九年级数学上册中位线应用三角形中位线定理“四会”素材新版华东师大版
华东师大初中数学九年级上册三角形中位线定理 知识讲解[精品]
![华东师大初中数学九年级上册三角形中位线定理 知识讲解[精品]](https://img.taocdn.com/s3/m/784d64c9daef5ef7bb0d3c1d.png)
三角形中位线定理【学习目标】1. 理解三角形的中位线的概念,掌握三角形的中位线定理.2. 掌握中点四边形的形成规律.【要点梳理】要点一、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,并且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的14.(3)三角形的中位线不同于三角形的中线.要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.【典型例题】类型一、三角形的中位线1、(2016•北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.(2)首先证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.【答案与解析】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在RT△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=【总结升华】本题考查三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.举一反三:【变式】如图,矩形OABC的顶点A、C分别在x轴、y轴正半轴上,B点坐标为(3,2),OB与AC交于点P,D、E、F、G分别是线段OP、AP、BP、CP的中点,则四边形DEFG的周长为_____.【答案】5;解:∵四边形OABC是矩形,∴OA=BC,AB=OC;BA⊥OA,BC⊥OC.∵B点坐标为(3,2),∴OA=3,AB=2.∵D、E、F、G分别是线段OP、AP、BP、CP的中点,∴DE=GF=1.5; EF=DG=1.∴四边形DEFG的周长为(1.5+1)×2=5.2、如图,在△ABC中,已知点D、E、F分别是AB、BC、CA的中点,AH是高.(1)若BC=10,AH=8,则四边形ADEF的面积为.(2)求证:∠DHF=∠DEF.B【思路点拨】(1)由三角形面积公式可知:△BDE、△EFC的面积都等于△ABC面积的四分之一,进而可求出四边形ADEF的面积.(2)首先证明四边形ADEF是平行四边形,进而可得∠DEF=∠DAF,再利用直角三角形的中线性质得线段相等,从而得角等,最终可得到∠DAF=∠DEF,即可证出∠DHF=∠DEF.【答案解析】(1)解:∵BC=10,AH=8,∴S△ABC=×8×10=40,∵点D、E、F分别是AB、BC、CA的中点,∴△BDE、△EFC的面积都等于△ABC面积的,∴四边形ADEF的面积=40﹣20=20,故答案为:20;(2)证明:∵D、E、F分别是△ABC各边中点,∴DE∥AC,EF∥AB,∴四边形ADEF是平行四边形,∴∠DEF=∠DAF,∵AH是△ABC的高∴△ABH、△ACH是直角三角形,∵点D、点F是斜边AB、AC中点,∴DH=DA,HF=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∴∠DAH+∠FAH=∠FHA+∠DHA,即∠DAF=∠DHF , ∴∠DEF=∠DHF .【总结升华】此题主要考查了平行四边形的性质与判定,三角形的中位线定理,直角三角形的性质,解决题目的关键是证明∠DHF=∠DAF 与∠DAF=∠DEF .3、如图所示,在△ABC 中,M 为BC 的中点,AD 为∠BAC 的平分线,BD ⊥AD 于D ,AB =12,AC =18,求MD 的长.【思路点拨】本题中所求线段MD 与已知线段AB 、AC 之间没有什么联系,但由M 为BC 的中点联想到中位线,另有AD 为角平分线和垂线,根据等腰三角形“三线合一”构造等腰三角形ABN ,D 为BN 的中点,DM 即为中位线,不难求出MD 的长度. 【答案与解析】解:延长BD 交AC 于点N .∵ AD 为∠BAC 的角平分线,且AD ⊥BN , ∴ ∠BAD =∠NAD ,∠ADB =∠ADN =90°,在△ABD 和△AND 中,BAD NAD AD =ADADB ADN ∠∠⎧⎪⎨⎪∠∠⎩== ∴ △ABD ≌△AND(ASA) ∴ AN =AB =12,BD =DN .∵ AC =18,∴ NC =AC -AN =18-12=6, ∵ D 、M 分别为BN 、BC 的中点, ∴ DM =12CN =162⨯=3.【总结升华】当条件中含有中点的时候,可以将它与等腰三角形的“三线合一”、三角形的中线、中位线等联系起来,进行联想,必要时添加辅助线,构造中位线等图形. 举一反三:【变式】如图所示,四边形ABCD 中,Q 是CD 上的一定点,P 是BC 上的一动点,E 、F 分别是PA 、PQ 两边的中点;当点P 在BC 边上移动的过程中,线段EF 的长度将( ).A .