二阶常微分方程解

合集下载

二阶微分方程解

二阶微分方程解

二阶微分方程解二阶微分方程分为齐次和非齐次两种类型。

在这里,我们主要讨论二阶常系数齐次线性微分方程的解法。

二阶常系数齐次线性微分方程的一般形式为:ayy'' + by' + cy = 0其中,a、b、c为常数。

求解过程如下:1. 特征方程:首先求出微分方程的特征方程。

特征方程为:r^2 - pr - q = 0其中,p、q为常数。

2. 求解特征方程:求出特征方程的两个根r1和r2。

可以使用公式:r1,2 = (-p ±√(p^2 - 4q)) / 23. 根据根与系数的关系,得出二阶微分方程的通解:通解= yC1* e^(r1x) + yC2 * e^(r2x)其中,yC1和yC2为待定系数,可通过初始条件求解。

4. 求解特解:若需要求解特解,可以先设特解的形式为y = yE(x),然后将其代入原方程,求解待定系数。

举例:求解二阶常系数齐次线性微分方程:yy'' - 2y' + 3y = 01. 特征方程:r^2 - 2r + 3 = 02. 求解特征方程:r1= 1,r2 = 33. 通解:通解= yC1* e^x + yC2* e^-x4. 求解特解:设特解为y = yE(x) = e^(x^2)将其代入原方程,求解得到yE(x)为原方程的特解。

