(2)∵y=-x2+2x+3=-x-12+4,∴当x=1时,y取得最大值4.∵当x=-1时,y=0>-5,且-5≤y≤4,∴m>1,∴当x=m时,y=-5,∴-m2+2m+3=-5,∴m=4或m=2(舍去).故答案为:1,4,4.【点睛】本题主要考查了二次函数的图象和性质,解题的关键是掌握二次函数与x轴交点坐标的求法,将二次函数表达式化为顶点式的方法和步骤,以及二次函数的增减性【变式演练】1(22-23九年级上·福建厦门·期中)已知抛物线y=-x2+6-2mx-3的对称轴在y轴的右侧,当x >2时,y的值随着x值的增大而减小,则m的取值范围是()A.m≥1B.m<3C.-3<m≤1D.1≤m<3【答案】D【分析】先得出抛物线对称轴为直线x=3-m,根据抛物线y=-x2+6-2mx-3的对称轴在y轴的右侧,可得m<3,根据当x>2时,y的值随着x值的增大而减小,得出m≥1,即可求解.【详解】解:∵抛物线y=-x2+6-2mx-3的对称轴在y轴的右侧,∴x=-b2a =6-2m2=3-m>0,解得:m<3,又∵a=1<0,抛物线开口向下,当x>2时,y的值随着x值的增大而减小,则3-m≤2,解得:m≥1,综上所述,1≤m<3,故选:D.【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键2(23-24九年级上·重庆合川·期末)关于x的二次函数y=x2+a-1x-1在y轴的右侧,y随x的增大而增大,且使得关于y的分式方程a-12-y+1y-2=2有非负数解的所有整数a的值之和.【答案】19【分析】本题主要考查了二次函数的性质、分式方程的解以及解一元一次不等式,依据题意,解分式方程可先确定出a的取值范围,再由二次函数的性质可确定出a的范围,从而可确定出a的取值,可求得答案.【详解】解分式方程a-12-y+1y-2=2可得y=6-a2,∵关于y的分式方程a-12-y +1y-2=2有非负数解,∴y=6-a2≥0且y=6-a2≠2,∴a≤6且a≠2,∵y=x2+a-1x-1,∴抛物线开口向上,对称轴为x=1-a2,∴当x>1-a2,时,y随x的增大而增大.∵在x>0时,y随x的增大而增大,≤0,解得a≥1.∴1-a2综上1≤a≤6且a≠2,∴满足条件的整数a的值为1,3,4,5,6.∴所有满足条件的整数a的值之和是1+3+4+5+6=19.故答案为:19.3(23-24九年级上·浙江宁波·期末)如图,已知二次函数y=x2+ax+2的图象经过点E1,5.(1)求a的值和图象的顶点坐标.(2)若点F m,n在该二次函数图象上.①当m=-2时,求n的值.②若n≤2,请根据图象直接写出m的取值范围.【答案】(1)a=2;-1,1(2)①n=2;②-2≤m≤0【分析】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征是解题的关键.(1)把点E(1,5)代入y=x2+ax+2中,即可求出a;(2)①把m=-2代入解析式即可求n的值;②由n≤2,在此范围内求m即可.【详解】(1)把点E(1,5)代入y=x2+ax+2中,∴a=2,∴y=x2+2x+2=(x+1)2+1,∴顶点坐标为(-1,1);(2)①把m=-2代入n=m2+2m+2=(m+1)2+1,可得:n=2,②∵n≤2,对称轴为x=-1,∴-2≤m≤0.【典例分析】1(23-24九年级上·内蒙古呼和浩特·阶段练习)关于二次函数y=x2-6x+5下列说法中错误的是()A.用配方法可化成y=x-32-4 B.将它的图象向下平移5个单位,会经过原点C.函数有最小值,最小值为5D.当x<3时,y随x的增大而减小【答案】C【分析】本题考查了二次函数的性质,二次函数的图象和几何变换,掌握二次函数的图象与坐标轴交点的求法是解题的关键.运用配方法把一般式化为顶点式,由二次函数的顶点式可判断其开口方向、对称轴、顶点坐标;令x=0可求得与y轴的交点坐标;则可得出答案.【详解】解:y=x2-6x+5=x-32-4,故A正确,不符合题意;2-9+5=x-3∴其对称轴为直线x=3,开口向上,顶点坐标为3,-4,∴函数有最小值,最小值为-4,当x<3时,y随x的增大而减小,故C错误,符合题意,D正确,不符合题意;令x=0可得y=5,∴与y轴的交点坐标为0,5,∴将它的图象向下平移5个单位,会经过原点,故B正确,不符合题意;故选:C2(2023·九年级上·上海杨浦·)将抛物线y=x2-2x+3向下平移m个单位后,它的顶点恰好落在x轴上,那么m=.【答案】2【分析】将抛物线解析式改为顶点式,即可求出平移后的解析式,进而可求出平移后的顶点坐标,最后根据它的顶点恰好落在x轴上,即顶点的纵坐标为0,可求出答案.【详解】解:∵y=x2-2x+3=(x-1)2+2,∴该抛物线向下平移m个单位后的解析式为y=(x-1)2+2-m,∴此时顶点坐标为(1,2-m).∵此时它的顶点恰好落在x轴上,∴2-m=0,解得:m=2.故答案为:2.【点睛】本题考查二次函数图象的平移,二次函数的图象和性质.掌握二次函数图象的平移规律“上加下减,左加右减”是解题关键3(23-24九年级上·四川泸州·期中)写出抛物线y=-2x2-4x+5的开口方向、对称轴及顶点坐标,并指出抛物线y=-2x2-4x+5可由抛物线y=-2x2怎样平移得到.【答案】抛物线y=-2x2-4x+5开口向下,对称轴为x=-1,顶点坐标为-1,7,抛物线y=-2x2-4x+5可由y=-2x2向上平移7个单位长度,向左平移1个单位长度得到.【分析】本题考查的知识点是二次函数的图像与性质、二次函数图像的平移,解题关键是理解抛物线y=ax2+bx+c的性质及掌握抛物线平移规律.先将抛物线y=-2x2-4x+5经配方转换为y=-2x+12+7,即可直接根据表达式判断抛物线开口方向、对称轴和顶点坐标;另根据抛物线平移规律“上加下减,左加右减”即可得出y=-2x2到y=-2x2-4x+5=-2x+12+7的平移过程.【详解】解:依题得抛物线y=-2x2-4x+5=-2x+12+7,则可根据抛物线性质得:抛物线y=-2x2-4x+5开口向下,对称轴为x=-1,顶点坐标为-1,7,∵根据抛物线平移规律“上加下减,左加右减”,∴y=-2x2-4x+5=-2x+12+7可由y=-2x2向上平移7个单位长度,向左平移1个单位长度得到【变式演练】1(23-24九年级上·安徽合肥·期末)若将抛物线y=ax2(a>0)向右平移h(h>0)个单位,得到抛物线y=ax2+bx+c,则函数y=bx+c的图象可能是()A. B.C. D.【答案】C【分析】本题主要考查了二次函数及一次函数的图象,熟练掌握图象与系数的关系是关键.先根据题意判断 b<0,c>0,再判断经过的象限.【详解】∵将抛物线y=ax2(a>0)向右平移h(h>0)个单位,得到抛物线y=ax2+bx+c,∴y=ax2+bx+c对称轴在y轴的右侧,且交于y轴的正半轴,∴b<0,c>0,∴y=bx+c的图象过第一、二、四象限.故选:C2(22-23九年级上·浙江宁波·期末)将抛物线y=x2+3x-6向上平移m个单位后,得到的图象不经过第四象限,则m的值可能是()A.1B.3C.5D.7【答案】D【分析】根据将抛物线y=x2+3x-6向上平移m个单位后,得到的图象不经过第四象限可知-6+m≥0,即可得出结果.【详解】解:∵将抛物线y=x2+3x-6向上平移m个单位后,得到的图象不经过第四象限,∴-6+m≥0,∴m≥6,∴m的值可能是7,故选:D.