先变大,后变小B .保持不变C .先变小,后变大D .无法确定 【答案】B ;解: 连接AQ .∵ E 、F 分别是PA 、PQ 两边的中点,∴ EF 是△PAQ 的中位线,即AQ =2EF .∵ Q 是CD 上的一定点,则AQ 的长度保持不变, ∴ 线段EF 的长度将保持不变.4、我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题:(1)如图1,在△ABC 中,AB=AC ,点D 在BC 上,且CD=CA ,点E 、F 分别为BC 、AD 的中点,连接EF 并延长交AB 于点G .求证:四边形AGEC 是等邻角四边形;(2)如图2,若点D 在△ABC 的内部,(2)中的其他条件不变,EF 与CD 交于点H ,图中是否存在等邻角四边形,若存在,指出是哪个四边形,不必证明;若不存在,请说明理由.【思路点拨】(1)运用中位线的性质,找出对应相等的角;(2)根据题意易知满足条件的四边形即为第一题的四边形. 【答案与解析】解:(1)取AC 的中点H ,连接HE 、HF∵点E 为BC 中点∴EH 为△ABC 的中位线∴EH∥AB,且EH=12AB 同理FH∥DC,且FH=12DC∵AB=AC,DC=AC ∴AB=DC ,EH=FH ∴∠1=∠2∵EH∥AB,FH∥DC ∴∠2=∠4,∠1=∠3 ∴∠4=∠3∵∠AGE+∠4=180°,∠GEC+∠3=180° ∴∠AGE=∠GEC∴四边形AGEC是邻角四边形(2)存在等邻角四边形,为四边形AGHC.【总结升华】本题考查了三角形的中位线以及等腰三角形的性质的综合运用.本题较灵活,要求学生能够把题中的条件转化成角,从而找出相等的角来解题.举一反三:【变式】如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4 B.3 C.2 D.1【答案】D;解:连接DE并延长交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE,∵E是AC中点,∴AE=CE,∴△DCE≌△HAE,∴DE=HE,DC=AH,∵F是BD中点,∴EF是△DHB的中位线,∴EF=12 BH,∴BH=AB-AH=AB-DC=2,∴EF=1.类型二、中点四边形5、如图,在梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)求证:四边形EFGH是正方形;(2)若AD=2,BC=4,求四边形EFGH的面积.【思路点拨】(1)先由三角形的中位线定理求出四边相等,然后由AC⊥BD入手,进行正方形的判断.(2)连接EG ,利用梯形的中位线定理求出EG 的长,然后结合(1)的结论求出2EH =92,也即得出了正方形EHGF 的面积. 【答案与解析】证明:(1)在△ABC 中,E 、F 分别是AB 、BC 的中点,故可得:EF =12AC ,同理FG =12BD ,GH =12AC ,HE =12BD , 在梯形ABCD 中,AB =DC ,故AC =BD ,∴EF =FG =GH =HE , ∴四边形EFGH 是菱形. 设AC 与EH 交于点M ,在△ABD 中,E 、H 分别是AB 、AD 的中点, 则EH∥BD, 同理GH∥AC, 又∵AC⊥BD,∴EH⊥HG,∴四边形EFGH 是正方形. (2)连接EG . 在梯形ABCD 中,∵E、G 分别是AB 、DC 的中点, ∴EG=12(AD +BC )=3. 在Rt△EHG 中,∵222EH GH EG +=,EH =GH , ∴2EH =92,即四边形EFGH 的面积为92. 【总结升华】此题考查了等腰梯形的性质及三角形、梯形的中位线定理,解答本题的关键是根据三角形的中位线定理得出EH =HG =GF =FE ,这是本题的突破口. 举一反三:【变式】如图,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点. (1)判断四边形EFGH 的形状,并说明你的理由;(2)连接BD 和AC ,当BD 、AC 满足何条件时,四边形EFGH 是正方形.【答案】解:(1)四边形EFGH 是平行四边形.理由:连接AC ,∵E、F 分别是AB 、BC 的中点,∴EF∥AC,且EF =12AC , 同理,HG∥AC,且HG =12AC ,∴EF∥HG,且EF =HG ,∴四边形EFGH 是平行四边形;(2)当BD =AC ,且B D⊥AC 时,EFGH 是正方形. 理由:连接AC ,BD ,∵E、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点, ∴EF=GH =12AC ,EH =FG =12BD ,EH∥BD,GH∥AC, ∵BD=AC ,BD⊥AC,∴EH=EF =FG =GH ,EH⊥GH,∴四边形ABCD 是菱形,∠EHG=90°, ∴四边形EFGH 是正方形.。
华师大版九年级数学上册授课课件:23.4 中位线

中点,AD、CE相交于点G.求证: GE GD 1 .