需要注意的是,二阶微分方程的解法不仅限于齐次方程,还包括非齐次方程。

非齐次方程的解法通常需要先求解齐次方程的通解,然后通过待定系数法求解特解。

此外,还有其他类型的二阶微分方程,如艾里方程等,其解法更为复杂。

二阶常系数线性微分方程的解法word版

二阶常系数线性微分方程的解法word版

第八章 讲第四节 二阶常系数线性微分方程一、二阶常系数线形微分方程的概念形如 )(x f qy y p y =+'+'' 1的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数.如果0)(≡x f ,则方程式 1变成0=+'+''qy y p y 2我们把方程2叫做二阶常系数齐次线性方程,把方程式1叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法.二、二阶常系数齐次线性微分方程1.解的叠加性定理1 如果函数1y 与2y 是式2的两个解, 则2211y C y C y +=也是式2的解,其中21,C C 是任意常数.证明 因为1y 与2y 是方程2的解,所以有0111=+'+''qy y p y 0222=+'+''qy y p y 将2211y C y C y +=代入方程2的左边,得)()()(221122112211y C y C q y C y C p y C y C ++'+'+''+'' =0)()(22221111=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程2的解.定理1说明齐次线性方程的解具有叠加性.叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式2的通解.2.线性相关、线性无关的概念设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n个函数在区间I 内线性相关,否则称线性无关.例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为0sin cos 122≡--x x又如2,,1x x 在任何区间a,b 内是线性无关的,因为在该区间内要使 02321≡++x k x k k必须0321===k k k .对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠21y y 常数, 则1y ,2y 线性无关.3.二阶常系数齐次微分方程的解法定理 2 如果1y 与2y 是方程式2的两个线性无关的特解,则212211,(C C y C y C y +=为任意常数是方程式2的通解.例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且≠=x y y tan 21常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+=21,C C 是任意常数是方程0=+''y y 的通解.由于指数函数rxe y =r 为常数和它的各阶导数都只差一个常数因子,根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r ,使rxe y =满足方程2.将rx e y =求导,得 rx rx e r y re y 2,=''='把y y y ''',,代入方程2,得0)(2=++rx eq pr r 因为0≠rx e , 所以只有 02=++q pr r 3只要r 满足方程式3,rx e y =就是方程式2的解.我们把方程式3叫做方程式2的特征方程,特征方程是一个代数方程,其中r r ,2的系数及常数项恰好依次是方程2y y y ,,'''的系数. 特征方程3的两个根为 2422,1q p p r -±-=, 因此方程式2的通解有下列三种不同的情形. (1) 当042>-q p 时,21,r r 是两个不相等的实根. 2421q p p r -+-=,2422q p p r ---= x r x r e y e y 2121,==是方程2的两个特解,并且≠=-x r r e y y )(2121常数,即1y 与2y 线性无关.根据定理2,得方程2的通解为 x r x r e C e C y 2121+=(2) 当042=-q p 时, 21,r r 是两个相等的实根. 221p r r -==,这时只能得到方程2的一个特解x r e y 11=,还需求出另一个解2y ,且≠12y y 常数,设)(12x u y y =, 即 )(12x u e y x r =)2(),(21121211u r u r u e y u r u e y x r x r +'+''=''+'='. 将222,,y y y '''代入方程2, 得 []0)()2(12111=++'++'+''qu u r u p u r u r u e x r 整理,得0])()2([12111=+++'++''u q pr r u p r u e x r由于01≠x r e , 所以 0)()2(1211=+++'++''u q pr r u p r u 因为1r 是特征方程3的二重根, 所以02,01121=+=++p r q pr r从而有 0=''u因为我们只需一个不为常数的解,不妨取x u =,可得到方程2的另一个解 x r xe y 12=.那么,方程2的通解为x r x r xe C e C y 1121+=即 xr e x C C y 1)(21+=.(3) 当042<-q p 时,特征方程3有一对共轭复根 βαβαi r i r -=+=21, 0≠β于是 x i x i e y ey )(2)(1,βαβα-+== 利用欧拉公式 x i x e ix sin cos +=把21,y y 改写为)sin (cos )(1x i x e e e e y x x i x x i ββαβαβα+=⋅==+)sin (cos )(2x i x e e e e y x x i x xi ββαβαβα-=⋅==-- 21,y y 之间成共轭关系,取-1y =x e y y x βαcos )(2121=+, x e y y i y x βαsin )(2121_2=-= 方程2的解具有叠加性,所以-1y ,-2y 还是方程2的解,并且≠==--x x e x e y y x x βββααtan cos sin 12常数,所以方程2的通解为 )sin cos (21x C x C e y x ββα+=综上所述,求二阶常系数线性齐次方程通解的步骤如下:1写出方程2的特征方程02=++q pr r2求特征方程的两个根21,r r3根据21,r r 的不同情形,按下表写出方程2的通解.例1求方程052=+'+''y y y 的通解.解: 所给方程的特征方程为0522=++r ri r i r 21,2121--=+-=所求通解为 )2sin 2cos (21x C x C e y x +=-.例 2 求方程0222=++S dt dS dtS d 满足初始条件2,400-='===t t S S 的特解.解 所给方程的特征方程为0122=++r r121-==r r通解为 te t C C S -+=)(21 将初始条件40==t S 代入,得 41=C ,于是 t e t C S -+=)4(2,对其求导得te t C C S ---=')4(22 将初始条件20-='=t S 代入上式,得 22=C所求特解为t e t S -+=)24(例3求方程032=-'+''y y y 的通解.解 所给方程的特征方程为 0322=-+r r其根为 1,321=-=r r所以原方程的通解为 x x e C e C y 231+=-二、二阶常系数非齐次方程的解法1.解的结构定理3 设*y 是方程1的一个特解,Y 是式1所对应的齐次方程式2的通解,则*+=y Y y 是方程式1的通解.证明 把*+=y Y y 代入方程1的左端:)()()(*++*'+'+*''+''y Y q y Y p y Y=)()(*+*'+*''++'+''qy py y qY Y p Y=)()(0x f x f =+*+=y Y y 使方程1的两端恒等,所以*+=y Y y 是方程1的解. 定理4 设二阶非齐次线性方程1的右端)(x f 是几个函数之和,如 )()(21x f x f qy y p y +=+'+'' 4 而*1y 与*2y 分别是方程 )(1x f qy y p y =+'+''与 )(2x f qy y p y =+'+''的特解,那么**+21y y 就是方程4的特解, 非齐次线性方程1的特解有时可用上述定理来帮助求出.2.)()(x P e x f m x λ=型的解法 )()(x P e x f m x λ=,其中λ为常数,)(x P m 是关于x 的一个m 次多项式. 方程1的右端)(x f 是多项式)(x P m 与指数函数x e λ乘积的导数仍为同一类型函数,因此方程1的特解可能为x e x Q y λ)(=*,其中)(x Q 是某个多项式函数.把 x e x Q y λ)(=*x e x Q x Q y λλ)]()(['+=*'x e x Q x Q x Q y λλλ)]()(2)([2''+'+=*''代入方程1并消去xe λ,得)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ 5以下分三种不同的情形,分别讨论函数)(x Q 的确定方法:1 若λ不是方程式2的特征方程02=++q pr r 的根, 即02≠++q p λλ,要使式5的两端恒等,可令)(x Q 为另一个m 次多项式)(x Q m :m m m x b x b x b b x Q ++++= 2210)(代入5式,并比较两端关于x 同次幂的系数,就得到关于未知数m b b b ,,,10 的1+m 个方程.联立解方程组可以确定出),,1,0(m i b i =.从而得到所求方程的特解为x m e x Q y λ)(=*2 若λ是特征方程02=++q pr r 的单根, 即02,02≠+=++p q p λλλ,要使式5成立, 则)(x Q '必须要是m 次多项式函数,于是令)()(x xQ x Q m =用同样的方法来确定)(x Q m 的系数),,1,0(m i b i =.3 若λ是特征方程02=++q pr r 的重根,即,02=++q p λλ 02=+p λ.要使5式成立,则)(x Q ''必须是一个m 次多项式,可令)()(2x Q x x Q m =用同样的方法来确定)(x Q m 的系数.综上所述,若方程式1中的x m e x P x f λ)()(=,则式1的特解为x m k e x Q x y λ)(=*其中)(x Q m 是与)(x P m 同次多项式,k 按λ不是特征方程的根,是特征方程的单根或是特征方程的重根依次取0,1或2.例4 求方程x e y y 232-='+''的一个特解.解 )(x f 是x m e x p λ)(型, 且2,3)(-==λx P m对应齐次方程的特征方程为 022=+r r ,特征根根为2,021-==r r . λ=-2是特征方程的单根, 令xe xb y 20-=*,代入原方程解得230-=b故所求特解为 xxe y 223--=* .例5 求方程x e x y y )1(2-='-''的通解.解 先求对应齐次方程02=+'-''y y y 的通解.特征方程为 0122=+-r r , 121==r r齐次方程的通解为 xe x C C Y )(21+=.再求所给方程的特解1)(,1-==x x P m λ由于1=λ是特征方程的二重根,所以x e b ax x y )(2+=*把它代入所给方程,并约去x e 得126-=+x b ax比较系数,得61=a 21-=b于是 xe x x y )216(2-=*所给方程的通解为 x e x x x C C y y y )6121(3221+-+=+=* 3.x B x A x f ϖϖsin cos )(+=型的解法 ,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数.此时,方程式1成为x B x A q y p y ωωsin cos +=+'+'' 7这种类型的三角函数的导数,仍属同一类型,因此方程式7的特解*y 也应属同一类型,可以证明式7的特解形式为)sin cos (x b x a x y k ωω+=*其中b a ,为待定常数.k 为一个整数.当ω±i 不是特征方程02=++q pr r 的根, k 取0;当ω±i 不是特征方程02=++q pr r 的根, k 取1;例6 求方程x y y y sin 432=-'+''的一个特解.解 1=ω,ω±i i ±=不是特征方程为0322=-+r r 的根,0=k .因此原方程的特解形式为x b x a y sin cos +=* 于是 x b x a y cos sin +-=*'x b x a y sin cos --=*''将*''*'*y y y ,,代入原方程,得⎩⎨⎧=--=+-442024b a b a 解得 54,52-=-=b a原方程的特解为: x x y sin 54cos 52--=* 例7 求方程x e y y y x sin 32+=-'-''的通解.解 先求对应的齐次方程的通解Y .对应的齐次方程的特征方程为0322=--r r3,121=-=r rx x e C e C Y 321+=-再求非齐次方程的一个特解*y .由于x e x x f -+=2cos 5)(,根据定理4,分别求出方程对应的右端项为,)(1x e x f =x x f sin )(2=的特解*1y 、*2y ,则 **+=*21y y y 是原方程的一个特解.由于1=λ,ω±i i ±=均不是特征方程的根,故特解为)sin cos (21x c x b ae y y y x ++=+=*** 代入原方程,得x e x c b x c b ae x x sin sin )42(cos )24(4=-++--比较系数,得14=-a 024=+c b 142=-c b解之得 51,101,41-==-=c b a . 于是所给方程的一个特解为 x x e y x sin 51cos 10141-+-=* 所以所求方程的通解为x x e e C e C y Y y x x x sin 51cos 10141321-+-+=+=-*.。