【点睛】本题考查了二次函数图象与几何变换,二次函数的性质,熟练掌握二次函数的性质是解题的关键3(21-22九年级上·广东中山·阶段练习)已知二次函数y=x2-2x-3.(1)请写出函数图象顶点坐标和对称轴∶(2)当函数值y为正数时,自变量x的取值范围∶(3)将该函数图象向右平移1个单位,再向上平移4个单位后,求所得图象的函数表达式.【答案】(1)1,-4,直线x=1(2)x<-1或x>3(3)y=x-22【分析】本题考查了二次函数的顶点式,对称轴,平移,不等式解集的确定,熟练掌握二次函数的性质是解题的关键.(1)化成顶点式,确定对称轴和顶点坐标即可.(2)求得x2-2x-3=0的两个根,进而即可求解.(3)根据右减上加的平移规律,即可求解.【详解】(1)∵y=x2-2x-3=x-12-4.∴对称轴为直线x=1,顶点为1,-4.(2)根据题意,得x2-2x-3=0,解得x1=-1,x2=3,∵y=x2-2x-3=x-12-4开口向上,故当x<-1或x>3时,y>0.(3)∵y=x2-2x-3=x-12-4.平移后的解析式为y=x-1-122-4+4即y=x-2题型04a,b与图像的关系【典例分析】1(23-24九年级上·浙江金华·期末)已知二次函数y=-mx2+2mx+4m>0,点经过点A-2,y1 B1,y2,那么y1,y2,y3的大小关系为(),点C3,y3A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y3<y1<y2【答案】B【分析】本题考查利用二次函数性质比较函数值大小,涉及二次函数图像与性质、比较二次函数值大小等知识,根据二次函数图像与性质,利用图像上点到对称轴距离比较函数值大小即可得到答案,熟练掌握利用距离比较二次函数值大小的方法是解决问题的关键.【详解】解:由二次函数y=-mx2+2mx+4m>0可知抛物线开口向下,对称轴为x=-2m-2m=1,∴抛物线上点到对称轴距离越近,函数值y越大,∵二次函数y=-mx2+2mx+4m>0经过点A-2,y1,点B1,y2,点C3,y3,∴三个点A、B、C到对称轴的距离为3、0、2,∴y1<y3<y2,故选:B.2(23-24九年级上·广东广州·期中)若点A-134,y1B-1,y2,C53,y3为二次函数y=-ax2-4ax+5a<0图象上的三个点,则y1,y2,y3的大小关系是.【答案】y3>y1>y2【分析】本题考查了二次函数的图象及性质,根据题意得抛物线开口向上,对称轴为直线x=-2,则点A-134,y1关于直线x=-2的对称点54,y1在抛物线y=-ax2-4ax+5a<0上,根据二次函数的性质即可求解,熟练掌握二次函数的图象及性质是解题的关键.【详解】解:∵y=-ax2-4ax+5a<0,∴-a>0,对称轴为直线x=--4a2×-a=-2,∴抛物线开口向上,∴点A-134,y1关于直线x=-2的对称点54,y1在抛物线y=-ax2-4ax+5a<0上,∵-2<-1<54<53,∴y3>y1>y2,故答案为:y3>y1>y23(23-24九年级上·云南昆明·阶段练习)已知关于x的二次函数y=mx2+3m+1x+3.(1)求证:不论m为任何实数,方程mx2+3m+1x+3=0总有实数根;(2)若抛物线与x轴交于两个不同的整数点,m为正整数,点P x1,y1与Q x1+n,y2在抛物线上(点P, Q不重合),且y1=y2,求代数式4x21+12x1n+5n2+16n+8的值.【答案】(1)证明见解析;(2)24【分析】本题主要考查了二次函数与一元二次方程的关系以及二次函数的图象与性质等知识;(1)用根的判别式可以直接证明;(2)令y=0,方程可以化为mx+1x+3=0,解得x=-3或x=-1m,又m为正整数,可以求解m的值,进而可求出函数解析式;点P、Q在抛物线上,且y1=y2,可将x1、x1+n代入解析式联立方程,用含n的式子表示出x1,然后带入代数式化简求解即可.【详解】(1)解:由题意可知m≠0,∵Δ=b2-4ac=(3m+1)2-4m×3=(3m-1)2≥0∴此方程总有实数根;综上,不论m为任何实数时,方程总有实数根.(2)解:令y=0,则有mx+1x+3=0解得:x1=-3,x2=-1 m,因为抛物线与x轴交于两个不同的整数点,且m为正整数,所以m=1,所以抛物线为y=x2+4x+3.∵点P、Q在抛物线上,且y1=y2,∴x12+4x1+3=(x1+n)2+2(x1+n)+3∴2x1n+n2+4n=0即:n(2x1+n+4)=0,∵P、Q不重合,∴n≠0,∴2x1=-n-4∴4x12+12x1n+5n2+16n+8=(2x1)2+2x1∙6n+5n2+16n+8=(n+4)2+6n(-n-4)+5n2+16n+8=24所以代数式 4x21+12x1n+5n2+16n+8的值为24【变式演练】1(23-24九年级上·浙江杭州·期末)已知关于x的二次函数y=ax2-4ax a>0.若P m,n和Q5,b是抛物线上的两点,且n>b,则m的取值范围为()A.m<-1B.m>5C.m<-1或m>5D.-1<m<5【答案】C【分析】本题考查了二次函数图象上点的坐标特征,二次函数的性质,由抛物线的解析式可知开口方向和对称轴为直线x=2,根据函数的对称性和增减性即可求解;熟练掌握二次函数的对称性和增减性是解题的关键.【详解】解:∵二次函数y=ax2-4ax a>0.∴抛物线开口向上,对称轴为直线x=--4a2a=2,∵P m,n和Q5,b是抛物线上的两点,∴当n=b时,m=-1,∵抛物线上的点到对称轴的距离越远,函数值越大,∴n>b时,m的取值范围为m<-1或m>5;故选:C.2(23-24九年级上·浙江杭州·期末)已知二次函数y=ax2-4ax+2(a为常数,且a≠0) (1)若函数图象过点1,0,求a的值;(2)当2≤x≤5时,函数的最大值为M,最小值为N,若M-N=18,求a的值.【答案】(1)a=2 3(2)a=±2【分析】本题考查了求二次函数的表达式、二次函数的性质,熟练掌握二次函数的性质是解题的关键.(1)将点1,0的坐标代入表达式求解即可;(2)分类讨论a的正负,结合对称轴和图象的增减性即可得出答案.【详解】(1)解:函数图象过点1,0得a-4a+2=0解得:a=2 3(2)由y=ax2-4ax+2可知对称轴为直线x=2①当a>0时,开口方向向上,当2≤x≤5时当x=2时取最小值,当x=5时取最大值∴M=5a+2,N=-4a+2∵M-N=5a+2--4a+2=9a=18解得a=2,满足题意.②当a<0时,开口方向向下,当2≤x≤5时当x=2时取最大值,当x=5时取最小值∴M=-4a+2,N=5a+2∴M-N=-4a+2-5a+2=-9a=18解得a=-2 满足题意.综上所述:a=±2.3(23-24九年级上·安徽合肥·阶段练习)如图所示,抛物线y=ax2+bx+4(a≠0)经过点A(-1,0),点B(4,0),与y轴交于点C,连接AC,BC.点M是线段OB上不与点O、B重合的点,过点M作DM⊥x 轴,交抛物线于点D,交BC于点E.(1)求抛物线的表达式;(2)过点D作DF⊥BC,垂足为点F.设M点的坐标为M(m,0),请用含m的代数式表示线段DF的长,并求出当m为何值时DF有最大值,最大值是多少?【答案】(1)抛物线的表达式为:y=-x2+3x+4(2)当m=2时,DF有最大值为22【分析】(1)利用待定系数法求函数解析式.