CE AD 3
证明:连结ED. ∵D、E分别是边BC、AB的中点,
∴DE//AC
,
DE AC
=
1 2
.
(三角形的中位线平行于第
三边,并且等于第三边的一半).
∴△ACG∽△DEG, ∴ GE = GD DE 1 .
GC GA AC 2
知1-讲
【例2】 求证:三角形的一条中位线与第三边上的中
线互相平分.
已知:如图,在 △ABC 中,AD =DB,BE=EC,
AF = FC. 求证:AE、DF互相平分.
证明:连结DE、EF.
∵AD = DB,BE = EC,
∴DE//AC(三角形的中位线平行于第
三边,并且 等于第三边的一半).
同理可得EF//BA.
猜想
如图23.4. 2,在△ABC中,点D、E分别 是AB与AC 的中点.根据画出的图形,可 以猜想: DE // BC,且DE = 1 BC.
2 对此,我们可以用演绎推理给出证明.
知1-导 (来自教材)
证明:在△ABC中,
∵点D、E分别是AB与AC的中点,
∴ AD AE 1 .
AB AC 2
(来自《典中点》)
知2-练
2 给出以下判断: (1) 线段的中点是线段的重心; (2) 三角形的三条中线交于一点,这一点就是三角 形的重心; (3) 平行四边形的重心是它的两条对角线的交点; (4) 三角形的重心是它的中线的一个三等分点. 那么以上判断中正确的有( ) A.一个 B.两个 C.三个 D.四个
∴ GE = GD 1 . CE AD 3
拓展
知2-导
华师大版九年级数学三角形的中位线教案精选全文

可编辑修改精选全文完整版三角形的中位线教学目的:1. 使学生掌握三角形中位线概念与三角形中位线定理.2.使学生能熟练应用定理进行有关证明和计算,提高学生分析问题和解决问题的能力.重点难点:三角形中位线的概念和三角形中位线定理是本课的重点;三角形中位线定理的证明是本课的难点.教学过程:一、复习引入1. 复习平行线等分线段定理推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边.2. 如图:B、C两点被池塘隔开,在BC外选一点A,连结AB和AC,并分别找出AB和AC的中点D、E.如果测得DE =20m,那么B、C两点的距离是多少?二、新授1.三角形的中位线的概念:连结三角形两边中点的线段叫做三角形的中位线.2.三角形中位线定理如图,DE是ΔABC的一条中位线,如果过D作DE∥BC,交AC于E’,那么根据平行线等分线段定理推论2,得E’是AC的中点,可见DE’与DE重合,所以DE∥BC.由此得到:三角形中位线平行于第三边.同样,过D作DF∥BC,且DE∥FC,DE=1/2BC.因此,又得出:三角形中位线等于第三边的一半.以上两点就是三角形中位线定理.例1:已知:如图ΔABC中,D、E、F分别是AB、AC、BC的中点(1)指出图中有几个平行四边形(2)图中与ΔDEF全等的三角形有哪几个(3)若AB=10cm,AC=6cm,则四边形ADFE的周长为______cm(4)若ΔABC周长为6cm,面积为12cm2,则ΔDEF的周长是 _____cm,面积是_____cm例2:顺次连结四边形四条边的中点,所得的四边形是平行四边形师生共同写出已知求证,在分析的基础上写出证明过程.然后作适当的变式:(1)(1)若AC=BD,则四边形EFGH是什么图形?(2)(2)若AC⊥BD,则四边形EFGH是什么图形?(3)(3)若AC=BD,且AC⊥BD,则四边形EFGH是什么图形?例3:如图ΔABC的中线BE、CD相交于点O,F、G分别是BO、CO的中点,试猜想DF与GE有怎么的关系?并证明你的猜想.小结:(1)本课所授内容.(2)定理的特征与应用.。
数学九年级上册第专题五三角形中位线定理的应用课件 华东师大版

9.如图,在△ABC中,AC>AB,点D在AC上,AB=CD,E,F分别 是BC,AD的中点,连结EF并延长,与BA的延长线交于点G.若∠EFC =60°,连结GD,判断△AGD的形状,并证明.