二阶常微分方程的几种解法

二阶常微分方程的几种解法

二阶常系数非齐次线性微分方程的几种解法一 公式解法目前,国内采用的高等数学科书中, 求二阶常系数线性非奇次微分方程[1]:'''()y ay by f x ++=通解的一般方法是将其转化为对应的齐次方程的通阶与它本身的特解之和。

微分方程阶数越高, 相对于低阶的解法越难。

那么二阶常系数齐次微分方程是否可以降价求解呢? 事实上, 经过适当的变量代换可将二阶常系数非齐次微分方程降为一阶微分方程求解。

而由此产生的通解公式给出了该方程通解的更一般的形式。

设二阶常系数线性非齐次方程为'''()y ay by f x ++= (1) 这里b a 、都是常数。

为了使上述方程能降阶, 考察相应的特征方程20k ak b ++= (2) 对特征方程的根分三种情况来讨论。

1 若特征方程有两个相异实根12k 、k 。

则方程(1) 可以写成'''1212()()y k k y k k y f x --+=即 '''212()()()y k y k y k y f x ---=记'2z y k y =- , 则(1) 可降为一阶方程'1()z k z f x -=由一阶线性方程的通解公()()[()]p x dx p x dx y e Q x e dx c -⎰⎰=+⎰[5] (3) 知其通解为1130[()]x k x k t z e f t e dt c -=+⎰这里0()xh t dt ⎰表示积分之后的函数是以x 为自变量的。