(2)先求出B,C所在直线解析式可得∠OBC=∠OCB=45°,通过DF=22DE可表示DF长度的代数式,再配方求解即可.【详解】(1)把点A(-1,0),点B(4,0)分别代入y=ax2+bx+4a≠0中,得:a-b+4=016a+4b+4=0解得:a=-1 b=3∴抛物线的表达式为:y=-x2+3x+4.(2)把x=0代入y=-x2+3x+4中,得:y=4∴C0,4设BC所在直线解析式为y=kx+b,把B4,0,C0,4代入y=kx+b中,得:0=4k+b 4=b解得k=-1 b=4∴y=-x+4设M m,0,则D(m,-m2+3m+4),E m,-m+4∴DE=-m2+3m+4+m-4=-m2+4m ∵OB=OC=4,OC⊥OB∴∠OBC=∠OCB=45°∵DM⊥x轴∴∠DEF=∠BEM=45°又∵DF⊥BC∴DF=22DE=22-m2+4m=-22(m-2)2+22∵-22<0∴当m=2时,DF有最大值为22.【点睛】本题考查二次函数与图形的结合,解题关键是掌握待定系数法求函数解析式,掌握配方法求代数式的最值题型05a,c与图像的关系【典例分析】1(23-24九年级上·广东梅州·期末)如图所示是二次函数y=ax2-x+a2-1的图象,则a的值是()A.a=-1B.a=12C.a=1D.a=1或a=-1【答案】C【分析】此题考查了二次函数的图象.由图象得,此二次函数过原点0,0,把点0,0代入函数解析式得a2 -1=0,解得a的值.【详解】解:由图象得,此二次函数过原点0,0,把点0,0代入函数解析式得a2-1=0,解得a=±1;又因为此二次函数的开口向上,所以a>0;所以a=1.故选:C.2(23-24九年级上·浙江丽水·期末)已知二次函数y=ax²+2x+c a≠0的图象如图所示.(1)写出c的值;(2)求出函数的表达式.【答案】(1)3(2)y=-x²+2x+3【分析】本题着重考查了待定系数法求二次函数解析式,综合利用已知条件求出抛物线的解析式是解题的关键.(1)将点0,3即可求出c;代入y=ax²+2x+c a≠0(2)把点A3,0即可求出函数表达式.代入y=ax²+2x+3a≠0【详解】(1)解:∵二次函数y=ax²+2x+c a≠0;的图象经过点0,3∴将点0,3得;代入y=ax²+2x+c a≠0c=3.(2)解:设函数的表达式为y=ax²+2x+3a≠0;∵函数图象经过点A3,0;∴把点A3,0得;代入y=ax²+2x+3a≠0a=-1;∴函数的表达式为:y=-x²+2x+33(23-24九年级上·广东广州·阶段练习)如图,二次函数y=ax2-2x+c的图象与x轴交于点A-3,0和点B,点y轴交于点C0,3.(1)求二次函数的解析式;(2)求B点坐标,并结合图象写出y<0时,x的取值范围;【答案】(1)y=-x2-2x+3;(2)B1,0,x<-3或x>1.【分析】本题主要考查了求二次函数的解析式,二次函数的图象和性质,熟练掌握二次函数的图象和性质,利用数形结合思想解答是解题的关键.(1)利用待定系数解答,即可求解;(2)根据当y=0时,-x2-2x+3=0,求出点B1,0,进而根据图象可得出答案.【详解】(1)解:∵二次函数y=ax2-2x+c的图象经过点A-3,0,C0,3,∴9a+6+c=0 c=3,解得:a=-1 c=3,∴该二次函数的解析式为y=-x2-2x+3;(2)解:由(1)可知,二次函数的解析式为y=-x2-2x+3,当y=0时,-x2-2x+3=0,解得x1=1,x2=-3,∴B1,0,根据图象可知,当y<0时,x的取值范围为x<-3或x>1【变式演练】1(23-24九年级上·广西崇左·期末)已知二次函数y=m+2x2+m2-9有最大值,且图象经过原点,则m的值为()A.±3B.3C.-3D.±4.5【答案】C【分析】本题考查二次函数的基本性质,根据二次函数有最大值得出m<-2,根据二次函数图象经过原点得出m=±3,即可得出答案,掌握二次函数的性质是解题的关键.【详解】解:∵二次函数的解析式为:y=m+2x2+m2-9有最大值,∴m+2<0,∴m<-2,∵二次函数y=m+2x2+m2-9的图象经过原点,∴m2-9=0,∴m=-3或m=3,∵m<-2,∴m=-3.故选:C2(20-21九年级上·全国·单元测试)如图所示,抛物线y=ax2-x+c的图象经过A-1,0、B0,-2两点.1 求此抛物线的解析式;2 求此抛物线的顶点坐标和对称轴;3 观察图象,求出当x取何值时,y>0?【答案】1 y=x2-x-2;2 抛物线的对称轴是直线x=12;顶点坐标是12,-94;3当x取x<-1或x>2时,y>0.【分析】(1)把A点和B点坐标代入y=ax2-x+c得到关于a、c的方程组,然后解方程组求出a、c即可得到抛物线解析式;(2)把一般式配成顶点式,然后根据二次函数的性质求解;(3)先通过解方程x2-x-2=0 得到抛物线y=x2-x-2与x轴的另一个交点的坐标为2,0.然后写出函数图象在x轴上方所对应的自变量的取值范围即可.【详解】1 ∵二次函数y=ax2-x+c的图象经过A-1,0、B0,-2,∴a+1+c=0c=-2,解得a=1c=-2∴此二次函数的解析式是y=x2-x-2;2 ∵y=x2-x-2=x-122-94,∴抛物线的对称轴是直线x=12;顶点坐标是12,-94 ;3 当y=0时,x2-x-2=0,解得x1=-1,x2=2,即抛物线y=x2-x-2与x轴的另一个交点的坐标为2,0.所以当x取x<-1或x>2时,y>0.【点睛】待定系数法求二次函数解析式, 二次函数的性质,二次函数与一元二次方程的关系等,掌握待定系数法求二次函数解析式是解题的关键3(23-24九年级上·江苏扬州·期末)如图,已知二次函数y=ax2+bx+3的图象经过点A1,0,B-2,3(1)求a+b的值;(2)用无刻度直尺画出抛物线的对称轴l;(用虚线表示画图过程,实线表示画图结果)(3)结合图象,直接写出当y≤3时,x的取值范围是.【答案】(1)a+b=-3(2)见解析(3)x≤-2或x≥0【分析】本题考查了待定系数法求二次函数的解析式、二次函数的图象与性质,熟练掌握二次函数的图象与性质,采用数形结合的思想是解此题的关键.(1)利用待定系数法求解即可;(2)根据二次函数图象的对称性可得出抛物线的对称轴;(3)观察函数图象,结合方程,即可得出结论.【详解】(1)解:将A1,0,B-2,3代入二次函数y=ax2+bx+3得:a+b+3=0 4a-2b+3=3,解得:a=-1 b=-2,∴a+b=-1+-2=-3;(2)解:如图,直线l为所求对称轴,,由(1)得二次函数的解析式为y=-x2-2x+3=-x+12+4,∴可以得出顶点坐标为-1,4,对称轴为直线x=-1;(3)解:令y=3,则-x2-2x+3=3,解得:x=0或x=-2,结合图象得:x≤-2或x≥0时,y≤3,故答案为:x≤-2或x≥0题型06a,b,c与图像的关系【典例分析】1(23-24九年级上·山东济南·期末)二次函数y=ax2+bx+c a≠0的图像如图所示,则下列结论中:①abc<0;②2a-b=0;③当-2<x<3时,y<0;④当x≥1时,y随x的增大而减小,正确的个数是()A.1B.2C.3D.4【答案】A【分析】本题考查二次函数图像与系数的关系,二次函数的性质.