解:△AGD 是直角三角形,证明:如图,连结 BD,取 BD 的中点 H, 连结 HF,HE.∵F 是 AD 的中点,∴HF∥AB,HF=12 AB.同理 HE∥CD,HE =12 CD.∵AB=CD,∴HF=HE.∵∠EFC=60°,∴∠HEF=∠EFC=60°,则△ EHF 是等边三角形,∴∠AGF=∠HFE=60°,∴∠AGF=∠EFC=∠AFG=60 °,∴△AGF 是等边三角形.∵AF=FD,∴GF=FD,∴∠FGD=∠FDG=30°, ∴∠AGD=90°,即△AGD 是直角三角形
(2)∵M 是 BO 的中点,E,F 分别是 AB,BC 的中点,∴ME=12 AO, MF=12 OC.又∵四边形 ABCD 是平行四边形,∴AO=OC,∴ME=MF
2.如图,已知△ABC,延长 BC 到点 D,使 CD=BC.取 AB 的中点 F, 连结 FD 交 AC 于点 E,求AACE 的值.
(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什 解:(1)证明:连结 BD.∵E,H 分别是 AB,AD 的中点,∴EH 是△ABD 么决定. 的中位线,∴EH=12 BD,EH∥BD.同理得 FG=12 BD,FG∥BD.∴EH=
FG,EH∥FG,∴四边形 EFGH 是平行四边形
证明:如图,取 BD 的中点 F,连结 EF.则 EF 为△BCD 的中位线,∴EF =12 BC,EF∥BC.∵∠ACE=∠ACB+∠BCE=135°,∠DFE=∠DBC=45°,∴ ∠EFB=135°.∵EF=12 BC,AC=12 BC,∴EF=AC.∵CD=BD,E,F 分别为 CD,BD 的中点,∴CE=FB,∴△EFB≌△ACE,∴∠CEA=∠FBE.又∵∠FBE+ ∠DEB=90°,∴∠DEB+∠CEA=90°,故∠AEB=90°,∴AE⊥EB
三角形中位线定理的应用

三角形中位线定理的应用三角形中位线定理在初中教材体系中是一个很重要的定理,学好这部分内容将有助于梯形中位线定理乃至整个平面几何知识的学习.它具有两个方面的特性:(1)平行于第三边,这是位置关系;(2)等于第三边的一半,这是数量关系.就第一个特性而言,中位线定理与平行线等分线段定理中的推论(经过三角形一边的中点与另一边平行的直线,必平分第三边)存在着互逆关系.我们利用这两个特性,能证明(求解)许多几何问题,以下举例说明它的具体应用.一、证明问题1、证明角相等关系例1、如图、四边ABCD 中,AB =CD ,M 、N 分别为AD 、BC 的中点,EF ⊥MN 交AB 于E ,交CD 于F ,求证:∠AEF =∠DFE分析:欲证:∠AEF =∠DFE .由MN ⊥EF 想到延长BA ,CD 与MN 的延长线交于P 、Q 只需证明∠EPN =∠Q ,如何利用中点的条件? 想到三角形的中位线,连线BD ,取BD 的中点G ,则有12GM AB∥,12GN CD ∥,由于AB =CD ,进而有GM =GN ,∠GMN =∠GNM 然后再转化∠EPN =∠Q ,从而证出结论.证明:延长BA ,CD 分别与NM 的延长线交于P 、Q 连结BD ,取BD 的中点G ,连结GM 、GN .∵G 、M 分别为△ABD 的边BD 、AD 的中点∴12GM AB ∥.