再由11230[()]x k x k t dy k y z e f t e dt c dx--==+⎰ 解得12212()()340012[(())]k k x x u k x k k u e y e e f t dt du c c k k --=++-⎰⎰ 应用分部积分法, 上式即为1212212()()34001212121[()()]k k xk k x x x k x k t k t e e y e f t e dt f t e dt c c k k k k k k ----=-++---⎰⎰ 1122121200121[()()]x x k x k t k x k t k k x e f t e dt e f t e dt c e c e k k --=-++-⎰⎰ (4) 2 若特征方程有重根k , 这时方程为'''22()y ky k y f x -+=或'''()()()y ky k y ky f x ---=由公式(3) 得到'10[()]xkx kt y ky e e f t dt c --=+⎰再改写为'10()xkx kx kt e y ke y e f t dt c ----=+⎰ 即10()()xkx kt de y ef t dt c dx --=+⎰故120()()xkx kt kx kx y e x t e f t dt c xe c e -=-++⎰(5)例1 求解方程'''256x y y y xe -+=解 这里2560k k -+= 的两个实根是2 , 32()x f x xe =.由公式(4) 得到方程的解是332222321200x x x t t x t t xxy e e te dt e e te dt c e c e --=-++⎰⎰32321200x xx t x x x e te dt e tdt c e c e -=-++⎰⎰2232132x x xx x e c e c e ⎡⎤=--++⎢⎥⎣⎦这里321c c =-.例2 求解方程'''2ln x y y y e x -+=解 特征方程2210k k -+= 有重根1 , ()ln x f x e x =.由公式(5) 得到方程的解是 120()ln x x t t x x y ex t e e tdt c xe c e -=-++⎰120()ln x x x x e x t tdt c xe c e =-++⎰ 1200[ln ln ]x xxx x e x tdt t tdt c xe c e =-++⎰⎰ 21213ln 24x x x x e x c xe c e ⎡⎤=-++⎢⎥⎣⎦ 二 常数变易法二阶常系数非齐次线性微分方程的一般形式是'''()y py qy f x ++=, (6) '''0y py qy ++= , (7) 其中p q 、 为常数,根构造方程(7) 的两个线性无关的解,再由这两个解构造出方程(7) 的通解。