根据开口方向、对称轴、抛物线与y轴的交点,确定a、b、c的符号,根据对称轴和图像确定y<0时,x的范围,根据二次函数的性质确定增减性.掌握二次函数的图像和性质、灵活运用数形结合思想是解题的关键.【详解】解:①∵二次函数的图像开口向上,∴a>0,∵二次函数图像的对称轴在y轴的右侧,∴-b>0,2a∴b<0,∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,故结论①不正确;②∵a>0,b<0,∴2a-b>0,故结论②不正确;③∵二次函数的图像开口向上,对称轴为:x=1,该图像与x轴的位于对称轴左边的交点的坐标为-2,0,∴该图像与x轴的位于对称轴右边的交点的坐标为4,0,∴当-2<x<4时,y<0,∴当-2<x<3时,y<0,故结论③正确;④∵二次函数的图像开口向上,对称轴为:x=1,∴当x≥1时,y随x的增大而增大,故结论④不正确,∴正确的个数是1个.故选:A2(23-24九年级上·湖北随州·期末)已知二次函数y=ax2+bx+c的图象如图所示抛物线的顶点坐标是1,1在该抛物线上,则am2+bm ,有下列结论①a>0;②b2-4ac>0;③4a+b=1;④若点A m,n+c≥a+b+c.其中正确的结论是.【答案】①③④【分析】本题考查二次函数图象与系数之间的关系,开口方向判断①,与x轴的交点个数,判断②,特殊点判断③,最值判断④.【详解】解:∵抛物线的开口向上,∴a>0;故①正确;∵抛物线与x轴没有交点,∴b2-4ac<0;故②错误;∵顶点坐标为1,1,,图象过3,3∴a+b+c=1,9a+3b+c=3,两式相减,得:8a+2b=2,∴4a+b=1;故③正确;∵当x=1时y=a+b+c=1值最小,∴am2+bm+c≥a+b+c,故④正确;故答案为:①③④3(23-24九年级上·河南洛阳·期末)已知二次函数y=ax2+2ax-m.(1)当a=1时,二次函数y=ax2+2ax-m的图象与x轴有两个交点,求m的取值范围;(2)若二次函数y=ax2+2ax-m的部分图象如图所示,①求二次函数y=ax2+2ax-m图象的对称轴;②求关于x的一元二次方程ax2+2ax-m=0的解.【答案】(1)m>-1(2)①直线x=-1;②x1=1,x2=-3【分析】(1)将a=1代入二次函数y=ax2+2ax-m中,然后根据当a=1时,二次函数y=ax2+2ax-m的图象与x轴有两个交点,可知 22-4×1×-m>0,然后即可求得m的取值范围;(2)①将函数解析式化为顶点式,即可得到该函数的对称轴;②根据图象与x轴的一个交点和二次函数的性质,可以写出该函数图象与x轴的另一个交点,然后即可写出关于x的一元二次方程ax2+2ax-m=0的解;本题考查了抛物线与x轴的交点、二次函数的性质,解题的关键是明确题意,利用数形结合熟练掌握以上知识的应用.【详解】(1)当 a=1时,y=ax2+2ax-m,∵当a=1时,二次函数y=ax²+2ax-m的图象与x轴有两个交点,∴22-4×1×-m>0,解得m>-1;(2)①∵y=ax2+2ax-m=a x+12-a-m,∴二次函数y=ax2+2ax-m的图象的对称轴是直线x=-1;②由图象可知:二次函数y=ax2+2ax-m的图象与x轴交于点(1,0),由①知,该函数的对称轴为直线x=-1,∴该函数与x轴的另一个交点为-3,0,∴关于x的一元二次方程ax2+2ax-m=0的解是x1=1,x2=-3【变式演练】1(23-24九年级上·云南昭通·阶段练习)二次函数y=ax2+bx+c的图象如图所示,下列结论中正确的是()A.b<0B.当x>0时,y>0C.a-3=cD.2a+b=0【答案】D【分析】本题考查抛物线与坐标轴的交点、二次函数的性质.解答本题的关键是明确题意,利用数形结合的思想解答.根据函数图象的开口方向,对称轴,与y轴的交点位置,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图象可得,A.该函数图象的开口向下,∴a<0,∵对称轴位于y轴右侧,∴-b>0,2a∴b>0,故此选项不符合题意;B.由图象可得:当x>0时,y不一定大于0,故此选项不符合题意;C.该函数图象与y轴交于正半轴,∴c>0,而a<0,∴a-c<0,∴a-c=3错误,即a-3=c错误;故此选项不符合题意;D.该函数的对称轴为直线x=1,=1,∴x=-b2a∴b=-2a,即2a+b=0,故选项符合题意.故选:D2(23-24九年级上·宁夏吴忠·阶段练习)二次函数y=ax2+bx+c的图象如图所示,则下列结论:①ac<0;②a+b=0;③a+b+c>0;④b2-4ac<0.其中正确的是.(填序号)。
2024中考备考热点05 二次函数的图象及简单应用(8大题型+满分技巧+限时分层检测)

热点05 二次函数的图象及简单应用中考数学中《二次函数的图象及简单应用》部分主要考向分为五类:一、二次函数图象与性质(每年1道,3~4分)二、二次函数图象与系数的关系(每年1题,3~4份)三、二次函数与一元二次方程(每年1~2道,4~8分)四、二次函数的简单应用(每年1题,6~10分)二次函数是初中数学三中函数中知识点和性质最多的一个函数,也是中考数学中的重点和难点,考简答题时经常在二次函数的几何背景下,和其他几何图形一起出成压轴题;也经常出应用题利用二次函数的增减性考察问题的最值。
此外,二次函数的性质、二次函数与系数的关系、二次函数上点的坐标特征也是中考中经常考到的考点,都需要大家准确记忆二次函数的对应考点。
只有熟悉掌握二次函数的一系列考点,才能在遇到对应问题时及时提取有用信息来应对。
考向一:二次函数图象与性质【题型1 二次函数的图象与性质】满分技巧1. 对于二次函数y =ax 2+bx +c (a ≠0)的图象:形状:抛物线; 对称轴:直线ab x 2-=;顶点坐标:)442(2a b ac a b --,; 2、抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须在确定a 的正负后,附加一定的自变量x 取值范围;3、当a>0,抛物线开口向上,函数有最小值;当a<0,抛物线开口向下,函数有最大值;而函数的最值都是定点坐标的纵坐标。
1.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2023•兰州)已知二次函数y=﹣3(x﹣2)2﹣3,下列说法正确的是()A.对称轴为直线x=﹣2B.顶点坐标为(2,3)C.函数的最大值是﹣3D.函数的最小值是﹣33.(2023•陕西)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值C.最小值5D.最小值【题型2 二次函数图象上点的坐标特征】满分技巧牢记一句话,“点在图象上,点的坐标符合其对应解析式”,然后,和哪个几何图形结合,多想与之结合的几何图形的性质1.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣42.若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是()A.(m,n+1)B.(m+1,n)C.(m,n﹣1)D.(m﹣1,n)3.(2023•十堰)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y=x2+4x ﹣1上,若y1=y2=y3,x1<x2<x3,则x1+x2+x3的取值范围是()A.﹣12<x1+x2+x3<﹣9B.﹣8<x1+x2+x3<﹣6C.﹣9<x1+x2+x3<0D.﹣6<x1+x2+x3<1【题型3 二次函数图象与几何变换】满分技巧1、二次函数的几何变化,多考察其平移规律,对应方法是:①将一般式转化为顶点式;②根据口诀“左加右减,上加下减”去变化。