同理可证:12GN AB∥,又∵AB =CD ,∴GM =GN ,∴∠GMN =∠GNM ,∵GM //AB ,GN =CD ,∴∠GMN =∠EPN ,∠GNM =∠Q ,∴∠EPN =∠Q ,又 EF ⊥MN ,∴∠AEF =∠DFE (等角的余角相等)说明:添辅助线是证明几何题的难点.若要添多条辅助线,更为困难,掌握一般添辅助线的规律是必要的,更为重要的是分析中自由添加辅助线,添辅助线是分析问题过程的一个步骤,这是几何的证明的较高层次,要在实践中仔细体会,不断摸索,不断总结.2、证明线段的倍分以及相等关系例2.如图,已知平行四边形ABCD 中,BD 为对角线,点E 、F 分别是AB 、CD 的中点,连线EF ,交BD 于M 点.求证:(1)BM =14BD (2)ME =MF 分析:欲证问题(1)由E 、F 分别为AB 、BC 中点想到连结AC ,由平行线等分线段定理可证得BM =MO .又因为平行四边形的对角线互相平分,可得BO =OD ,即BM =41BD .欲证问题(2),由问题(1)中的辅助线,即连结AC ,由三角形中位线定理可得EM =12AO ,MF =12OC ,又由平行四边形对角线互相平分即可得到问题(2)的结论.证明:(1)连结AC ,交BD 于O 点,∵E 、F 分别为AB 、BC 中点,∴EF ∥AC ,∴BM =MO =12BO (平行线等分线段定理) 又∵四边形ABCD 是平行四边形∴BO =OD =12BD ,AO =OC =12AC , ∴BM =1124BO BD ,即BM =14BD(2)∵M 是BO 的中点,E 、F 分别是AB 、BC 中的中点.∴12ME AD =,12MF OC =,又∵AO =OC ,∴ME =MF 小结:问题(1)看起来似乎与三角形中位线定理无关,其实这是从侧面的运用了三角形中位线的位置关系,即三角形的中位线平行于底边,而问题(2)直接运用了三角形中位线的数量关系.3、证明线段平行关系例3.如图,自△ABC 的顶点A ,向∠B 和∠C 的平分线作垂线,重足分别为D 、E .求证:DE ∥BC 分析:欲证ED //BC 我们可想到有关平行的判定,但要找到有关角的关系很难,这时只要通过延长AD 、AE ,交BC 与CB 的延长线于G 与H ,通过证明△ABD 与△GBD 全等易证D 是AG 中点,同理E 为AH 的中点,故,ED 是△AEG 的中位线,当然有DE ∥BC .证明:延长AD 、AE 交BC 、CB 的延长线于G 、H ,∵BD 平分∠ABC ,∴∠1=∠2,又∵BD ⊥AD ,∴∠ADB =∠BDG =900. 在△ABD 与△GBD 中12BD BDBDG BDA⎧⎪⎨⎪⎩=== ∠∠∠∠,∴△ABD ≌△GBD (A S A ) ∴AD =DG ,同理可证,AE =GE ,∴D ,E 分别为AG ,AH 的中点, ∴ED ∥BC小结:由此题我们可以知道证明直线或线段平行除了平行判定等,还可以用中位线定理来证明直线或线段平行.二、比较大小1、比较线段大小 例4.如图,M 、N 是四边形ABCD 的边 BC 、AD 的中点,且AB 与CD 不平行.求证:MN <12(AB +CD ). 分析:欲证MN <12(AB +CD ),我们从表面上看这个问题比较复杂,但由M 、N 分别为BC 、AD 中点我们可以联想到如何构造三角形中位线来证明问题,通过连结BD ,并取BD 中点P ,连结NP 、MP 这时分别为△DAB 、△DCB 的中位线,这时三条线段NP 、MP 、MN 都在一个三角形里,问题就迎刃而解了.