二阶常微分方程的解法

二阶常微分方程的解法

二阶常微分方程的解法二阶常微分方程是微积分中的一个重要概念,涉及到求解具有两个未知函数的微分方程。

本文将介绍二阶常微分方程的一些解法方法。

一、可分离变量法对于形如f''(x) = g(x)的二阶常微分方程,可以通过分离变量的方法求解。

首先将方程进行变形,得到f''(x)-g(x) = 0。

然后令y=f'(x),将方程转化为一阶方程y'-g(x)=0,再次进行变形得到dy/dx=g(x)。

接下来,对方程两边进行积分,得到y的表达式,再次积分即可得到f(x)的解。

二、特征方程法对于形如f''(x) + a1f'(x) + a0f(x) = 0的二阶常微分方程,可以通过特征方程法求解。

首先假设f(x)的解为f(x) = e^(rx),其中r为待求解的常数。

代入原方程,得到特征方程r^2 + a1r + a0 = 0。

解特征方程,可以得到两个根r1和r2,然后f(x)的解可以表示为f(x) = C1e^(r1x) +C2e^(r2x),其中C1和C2为待定常数。

三、常系数齐次线性微分方程法对于形如f''(x) + af'(x) + bf(x) = 0的二阶常微分方程,可以通过常系数齐次线性微分方程法求解。

首先假设f(x)的解为f(x) = e^(rx),代入原方程,得到特征方程r^2 + ar + b = 0。

解特征方程,可以得到两个根r1和r2。

根据根的不同情况,可以得到不同的解形式。

1)当r1和r2是不相等的实根时,f(x)的解可以表示为f(x) =C1e^(r1x) + C2e^(r2x),其中C1和C2为待定常数。

2)当r1和r2是相等的实根时,f(x)的解可以表示为f(x) = (C1x +C2)e^(r1x),其中C1和C2为待定常数。

3)当r1和r2是共轭复数根时,f(x)的解可以表示为f(x) =e^(ax)[C1cos(bx) + C2sin(bx)],其中C1和C2为待定常数。

二阶常系数微分方程解法

二阶常系数微分方程解法

二阶常系数微分方程解法微分方程是数学中一个非常重要的部分,它描述了很多现实生活和科学问题。

其中,二阶常系数微分方程是应用广泛的一种类型的微分方程,其解法也相对较为简单,下面将详细介绍解这类微分方程的方法。

一、二阶常系数微分方程的定义和形式二阶常系数微分方程指的是形如 y''+ay'+by=f(x) 的微分方程,其中 y、f(x)均为函数,a和b均为常数。

这类微分方程中,y”表示 y 对自变量 x 的二次导数,y'表示 y 对 x 的一次导数。

二、特征方程法解二阶常系数微分方程最常用的方法是特征方程法。

根据 y=Ae^{mx} 这种形式,我们可以将 y" 和 y' 带入 y 中,得到以下等式:(Ae^{mx})''+a(Ae^{mx})'+bAe^{mx}=0化简后可得:m^2+am+b=0以上所得到的方程式称为特征方程,解特征方程的根 m_{1}, m_{2} 就可以得到二阶常系数微分方程的通解。

1、特征方程有两个不相等的实根如果特征方程有两个不相等的实根 m_{1} 和 m_{2},那么通解为:y=C_{1}e^{m_{1}x}+C_{2}e^{m_{2}x}其中,C_1、C_2 为任意常数,分别由初始值条件所决定。

2、特征方程有两个相等的实根如果特征方程有两个相等的实根 m,那么通解为:y=(C_1+C_2x)e^{mx}其中,C_1、C_2 为任意常数。

3、特征方程有两个共轭复根如果特征方程有两个共轭复根α+iβ 和α-iβ,那么通解为:y=e^{αx}(C_1\cos βx+C_2\sin βx)其中,C_1、C_2为任意常数。

三、拉普拉斯变换法除了特征方程法外,拉普拉斯变换法也可以用来求解二阶常系数微分方程。

我们将 y、y' 和 y" 进行拉普拉斯变换,得到:L\{y''\}=s^2Y(s)-sy(0)-y'(0)L\{y'\}=sY(s)-y(0)L\{y\}=Y(s)将以上三个式子带入二阶常系数微分方程中,消去 Y(s),就可以得到:s^2Y(s)-sy(0)-y'(0)+a(sY(s)-y(0))+bY(s)=F(s)其中 F(s) 为右侧函数的拉普拉斯变换。

二阶常微分方程的求解方法和应用

二阶常微分方程的求解方法和应用

二阶常微分方程的求解方法和应用二阶常微分方程是指包含了二阶导数或者二次项的一类微分方程。

解决这类微分方程是理应掌握的技能,因为它们在许多自然科学和工程学科中都有着广泛的应用。

在本文中,我们将讨论二阶常微分方程的求解方法以及它们的常见应用。

一、二阶常微分方程的基本形式二阶微分方程的一般形式是:$f''(x)+p(x)f'(x)+q(x)f(x)=g(x)$其中,函数f是要求解的未知函数,x是自变量,p(x)和q(x)是已知函数,g(x)是已知的函数或常数。

通常,二阶微分方程左侧的三项可以看作是二阶导数f''(x)、一阶导数f'(x)和f(x)对自变量x的线性组合。

这个线性组合中的系数p(x)和q(x)通常是自变量x的函数。

二、二阶微分方程的解法1.特解法特解法适用于在右侧有特殊类型函数的情况下,比如方程右侧是常数、指数函数、三角函数等。

因为这种情况下函数在取微分后与自身的形式变化不大,因此我们可以借助类似的解来猜测:如果右侧的g(x)是Acos(ax)+Bsin(ax),那么我们可以尝试将函数f(x)猜测为Ccos(ax)+Dsin(ax)的形式,其中C和D是待求解的常数。

特解法的主要优点是简单易懂,特别是对于初学者而言。

但是,它有一个缺点:并不能解决更复杂的情况,比如右侧是分段函数的情况,因此需要用到其他解法。

2.变量分离法变量分离法是二阶微分方程求解的一种另类方法,它将原方程转换成一个含有单个未知函数但双变量的方程。

比如:$y''+y=0$方程左边的两项y''和y可以看作是函数y和y'的函数。

将方程拆开成两个修正的一阶方程,使用变量分离法来解决,得到:$\frac{dy}{dx}=u$$\frac{du}{dx}=-y$求解上述方程后,我们可以得到原始二阶微分方程的一般解:$y=Acos(x)+Bsin(x)$在实际应用中,变量分离法非常实用,例如在电工电子工程学里,它被用于模拟LC振荡器、无源滤波器等等。