初三数学. 二次函数的图象判断和几何变换

二次函数的图象判断和几何变换模块一:二次函数的图象判断1.二次函数图象与系数的关系 (1)a 决定抛物线的开口方向当0a >时,抛物线开口向上;当0a <时,抛物线开口向下.反之亦然. (2)b 和a 共同决定抛物线对称轴的位置:“左同右异”当0b =时,抛物线的对称轴为y 轴;当a 、b 同号时,对称轴在y 轴的左侧;当a 、b 异号时,对称轴在y 轴的右侧.(3)c 的大小决定抛物线与y 轴交点的位置当0c =时,抛物线与y 轴的交点为原点;当0c >时,交点在y 轴的正半轴;当0c <时,交点在y 轴的负半轴.2.二次函数的图象信息(1)根据抛物线的开口方向判断a 的正负性. (2)根据抛物线的对称轴判断b 的正负性. (3)根据抛物线与y 轴的交点,判断c 的正负性. (4)根据抛物线与x 轴有无交点,判断24b ac -的正负性. (5)根据抛物线的对称轴可得2ba-与1±的大小关系,可得2a b ±的正负性. (6)根据抛物线所经过的已知坐标的点,可得到关于a ,b ,c 的等式.(7)根据抛物线的顶点,判断244ac b a -的大小.模块二:二次函数的几何变换 1.二次函数图象的平移平移规律:在原有函数的基础上“左加右减”,“上加下减”.2.二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达. (1)关于x 轴对称关于x 轴对称后,得到的解析式是.2()y a x h k =-+关于x 轴对称后,得到的解析式是2()y a x h k =---. (2)关于轴对称关于y 轴对称后,得到的解析式是.2()y a x h k =-+关于y 轴对称后,得到的解析式是2()y a x h k =++. (3)关于原点对称关于原点对称后,得到的解析式是.2y ax bx c =++2y ax bx c =---y 2y ax bx c =++2y ax bx c =-+2y ax bx c =++2y ax bx c =-+-2()y a x h k =-+关于原点对称后,得到的解析式是2()y a x h k =-+-. (4)关于点(,)m n 对称2()y a x h k =-+关于点(,)m n 对称后,得到的解析式是2(2)2y a x h m n k =-+-+- 3.二次函数图象的翻折函数的图象可以由函数通过关于x 轴的翻折变换得到.具体规则为函数图象在x 轴上方的部分不变,在x 轴下方的部分翻折到x 轴上方.|()|y f x =()y f x =()y f x =模块一 二次函数的图象判断题组一:(1)二次函数2y ax bx c =++的图象如图1-1,则一次函数()y a b x ac =++的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限(2)二次函数2y ax bx c =++的图象如图1-2,则下列六个代数式:ab 、ac 、a b c ++、a b c -+、2a b +、2a b -、24b ac -中,其值为正的式子的个数是( ) A .5个 B .4个 C .3个 D .2个(3)二次函数2y ax bx c =++的图象如图1-3,则22a b c a b c a b a b ++--+++--_______0.(填“>”、“<”或“=”).图1-1 图1-2 图1-3题组二:(1)如图2-1,二次函数2y ax bx c =++的图象经过点(1,2)-,下列结论:①420a b c -+<;②20a b -<;③2b <-;④22()a c b +<,其中正确的结论有________.(填序号)(2)如图2-2,已知二次函数2y ax bx c =++的图象经过点(1,2),下列结论:①20a b +<;②0abc <;③1a c +<-;④284b a ac +<,其中正确结论的有________.(填序号)(3)(成外半期)二次函数2(0)y ax bx c a =++≠的图象如图2-3所示,有下列5个结论:①0abc <;②b a c <+;③420a b c ++>;④240b ac ->;⑤()a b m am b +>+,(1m ≠的实数),其中正确的结论的有________.(填序号)图2-1 图2-2 图2-3题组三:(1)已知二次函数2(0)y ax bx c a =++≠的图像如图3-1所示,它与x 轴两个交点分别为(1,0)-,30(,).对于下列命题:①20b a -=;②0abc <;③102a b c --+<;④80a c +>.其中正确的有________.(填序号)(2)如图3-2,抛物线2(0)y ax bx c a =++≠的对称轴是1x =-,且过点1,02⎛⎫ ⎪⎝⎭,有下列结论:①0abc >;②240a b c -+=;③251040a b c -+=;④320b c +>.其中正确的结论有________.(填序号) (3)如图3-3,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于点(10A -,),对称轴为直线1x =,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当3x >时,0y <;②30a b +<;③213a -≤≤-;④248acb a ->;其中正确的结论是_________.(填序号)图3-1 图3-2 图3-3题组四:(1)已知二次函数y ax bx c 2=+++2的图象如图4-1所示,顶点为(,)-10,下列结论:①abc <0;②b ac 2-4=0;③a >2;④a b c 4-2+>0.其中正确结论的个数是____________.(填序号) (2)二次函数2y ax bx c =++的图象如图4-2所示,给出下列结论:①20a b +>;②若11m n -<<<,则bm n a+<-;③3||||2||a cb +<;④b ac >>,其中正确的结论有____________.(填序号)图4-1 图4-2yAO xx =1模块二 二次函数的几何变换题组一:(1)二次函数2241y x x =-++的图象如何移动就得到22y x =-的图象( ). A .向左移动1个单位,向上移动3个单位 B .向右移动1个单位,向上移动3个单位 C .向左移动1个单位,向下移动3个单位D .向右移动1个单位,向下移动3个单位(2)一抛物线向右平移3个单位,再向下平移2个单位后得抛物线224y x x =-+,则平移前抛物线的解析式为________________.(3)如果将抛物线228y x =-+向右平移a 个单位后,恰好过点(3,6),那么a 的值为__________. 