证明:连结BD 并取BD 中点P ,连结NP ,MP . ∵N 为AD 中点,P 为BD 中点.∴NP 为△DAB 的中位线,∴NP =12AB ,同理可得MP =12CD .∵AB 与CD 不平行,∴P 点不在MN 上.在△PMN 中,由于两边之和大于第三边,∴MN <PM +PN =12(AB +CD )小结:此类题型通过转化,把有关的线段或与之有联系的线段集中在一个三角形中,再应用三角形的有关知识,如:三角形中位线及两边之和大于第三边,两边之差小于第三边等知识,即可得出证明.2、比较角的大小例5、如图:AD 是△ABC 的中线,如果AB >AC ,那么∠BAD <∠CAD . 分析:因为D 为BC 中点联想到,过点D 作中位线DE ,因为DE ∥AB 即△ABC 得到∠1=∠3,由AB >AC , 有12AB >12AC ,所以就有∠3<∠2,即∠BAD <∠CAD证明:过点D 作DE ∥AB 交AC 于E ,∴DE ∥AB 且 DE =12AB ,E 为AC 中点.∴∠1=∠3,∵AB >AC ,∴12AB >12AC ,即在△AED 中,DE >AE ,∴∠3<∠2,∴∠1<∠2,即∠BAD <∠CAD小结:本题证角不相等,因为要证的两个角不在同一个三角形中,如果这两个角在同一个三角形中能应用:在同一个三角形中,大边对大角原理这时就考虑到如何将这两个角放在一个三角形中,通过观察只要过D 作DE ∥AB 就可解决求证问题.三、求值问题例6. 如图,正方形ABCD 两对角线相交于点E ,∠CAB 的平分线交BE 于G ,交BC 于F ,若GE =24 求FC 的长.分析:求FC 的长,因为E 为对角线交点,就是AC 中点所以作辅助线PE ∥BC 就有PE ∥FC 且有PE =21FC 所以只要能求出PE 的长即可,而PE 的长可由∠3=∠4求出,因为∠3为△APE 的外角所以有∠3=∠2+∠5同理有∠4=∠1+∠7因为AF 为∠BAC 的平分线所以∠1=∠2又因为所以∠5=∠6,而∠6=∠7所以有∠3=∠4即PE =GE =12FC ,这样问题就解决了. 解:过点E ,作EP ∥BC ,交AF 于点P ,则P 为AF 中点,∵∠3=∠2+∠5=∠2+∠6,∠4=∠1+∠7,又∵AF 平分∠BAC ,∴∠1=∠2,又∵∠6=∠7,∴∠3=∠4,∴EP =EG ,∵PE 是△AFC 的中位线,∴PE =12FC =EG ,即FC =2EG =2PE =2×24=48小结:求值问题,主要是如何添加辅助线,将比较难的问题转为容易的问题.总之,三角形中位线定理及其应用,在初中数学中占有很重要的地位,如何正确添加辅助线构造三角形中位线对每个学生来说是一个重点也是一个难点.要求学生要善于觉察图形中的有关定理的基本图形,涉及到中点问题时要及时联想到有关定理.一条或一组合理地利用了题目条件的辅助线常见有一箭双雕甚至一箭多雕的效益,准确而理想的图形能有效地帮助我们迅速地捕捉到题意预定的目标.。
23.4 中位线 (课件)2024-2025-华东师大版数学九年级上册

长是对应中线长的13. 注意:经过三角形顶点和重心的直线必然平分这个
顶点的对边 .
课堂新授
知2-讲
特别解读 ●三角形的重心到顶点的距离等于它到对边中点距离的
2倍. ●三角形的重心是三角形中每条中线的一个三等分点 .