二阶常微分方程解法

二阶常微分方程解法

二阶常微分方程解法二阶常微分方程是数学中常见的方程形式,可以通过不同的方法来求解。

本文将介绍二阶常微分方程的解法,并通过例题来说明具体步骤。

一、齐次二阶常微分方程的解法齐次二阶常微分方程的一般形式为:y'' + P(x)y' + Q(x)y = 0齐次二阶常微分方程的解法步骤如下:1. 首先,设y=e^(λx)为方程的解,其中λ为待定常数。

2. 求解特征方程λ^2 + P(x)λ + Q(x) = 0的根。

设该方程的根为λ1和λ2。

3. 根据特征根λ1和λ2的值,分别列出对应的解y1=e^(λ1x)和y2=e^(λ2x)。

4. 则原方程的通解为y=C1y1 + C2y2,其中C1和C2为任意常数。

例题1:求解二阶常微分方程y'' - 4y' + 4y = 0。

解题步骤:1. 特征方程为λ^2 - 4λ + 4 = 0,解得λ=2。

2. 因此,对应的特解为y1=e^(2x)。

3. 原方程的通解为y=C1e^(2x) + C2xe^(2x),其中C1和C2为任意常数。

二、非齐次二阶常微分方程的解法非齐次二阶常微分方程的一般形式为:y'' + P(x)y' + Q(x)y = f(x)非齐次二阶常微分方程的解法步骤如下:1. 首先,求解对应的齐次方程y'' + P(x)y' + Q(x)y = 0的通解,假设为y=C1y1 + C2y2。

2. 再根据待定系数法,设非齐次方程的特解为y*,代入原方程得到特解的形式。

3. 求解特解形式中的待定系数,并将特解形式代入原方程进行验证。

4. 特解形式正确且验证通过后,非齐次方程的通解为y=C1y1 +C2y2 + y*。

例题2:求解二阶常微分方程y'' - 4y' + 4y = x^2 + 3x + 2。

解题步骤:1. 对应的齐次方程的通解为y=C1e^(2x) + C2xe^(2x),其中C1和C2为任意常数。

二阶常系数线性微分方程的解法

二阶常系数线性微分方程的解法
1
二阶常系数齐次线性方程解的性质 回顾
一阶齐次线性方程 y P( x) y 0 (1)
1、方程(1)的任意两个解的和仍是(1)的解; 2、方程(1)的任意一个解的常数倍仍是(1)的解;
2
二阶常系数齐次线性方程解的性质 y ay by 0 (2)
1、方程(2)的任意两个解的和仍是(2)的解; 2、方程(2)的任意一个解的常数倍仍是(2)的解;
Q( x) Qm ( x) , 即 y Qm ( x) erx 情形2 若 r 是特征方程的单根, 即 r2 ar b 0 ,
而 2r a 0 , 则令 Q( x) xQm ( x) , 即
y xQm ( x)erx
14
Q (2r a)Q (r 2 ar b)Q Pm ( x) (*) 情形3 若 r 是特征方程的二重根, 即 r2 ar b 0 ,
2
2
此时原方程的通解为
y
(C1
C 2 x)e2x
1 2
x 2e2x

Q( x) Ax2 , Q Pm ( x) , 2 A 1
21
y 4 yAe x ,
代入原方程,得
A
(
1 2)2
,
即特解为
y
(
1 2)2
e
x
,
此时原方程的通解为
于是 y x( 1 x 1)e2x ,
2
2
原方程通解为
y
C1e x
C 2e2 x
x(1 2
x
1) e2 x
.
18
例6 求微分方程 y 6 y 9 y x e3x 的通解.
解 特征方程 2 6 9 0 , 特征根 1,2 3 ,
对应齐次方程通解 Y (C1 C2 x)e3x . 因为 r 3 是二重特征根,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二阶常微分方程解————————————————————————————————作者: ————————————————————————————————日期:第七节 二阶常系数线性微分方程的解法在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。

本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。

先讨论二阶常系数线性齐次方程的求解方法。

§7.1 二阶常系数线性齐次方程及其求解方法设给定一常系数二阶线性齐次方程为ﻩﻩ 22dx y d +p dxdy+qy=0 (7.1)其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y2就可以了,下面讨论这样两个特解的求法。

我们先分析方程(7.1)可能具有什么形式的特解,从方程的形式上来看,它的特点是22dx y d ,dxdy,y 各乘以常数因子后相加等于零,如果能找到一个函数y,其22dx y d ,dxdy,y之间只相差一个常数因子,这样的函数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y=er x(其中r 为待定常数)来试解将y =e rx ,dx dy =re r x,22dx y d =r 2e r x代入方程(7.1)得 r 2e rx +pre rx +qerx=0或 e r x(r 2+pr+q )=0因为e rx ≠0,故得 ﻩ r 2+pr +q=0由此可见,若r 是二次方程ﻩﻩ r 2+pr +q=0 (7.2)的根,那么e r x就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。