题组二:(1)如图6-1所示,已知抛物线0C 的解析式为22y x x =-,则抛物线0C 的顶点坐标____________;将抛物线0C 每次向右平移2个单位,平移n 次,依次得到抛物线1C 、2C 、3C 、…、n C (n 为正整数),则抛物线n C 的解析式为___________. (2)如图6-2,把抛物线212y x =平移得到抛物线m ,抛物线m 经过点(6,0)A -和原点(0,0)O ,它的顶点为P ,它的对称轴与抛物线212y x =交于点Q ,则图中阴影部分的面积为___________.图6-1 图6-2题组三:已知二次函数221y x x =--,求:(1)与此二次函数关于x 轴对称的二次函数解析式为_____________________; (2)与此二次函数关于y 轴对称的二次函数解析式为_____________________; (3)与此二次函数关于原点对称的二次函数解析式为_____________________. 题组四:已知二次函数2441y ax ax a =++-的图象是1C . (1)求1C 关于点(1,0)R 中心对称的图象2C 的解析式;(2)设曲线1C 、2C 与y 轴的交点分别为A ,B ,当||18AB =时,求a 的值.xyO…C nC 1C 0题组五:作出2|5|y x x =+的函数图象. 题组七:已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线1()2y x b b k =+<与此图象有两个公共点时,b 的取值范围.复习巩固模块一 二次函数的图象判断(1)二次函数2y ax bx c =++的图象如图1-1,则一次函数by ax c =-的图象不经过第________象限.(2)如图1-2,二次函数2y ax bx c =++的图象经过点(1,2)-和(1,0),给出五个结论:①0abc <;②20a b +>;③1a c +=;④1a >;⑤9640a b c ++>.其中结论正确的是________.(3)二次函数2y ax bx c =++的图象如图1-3,小丹观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,其中结论正确的是________.图1-1 图1-2 图1-3(1)已知二次函数2y ax bx c =++的图象如图2-1所示,有下列结论:①240b ac ->;②0abc >;③20a b +>;④930a b c ++<;⑤80a c +>.其中结论正确的是________.(填序号即可)(2)如图2-2,抛物线2y ax bx c =++的图象交x 轴于1(,0)A x 、(2,0)B ,交y 轴正半轴于C ,且OA OC =.下列结论:①0a b c ->;②1ac b =-;③12a =-;④22bc +=,其中结论正确的是________.图2-1 图2-2Oyx模块二 二次函数的几何变换(1)(树德实验半期)把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后的抛物线的解析式为________.(2)将函数2y x x =+的图象向右平移(0)a a >个单位,得到函数232y x x =-+的图象,则a 的值为________.(3)如图,在平面直角坐标xOy 中,抛物线1C 的顶点为(1,4)A --,且过点(3,0)B -: ①将抛物线1C 向右平移2个单位得抛物线2C ,则抛物线2C 的解析式_____________; ②写出阴影部分的面积S =_____________.(1)在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,则经两次变换后所得的新抛物线的解析式为________.(2)已知二次函数234y x x =--的图象,将其函数图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,结合图象写出当直线(1)y x n n =+<与这个新图象有两个公共点时,n 的取值范围为__________.y xOyxO AB。
二次函数图像对称变换前后系数的关系(专题)

二次函数图像对称变换前后系数的关系课时学习目标:1.能熟练根据二次函数的解析式的系数确定抛物线的开口方向,顶点坐标,和对称轴、最值和增减性区域。
2.会根据二次函数的解析式画出函数的图像,并能从图像上描述出函数的一些性质。
3.能说出抛物线y=ax 2+bx+c ,关于x 轴、y 轴对称变换后的解析式、关于坐标原点对称变换前后的解析式系数变化规律,能根据系数变化规律,熟练写出函数图像对称变换后解析式。
学习重点:利用函数的图像,观察认识函数的性质,结合解析式,认识a 、b 、c 、ac b 42-的取值,对图像特征的影响。
学习难点:利用图像认识总结函数性质变化规律。
一、复习预备1.抛物线5)4(22-+-=x y 的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是 。
2.抛物线y=x 2-2x-3的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是____ 。
3.已知函数y= x 2 -2x -3 ,(1)把它写成k m x a y ++=2)(的形式;并说明它是由怎样的抛物线经过怎样平移得到的?(2)写出函数图象的对称轴、顶点坐标、开口方向、最值; (3)求出图象与坐标轴的交点坐标; (4)画出函数图象的草图;(5)设图像交x 轴于A 、B 两点,交y 轴于P 点,求△APB 的面积;(6)根据图象草图,说出 x 取哪些值时, ① y=0; ② y<0; ③ y>0.4.二次函数y=ax 2+bx+c(a ≠0)的图象如图—2所示,则:a 0; b 0;c 0;ac b 42- 0。
例3:已知二次函数的图像如图—3所示,下列结论: (1)a+b+c ﹤0, (2)a-b+c ﹥0, (3)abc ﹥0, (4)b=2a其中正确的结论的个数是( )A.1个,B.2个,C.3个,D.4个.二、归纳二次函数y=ax2+bx+c(a≠0)的图像2-的关系与系数a、b、c、acb4三、二次函数图像对称变换前后系数的关系探究例1. 某抛物线和函数y= -x2 +2x -3的图象关于y轴成轴对称, 请你求出该抛物线的关系式。
二次函数平移、旋转、轴对称变换汇总

二次函数专题训练(平移、旋转、轴对称变换)一、二次函数图象的平移、旋转(只研究中心对称)、轴对称变换 1、抛物线的平移变换:一般都是在顶点式的情况下进行的。
y=a(x-h)²+k y=a(x-h)²+k ±my=a(x-h)² y=a(x-h ±m)²+k 练习:(1)函数图象沿y 轴向下平移2个单位,再沿x 轴向右平移3个单位,得到函数__________________的图象。
(2)抛物线225y x x =-+向左平移3个单位,再向下平移6个单位,所得抛物线的解析式是 。
2、抛物线的旋转变换(只研究中心对称):一般都是在顶点式的情况下进行的。
(1)将抛物线绕其顶点旋转180︒(即两条抛物线关于其顶点成中心对称) ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+。
(2)将抛物线绕原点旋转180︒(即两条抛物线关于原点成中心对称)()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-。