课堂新授
知2-练
例 4 如图23.4-5,延长△ABC的边BC到点D,使CD=BC,
知1-练
证明:延长 AE 交 BC 于点 H,∵CD 平分∠ACB,AE⊥CD,
∴∠ACE=∠HCE,∠AEC=∠HEC=90°,又∵CE=CE,
∴△ACE≌△HCE,∴AE=EH=12AH.∵EF∥BC, ∴△AEF∽△AHC,∴AAFC=AAHE=12,∴AC=2AF,∴F 是 AC 的中点.又∵G 是 BC 的中点,
课堂新授
知1-练
证明:连结EF.
由▱ABCD可得AD∥BC,AD=BC.
∵AE=BF,∴ED=FC.
∴四边形ABFE和四边形EFCD都是平行四边形.∴EG=
BG,EH=CH.
∴GH是△EBC的中位线.∴GH∥BC.
课堂新授
知1-练
例 3 如图23.4-4,在△中,中线BE,CD相交于点O,
∴四边形ABEC是平行四边形,∴点F是BC的中点.
又易知点O是AC的中点,
∴ OF是△ABC的中位线,∴ AB=2OF.
课堂新授
知1-练
1-1. 如图,在△ABC中,CD平分∠ACB,AE⊥CD,垂足
为E, 过点E作EF∥BC,交AC于点F,G为BC的中点,
连结FG.
求证:FG=12AB.
课堂新授
课堂新授
知2-练
5-1. 如图,在菱形ABCD中,E为AB的中点, 连结DE交对
23.4 中位线++课件+++2024-2025学年华东师大版九年级数学上册

图2
典例导思
1. 如图,在菱形 ABCD 中,对角线 AC 、 BD 相交于点
O ,点 E 为 CD 的中点.若 OE =3,则菱形 ABCD 的周长
为( C )
A. 6
B. 12
(第1题)
C. 24
D. 48
典例导思
2. 如图,在Rt△ ABC 中,∠ ACB =90°,点 D 是 AC 延
பைடு நூலகம்
GF ∥ BC , GF = BC ,
∴ DE ∥ GF , DE = GF ,
∴四边形 DEFG 为平行四边形.
(第3题)
典例导思
(2)若 DG ⊥ BH , BD =3, EF =2,求线段 BG 的
长度.
(2)解:∵四边形 DEFG 为平行四边
形,∴ DG = EF =2.
∵ DG ⊥ BH ,∴∠ DGB =90°,
∴ AB = AF =6 cm,
BD = DF .
∴ CF = AC - AF =4 cm.
∵ BD = DF,点 E 为 BC 的中点,
∴ DE = CF =2 cm.
图1
典例导思
如图2,在四边形 ABCD 中,对角线 AC ⊥ BD 且
AC =4, BD =8,点 E 、 F 分别是边 AB 、 CD 的中点,
长线上一点, AD =24,点 E 是 BC 上一点,
BE =10,连结 DE , M 、 N 分别是 AB 、
DE 的中点,则 MN = 13 .
(第2题)
典例导思
3. (2023·株洲)如图所示,在△ ABC 中,点 D 、 E 分
2三角线中位线PPT课件(华师大版)

§24.4.1 三角形的中位线 第一课时
1
1.什么叫三角形的中线?
A
三角形的一个顶点到对边中点的 连线,叫做三角形的中线。
如:线段AF;
2.思考:什么叫三角形的中位线? D
E 三条
连结三角形两边中点的线段
叫三角形的中位线。 如;线段DE;
B
F
C
思考:一个三角形共有几
则DE5=c_m_____.
2.△ABC中,D、E分别是AB、AC的中点,∠A=50°,
∠B=70°,则∠AED6=0_度____.
A
A
A
D
D
E
D
E
E
O
B
C
(1)
B (2)
CB
(3)
C
3.如图,E是平行四边形ABCD的AB边上的中点,且 AD=20cm,那么OE1=0 cm。
15
例3:如图,△ABC中,D、E分别是边BC、AB的中点, A边平行的直线必平分第三边.
6
例1:求证:三角形的一条中位线与第三边的中线互相平分.