称(7.2)式为微分方程(7.1)的特征方程。

特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。

特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。

(1)若特证方程(7.2)有两个不相等的实根r 1,r 2,此时er 1x,e r2x是方程(7.1)的两个特解。

因为 x r xr 21ee =e x )r r (21-≠常数所以er1x ,e r2x 为线性无关函数,由解的结构定理知,方程(7.1)的通解为y=C 1er1x+C 2er2x(2)若特征方程(7.2)有两个相等的实根r1=r2,此时p2-4q =0,即有r1=r 2=2p -,这样只能得到方程(7.1)的一个特解y 1=e r1x,因此,我们还要设法找出另一个满足12y y ≠常数,的特解y 2,故12y y 应是x 的某个函数,设12y y =u,其中u=u(x )为待定函数,即 y 2=uy1=ue r1x对y2求一阶,二阶导数得dxdy 2=dx du er1x+r1u er1x=(dx du +r 1u)e r1x222dx y d =(r21u+2r 1dx du +22dxu d )e r1x将它们代入方程(7.1)得(r21u +2r 1dx du +22dx u d )e r1x +p(dxdu +r 1u)e r1x+q ue r1x=0或[22dx u d +(2r1+p) dxdu+(r 21+p r1+q)u]e r1x=0 因为er1x≠0,且因r 1是特征方程的根,故有r 21+pr1+q=0,又因r 1=-2p故有2r1+p=0,于是上式成为22dxud =0显然满足22dxud =0的函数很多,我们取其中最简单的一个 u(x)=x则y 2=xe rx 是方程(7.1)的另一个特解,且y 1,y 2是两个线性无关的函数,所以方程(7.1)的通解是 y =C 1er1x +C 2xe r 1x =(C 1+C 2x )er 1x (3)若特征方程(7.2)有一对共轭复根 r 1=α+i β,r 2=α-i β此时方程(7.1)有两个特解y 1=e(α+iβ)xy2=e(α-i β)x则通解为y=C1e(α+i β)x +C 2e (α-iβ)x其中C1,C 2为任意常数,但是这种复数形式的解,在应用上不方便。

在实际问题中,常常需要实数形式的通解,为此利用欧拉公式e ix =c osx +isi nx,e -ix =cos x-i sin x有 21(e ix +e -i x)=cosxi 21(e ix -e -i x)=s in x21 (y 1+y 2)=21e αx (e i βx+e -i βx )=e αxc os βxi 21 (y 1-y2)=i 21eαx (e i βx -e -i βx)=eαxsi nβx由上节定理一知,21 (y 1+y2),i21(y 1-y 2)是方程(7.1)的两个特解,也即e αx cos βx,eαxsin βx 是方程(7.1)的两个特解:且它们线性无关,由上节定理二知,方程(7.1)的通解为y =C 1eαx cos βx+C 2eαx sin βx或 y =e αx(C1cos βx+C 2sin βx)其中C 1,C2为任意常数,至此我们已找到了实数形式的通解,其中α,β分别是特征方程(7.2)复数根的实部和虚部。

综上所述,求二阶常系数线性齐次方程(7.1)的通解,只须先求出其特征方程(7.2)的根,再根据他的三种情况确定其通解,现列表如下特征方程r 2+p r+q=0的根微分方程22dx y d +p dxdy +qy=0的通解有二个不相等的实根r 1,r 2y=C 1e r1x +C 2e r2x有二重根r 1=r 2y=(C 1+C 2x)e r1x有一对共轭复根β-α=β+α=i r i r 21y=e αx(C1cos βx +C2sin βx ) 例1. 求下列二阶常系数线性齐次方程的通解(1) 22dx y d +3dx dy-10y=0(2) 22dx y d -4dx dy+4y=0(3) 22dx y d +4dxdy+7y=0解 (1)特征方程r 2+3r-10=0有两个不相等的实根r 1=-5,r 2=2所求方程的通解 y =C 1e -5r+C 2e2x(2)特征方程r 2-4r+4=0,有两重根r 1=r 2=2所求方程的通解y=(C 1+C 2x)e 2x(3)特征方程r 2+4r +7=0有一对共轭复根 r 1=-2+3i r 2=-2-3i所求方程的通解 y=e -2x(C 1cos 3x +C 2s in 3x )§7.2 二阶常系数线性非齐次方程的解法由上节线性微分方程的结构定理可知,求二阶常系数线性非齐次方程22dx y d +pdx dy+qy=f(x) (7.3)的通解,只要先求出其对应的齐次方程的通解,再求出其一个特解,而后相加就得到非齐次方程的通解,而且对应的齐次方程的通解的解法,前面已经解决,因此下面要解决的问题是求方程(7.3)的一个特解。