练习:(1)抛物线2246y x x =-+绕其顶点旋转180︒后,所得抛物线的解析式是 (2)将抛物线y =x 2+1绕原点O 旋转180°,则旋转后抛物线的解析式为( ) A .y =-x 2 B .y =-x 2+1 C .y =x 2-1 D .y =-x 2-1 3、抛物线的轴对称变换: 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;练习:已知抛物线C 1:2(2)3y x =-+(1)抛物线C 2与抛物线C 1关于y 轴对称,则抛物线C 2的解析式为 (2)抛物线C 3与抛物线C 1关于x 轴对称,则抛物线C 3的解析式为 总结:根据平移、旋转、轴对称的性质,显然无论作何种变换,抛物线的形状一定不会发生变化,因此a 永远不变。
二次函数图象的平移和对称变换

2二次函数图象的平移、旋转、轴对称专题有关图象的变换一般可采用两种基本的方法,其一是利用特殊点进行变换,其二是利用坐标变换的规律进行变换。
所谓利用特殊点进行变换,即选取原图象上一些特殊的点,把这些点按指定的要求进行变换,再把变换后的点代入到新的解析式中,从而求出变换后的解析式,利用特殊点进行变换,又可以从一般形式入手,选取图象上的三个特殊的点进行变换,也可以把一般形式化为顶点式,选取顶点作为特殊点,然后进行变换。
利用坐标变换的方法,根据题目的要求,利用坐标变换的规律,从而进行变换。
下面由具体的例子进行说明。
一 、 平 移 。
例1、 把抛物线 y=x -4x+6 向左平移 3 个单位,再向下平移 4 个单位后,求其图象的解析式。
法(一)选取图象上三个特殊的点,如(0, 6),( 1, 3),( 2,2)【选取使运算最简单的点】,然后把这三个点按要求向左平移3 个单位,再向下平移4 个单位后得到三个新点( -3 , 2),( -2 , -1 ),(-1 ,-2 ),把这三个新点代入到新的函数关 系式的一般形式 y=ax 2+bx+c 中,求出各项系数即可。
例 2、已知抛物线 y=2x 位,求其解析式。
法(二)2-8x+5, 求其向上平移 4 个单位,再向右平移 3 个单先利用配方法把二次函数化成y a( x h)2 k 的形式,确定其顶点( 2,-3 ),然后把顶点( 2, -3 )向上平移 4 个单位,再向右平移 3 个单位后得到新抛物线的顶点为( 5, 1),因为是抛物线的平移,因此平移前后 a 的值应该相等,这样我们就得到新的抛物线的解析式中 a=2,且顶点为( 5, 1),就可以求出其解析式了。
22222【平移规律:在原有函数的基础上“左加右减、上加下减”】 .法(三)根据平移规律进行平移,不论哪种抛物线的形式,平移规律为 “左右平移即把解析式中自变量 x 改为 x 加上或减去一个常数,左加右减,上下平移即把整个解析式加上或减去一个常数,上加下减。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数图像对称变换前后系数的关系课时学习目标:1.能熟练根据二次函数的解析式的系数确定抛物线的开口方向,顶点坐标,和对称轴、最值和增减性区域。
2.会根据二次函数的解析式画出函数的图像,并能从图像上描述出函数的一些性质。
3.能说出抛物线y=ax 2+bx+c ,关于x 轴、y 轴对称变换后的解析式、关于坐标原点对称变换前后的解析式系数变化规律,能根据系数变化规律,熟练写出函数图像对称变换后解析式。
学习重点:利用函数的图像,观察认识函数的性质,结合解析式,认识a 、b 、c 、ac b 42-的取值,对图像特征的影响。
学习难点:利用图像认识总结函数性质变化规律。
一、复习预备1.抛物线5)4(22-+-=x y 的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是 。
2.抛物线y=x 2-2x-3的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是____ 。
3.已知函数y= x 2 -2x -3 ,(1)把它写成k m x a y ++=2)(的形式;并说明它是由怎样的抛物线经过怎样平移得到的?(2)写出函数图象的对称轴、顶点坐标、开口方向、最值; (3)求出图象与坐标轴的交点坐标; (4)画出函数图象的草图;(5)设图像交x 轴于A 、B 两点,交y 轴于P 点,求△APB 的面积;(6)根据图象草图,说出 x 取哪些值时, ① y=0; ② y<0; ③ y>0. 4.二次函数y=ax 2+bx+c(a ≠0)的图象如图—2所示,则:a 0; b 0;c 0;ac b 42- 0。
例3:已知二次函数的图像如图—3所示,下列结论: (1)a+b+c ﹤0, (2)a-b+c ﹥0, (3)abc ﹥0, (4)b=2a其中正确的结论的个数是( )A.1个,B.2个,C.3个,D.4个. 二、归纳二次函数y=ax 2+bx+c(a ≠0)的图像与系数a 、b 、c 、ac b 42-的关系三、二次函数图像对称变换前后系数的关系探究例1. 某抛物线和函数y= -x2 +2x -3的图象关于y轴成轴对称, 请你求出该抛物线的关系式。
例2. 某抛物线和函数y= -x2 +2x -3的图象关于x轴成轴对称, 请你求出该抛物线的关系式。
例3.某抛物线和函数y= -x2 +2x -3的图象关于原点成中心对称,请你求出该抛物线的关系式。
例4.某抛物线和函数y= -x2 +2x -3的图象关于顶点坐标成轴对称, 请你求出该抛物线的关系式。
例5.某抛物线和函数y= -x2 +2x -3的图象关于点(3,2)成中心对称, 请你求出该抛物线的关系式。
函数y= ax2 +bx+c的图象对称变换后,解析式系数变化规律:四、达标检测1. 二次函数y= ax 2 +bx+c(a ≠0)的图象如图所示,则点A(a,b)在( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限2.二次函数y= ax 2 +bx+c(a ≠0)的图象如图所示,则下列条件不正确的是( ) A.a<0,b>0,c<0 B.b 2-4ac<0 C.a+b+c<0 D.a-b+c>03.二次函数y= 6x 2___________, 关于y 轴对称的图象于坐标原点对称的解析式___________________.(1)具体步骤:先利用配方法把二次函数化成2()y a x h k =-+的形式,确定其顶点(,)h k ,然后做出二次函数2y ax =的图像,将抛物线2y ax =平移,使其顶点平移到(,)h k .具体平移方法如图所示:(2)平移规律:在原有函数的基础上“左加右减,上加下减”. 二、二次函数图象的对称变换二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-无论抛物线作何种对称变换,形状不变,a 不变.求抛物线的对称抛物线的表达式时,先确定已知抛物(1) (2)线的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,再写出其对称抛物线的表达式.【习题分类】一、二次函数图象的平移变换1、函数23(2)1y x =+-的图象可由函数23y x =的图象平移得到,那么平移的步骤是:( )A. 