已知:如图,在△ABC中AD=DB,AF=FC,BE=EC
求证:AE、DF互相平分
A
证明:连结DE、EF
D
F
∵D、E、F分别为AB、BC、AC上中点
∴DE、EF为△ABC的中位线
B EC
(3)顺次连结菱形各边中点 所得的四边形是__矩__形____。
矩形
11
(4)顺次连结正方 形各边中点所得的四 边 形 是正__方_形________ 。
(5)顺次连结梯形各边 中点所得的四边形是 ___平__行__四__边_形____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用三角形中位线定理“四会”
三角形中位线定理在一个题设下,有两个结论:一是线段的位置关系,另一个是线段之间的数量关系.这个定理在证明、计算、作图中都有广泛的应用,是三角形的最重要的性质之一,当三角形中有中点时,往往借助三角形中位线来解决相关问题.那么在学习了三角形中位线定理后,我们应该会解决哪些问题呢?本文所要阐述的就是这个问题.
一、会求值
例1:如图1,在菱形ABCD 中,E 、F 分别是AB 、AC 的中点,如果2EF =,那么ABCD 的周长是( ).
A .4
B .8
C .12
D .16
析解:因为E 、F 分别是AB 、AC 的中点,所以EF 是
ABC ∆的中位线,则12
EF BC =,24BC EF ==.故菱形ABCD 的周长为416BC =,选D .
二、会证明
例2:如图2,在ABC ∆中,90BAC ∠=,延长BA 到点D ,使12
AD AB =,点E 、F 分别为边BC 、AC 的中点.求证DF BE =. 分析:由题意知点E 是Rt ABC ∆斜边中点,作出斜边中线AE 后,有12AE BC =
.另外,点F 又是AC 的中点,所以EF 是ABC ∆的中位线,EF ∥AB 且12
EF AB =.这样,就可证得四边形AEFD 是平行四边形,从而有12
DF AE BC BE ===,问题得证. 证明:连接AE ,则12AE BC BE =
=. ∵E 、F 分别为边BC 、AC 的中点,
∴EF 是ABC ∆的中位线,
∴EF ∥AB ,12EF AB =
. 又∵12
AD AB =, ∴EF AD =.
而EF ∥AD ,
∴四边形AEFD 是平行四边形,
=,
∴AE DF
=.
∴DF BE
三、会解决图形剪拼问题
例3:如图3,某企业有一块三角形的铁板,根据需要,
现要把它加工成一个平行四边形的铁板,要求把材料完全利用
起来,该怎样加工呢?你能帮工人师傅把切割的路线用虚线画
出来吗?试一试,并请作简要的说明.
分析:要想得到平行四边形,需使得组合后的四边形一组
对边平行且相等.分别找到AB、AC的中点D、E后连接
∆绕点E旋转180组合得到平行四边形.象这样的平行四边形和三角形DE,则可把ADE
之间的转换作图问题,经常以三角形形的中位线定理为基础.
∆绕点E旋转180,解:如图所示,作AB、AC的中点D、E,沿DE切割,把ADE
就可以得到平行四边形DBCF.
四、会解决实际问题
例4:要在湖的两岸A、B间建一座观赏桥,由于条件限制,无法直接度量A、B两点间的距离.请你用学过的数学知识按以下要求设计一测量方
案.
⑴画出测量图案;
⑵写出测量步骤(测量数据用字母表示);
⑶计算AB的距离(写出求解或推理过程,结果用字母表示).
分析:此题涉及实际测量问题,可供学生选择的方案众多.其中运用三角形的中位线知识来设计求解不失为一种好的方法.
解:⑴测量图案如图4所示.
⑵测量步骤:
①在湖边的开阔地带选一点C;
②连接AC 、BC ,通过测量确定AC 、BC 的中点位置D 点和E 点; ③连接DE ,测量出DE a =.
⑶连接AB 、DE ,在ABC ∆中,
∵D 、E 分别是AC 、BC 的中点,
∴DE 是ABC ∆的中位线, ∴12
DE AB a ==, 故2AB a =.。