方程(7.3)的特解形式,与方程右边的f(x)有关,这里只就f (x)的两种常见的形式进行讨论。

一、f(x)=p n(x )e αx,其中p n(x)是n 次多项式,我们先讨论当α=0时,即当f(x )=pn (x)时方程22dx y d +pdx dy+qy =p n (x) (7.4)的一个特解。

(1)如果q ≠0,我们总可以求得一n 次多项式满足此方程,事实上,可设特解~y =Q n (x)=a 0x n+a1x n-1+…+a n,其中a 0,a 1,…a n 是待定常数,将~y 及其导数代入方程(7.4),得方程左右两边都是n 次多项式,比较两边x 的同次幂系数,就可确定常数a 0,a 1,…a n。

例1. 求22dx y d +dxdy+2y =x 2-3的一个特解。

解 自由项f (x )=x 2-3是一个二次多项式,又q=2≠0,则可设方程的特解为~y =a 0x 2+a 1x +a 2求导数 ~'y =2a 0x+a1~"y =2a 0代入方程有2a 0x 2+(2a 0+2a 1)x +(2a0+a 1+2a 2)=x2-3比较同次幂系数⎪⎩⎪⎨⎧-=++=+=3a 2a a 20a 2a 21a 2210100 解得 47a 21a 21a 210-=-==所以特解~y =21x2-21x-47(2)如果q=0,而p ≠0,由于多项式求导一次,其次数要降低一次,此时~y =Q n (x)不能满足方程,但它可以被一个(n+1)次多项式所满足,此时我们可设~y =x Qn (x)=a 0xn+1+a1x n +…+a n x代入方程(7.4),比较两边系数,就可确定常数a0,a1,…a n 。

例2. 求方程22dx y d +4dxdy =3x2+2的一个特解。

解 自由项 f(x)=3x 2+2是一个二次多项式,又q =0,p =4≠0,故设特解 ~y =a 0x 3+a 1x 2+a2x求导数 ~'y =3a 0x2+2a 1x+a 2~"y =6a0x+2a1代入方程得12a 0x2+(8a 1+6a0)x+(2a 1+4a 2)=3x2+2,比较两边同次幂的系数⎪⎩⎪⎨⎧=+=+=2a 4a 20a 6a 83a 1221010 解得 3219a 163a 41a 210=-==所求方程的特解 ~y =41x 3-163x 2+3219x(3)如果p =0,q=0,则方程变为22dxyd =p n (x ),此时特解是一个(n +2)次多项式,可设~y =x 2Qn (x),代入方程求得,也可直接通过两次积分求得。

下面讨论当α≠0时,即当f(x)=p n(x)e αx时方程22dx y d +pdx dy+qy=pn (x )e αx (7.5)的一个特解的求法,方程(7.5)与方程(7.4)相比,只是其自由项中多了一个指数函数因子eαx ,如果能通过变量代换将因子e αx 去掉,使得(7.5)化成(7.4)式的形式,问题即可解决,为此设y=ueαx,其中u =u(x)是待定函数,对y=ue αx,求导得dx dy =e αx dxdu +αue αx求二阶导数 22dx y d =eαx 22dx u d +2αe αxdxdu +α2ue αx代入方程(7.5)得e αx[22dx u d +2αdx du +α2u ]+pe αx [dxdu +αu ]+qu eαx =p n (x)e αx消去eαx得22dx u d +(2α+p ) dx du+(α2+p α+q )u=p n (x )(7.6)由于(7.6)式与(7.4)形式一致,于是按(7.4)的结论有:(1)如果α2+p α+q≠0,即α不是特征方程r2+pr+q =0的根,则可设(7.6)的特解u=Q n (x),从而可设(7.5)的特解为 ~y =Q n(x )e αx(2)如果α2+p α+q=0,而2α+p ≠0,即α是特征方程r 2+pr +q=0的单根,则可设(7.6)的特解u =xQ n (x ),从而可设(7.5)的特解为~y =xQ n(x)eαx(3)如果r 2+p α+q=0,且2α+p=0,此时α是特征方程r 2+pr +q=0的重根,则可设(7.6)的特解u =x 2Qn (x),从而可设(7.5)的特解为~y =x 2Q n (x)e αx例3. 求下列方程具有什么样形式的特解(1)22dx y d +5dx dy+6y=e 3x(2) 22dx y d +5dx dy+6y=3xe -2x(3) 22dx y d +αdxdy+y =-(3x2+1)e -x解 (1)因α=3不是特征方程r 2+5r +6=0的根,故方程具有形如~y =a 0e 3x的特解。

相关文档
最新文档