右移两个单位,下移一个单位B. 右移两个单位,上移一个单位C. 左移两个单位,下移一个单位D. 左移两个单位,上移一个单位2、函数22(1)1y x =---的图象可由函数22(2)3y x =-++的图象平移得到,那么平移的步骤是( )A. 右移三个单位,下移四个单位B. 右移三个单位,上移四个单位C. 左移三个单位,下移四个单位D. 左移四个单位,上移四个单位3、二次函数2241y x x =-++的图象如何移动就得到22y x =-的图象( )A. 向左移动1个单位,向上移动3个单位.B. 向右移动1个单位,向上移动3个单位.C. 向左移动1个单位,向下移动3个单位.D. 向右移动1个单位,向下移动3个单位.4、将函数2y x x =+的图象向右平移()0a a >个单位,得到函数232y x x =-+的图象,则a 的值为( )A .1B .2C .3D .45、把抛物线2y ax bx c =++的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是235y x x =-+,则a b c ++=________________.6、对于每个非零自然数n ,抛物线()()221111n y x x n n n n +=-+++与x 轴交于n n A B 、两点,以n n A B 表示这两点间的距离,则112220092009A B A B A B +++…的值是( )A .20092008 B .20082009 C .20102009 D .200920107、把抛物线2y x =-向左平移1个单位,向上平移3个单位,则平移后抛物线的解析式为( )A .()213y x =---B .()213y x =-+- C .()213y x =--+ D .()213y x =-++8、将抛物线22y x =向下平移1个单位,得到的抛物线是( )A .()221y x =+B .()221y x =- C .221y x =+ D .221y x =-9、将抛物线23y x =向上平移2个单位,得到抛物线的解析式是( )10、一抛物线向右平移3个单位,再向下平移2个单位后得抛物线224y x x =-+,则平移前抛物线的解析式为________________.11、如图,ABCD Y 中,4AB =,点D 的坐标是(0,8),以点C 为顶点的抛物线2y ax bx c =++ 经过x 轴上的点A ,B .⑴ 求点A ,B ,C 的坐标.⑵ 若抛物线向上平移后恰好经过点D ,求平移后抛物线的解析式.12、抛物线254y ax x a =-+与x 轴相交于点A B 、,且过点()54C ,. ⑴ 求a 的值和该抛物线顶点P 的坐标.⑵ 线的解析式.二、二次函数图象的对称变换 1、函数2y x =与2y x =-的图象关于______________对称,也可以认为2y x =是函数2y x =-的图象绕__________旋转得到. 2、已知二次函数221y x x =--,求: ⑴关于x 轴对称的二次函数解析式;⑵关于y 轴对称的二次函数解析式; ⑶关于原点对称的二次函数解析式.3、在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )A .22y x x =--+B .22y x x =-+-C .22y x x =-++D .22y x x =++4、已知二次函数2441y ax ax a =++-的图象是1c .⑴ 求1c 关于()10R ,成中心对称的图象2c 的函数解析式; ⑵ 设曲线12c c 、与y 轴的交点分别为A B ,,当18AB =时,求a 的值. 5、已知抛物线265y x x =-+,求⑴ 关于y 轴对称的抛物线的表达式; ⑵ 关于x 轴对称的抛物线的表达式; ⑶ 关于原点对称的抛物线的表达式.6、设曲线C 为函数()20y ax bx c a =++≠的图象,C 关于y 轴对称的曲线为1C ,1C 关于x 轴对称的曲线为2C ,则曲线2C 的函数解析式为________________.7、对于任意两个二次函数:()2211112222120y a x b x c y a x b x c a a =++=++≠,,当12a a =时,我们称这两个二次函数的图象为全等抛物线,现有ABM ∆,()()1010A B -,,,,记过三点的二次函数抛物线为“C W W W ”(“□□□”中填写相应三个点的字母).⑴ 若已知()01M ,,ABM ABN ∆∆≌(图1),请通过计算判断ABM C 与ABN C 是否为全等抛物线; ⑵ 在图2中,以A B M 、、三点为顶点,画出平行四边形.① 若已知()0M n ,,求抛物线ABM C 的解析式,并直接写出所有过平行四边形中三个顶点且能与ABM C 全等的抛物线解析式.② 若已知()M m n ,,当m n 、满足什么条件时,存在抛物线ABM C ?根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与ABM C 全等的抛物线.若存在,请写出所有满足条件的抛物线“C W W W ”;若不存在,请说明理由.8、已知:抛物线2:(2)5f y x =--+. 试写出把抛物线f 向左平行移动2个单位后,所得的新抛物线1f 的解析式;以及f 关于x 轴对称的曲线2f 的解析式.画出1f 和2f 的略图, 并求:⑴ x 的值什么范围,抛物线1f 和2f 都是下降的;⑵ x 的值在什么范围,曲线1f 和2f 围成一个封闭图形;⑶ 求在1f 和2f 围成封闭图形上,平行于y 轴的线段的长度的最大值.二次函数图形变换综合压轴题1、在平面直角坐标系xoy 中,抛物线322--=mx mx y (m ≠0)与x 轴交于A (3,0),B 两点.(1)求抛物线的表达式及点B 的坐标.(2)当-2<x <3时的函数图像记为G ,求此时函数y 的取值范围.(3)在(2)的条件下,将图像G 在x 轴上方的部分沿x 轴翻折,图像G 的其余部分保持不变,得到一个新图像M.若经点C(4,2)的直线y=kx+b (k ≠0)与图像M 在第三象限内有两个公共过点,结合图像求b 的取值范围.2、已知关于x 的一元二次方程0132=-+-k x x 有实数根,k 为正整数.(1)求k 的值;(2)当此方程有两个不为0的整数根时,将关于x 的二次函数132-+-=k x x y 的图象向下平移2个单位,求平移后的函数图象的解析式;(3)在(2)的条件下,将平移后的二次函数图象位于y 轴左侧的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象G .当直线5y x b =+与图象G 有3个公共点时,请你直接写出b 的取值范围.3、已知:抛物线C1:5442-++=a ax ax y 的顶点为P,与x 轴相交于A,B 两点(点A 在点B 的左边),点B 的横坐标是1(1)求抛物线的解析式和顶点坐标;(2)将抛物线沿x 轴翻折,再向右平移,平移后的抛物线C2的顶点为M ,当点P ,M 关于点B 成中心对称时,求平移后的抛物线C2的解析式;(3)直线y=-53x+m 与抛物线C1,C2的对称轴分别交于点E,F ,设由点E ,P ,F ,M 构成的四边形的面积为S ,试用含m 的代数式表示S 。