基于MATLAB的AM调制与解调

合集下载

基于matlab的-AM-FM调制与解调报告

基于matlab的-AM-FM调制与解调报告

基于matlab的-AM-FM调制与解调报告AM调制与解调100%% AMµ÷ÖÆfigure('Name','Ðźŵ÷ÖÆ¹ý³ÌÖв¨Ðμ°ÆäƵÆ×','NumberTitle','off')a0=1;f0=2000;fc=20000;fs=1000000;t=[1:0.000001:4];am1=0*cos(2*pi*f0*t); %µ÷ÖÆÐźÅam=a0+am1;t1=cos(2*pi*fc*t); %ÔØ²¨s_am=am.*t1;AM1=fft(am1); T1=fft(t1); S_AM=fft(s_am);f=(0:3000000)*fs/3000001-fs/2;subplot(3,2,1); plot(t(1:1000),am1(1:1000)); title('ÐÅÏ¢ÐźŲ¨ÐÎ');subplot(3,2,2); plot(f,fftshift(abs(AM1))); title('ÐÅÏ¢ÐÅºÅÆµÆ×');subplot(3,2,3); plot(t(1:1000),t1(1:1000)); title('ÔØ²¨ÐźÅ');subplot(3,2,4); plot(f,fftshift(abs(T1))); title('ÔØ²¨ÐÅºÅÆµÆ×');subplot(3,2,5); plot(t(1:1000),s_am(1:1000)); title('Òѵ÷ÐźÅ');subplot(3,2,6); plot(f,fftshift(abs(S_AM))); title('Òѵ÷ÐÅºÅÆµÆ×');%²úÉúÔëÉùfigure('Name','Ìí¼ÓÔëÉù¼°´øÍ¨Â˲¨¹ý³Ì²¨Ðμ°ÆäƵÆ×','NumberTitle','off ');snr=5;y=awgn(s_am,snr);fcuts=[16000 17500 22500 24000];mags=[0 1 0];devs=[0.05 0.01 0.05];[n,Wn,beta,ftype]=kaiserord(fcuts,mags,devs,fs);hh=fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');[H,f]=freqz(hh,1,1024,fs);st_p=fftfilt(hh,y);Q=fft(st_p);Y=fft(y);f=(0:3000000)*fs/3000001-fs/2;subplot(2,2,1);plot(t(1500001:1501000),y(1500001:1501000));title('Ìí¼ÓÔëÉùºóÐźŲ¨ÐÎ');subplot(2,2,2);plot(f,fftshift(abs(Y)));title('Ìí¼ÓÔëÉùºóÐÅºÅÆµÆ×');subplot(2,2,3);plot(t(1500001:1501000),st_p(1500001:1501000));title('´øÍ¨Â˲¨ºóÐźŲ¨ÐÎ');subplot(2,2,4); plot(f,fftshift(abs(Q)));title('´øÍ¨Â˲¨ºóÐÅºÅÆµÆ×');%½âµ÷figure('Name','Ïà¸É½âµ÷ËùµÃ²¨Ðμ°ÆäƵÆ×','NumberTitle','off');ss_am=st_p.*t1;SS_AM=fft(ss_am)f=(0:3000000)*fs/3000001-fs/2;subplot(2,1,1);plot(t(1500001:1503000),ss_am(1500001:1503000));title( 'Ïà³ËÐźÅ');subplot(2,1,2); plot(f,fftshift(abs(SS_AM)));title('Ïà³ËÐÅºÅÆµÆ×');fcuts1=[2500,30000];mags1=[1 0];devs1=[0.01 0.05];[n,Wn,beta,ftype]=kaiserord(fcuts1,mags1,devs1,fs);hh1=fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');[H,f]=freqz(hh1,1,1024,fs);m0=fftfilt(hh1,ss_am);M0=fft(m0);f=(0:3000000)*fs/3000001-fs/2;figuresubplot(2,1,1);plot(t(1500001:1501000),m0(1500001:1501000));title('½âµ÷ÐźÅ');subplot(2,1,2); plot(f,fftshift(abs(M0)));title('½âµ÷ÐÅºÅÆµÆ×');11.0005 1.001-101信息信号波形-505x 1050126信息信号频谱11.0005 1.001-101载波信号-505x 1050126载波信号频谱11.00051.001-202已调信号-55x 105012x 106已调信号频谱2.52.50052.501-4-2024添加噪声后信号波形-505x 105051015x 105添加噪声后信号频谱2.52.50052.501-2024带通滤波后信号波形-55x 10500.511.526带通滤波后信号频谱50%% AMµ÷ÖÆ2.5 2.5005 2.501 2.5015 2.502 2.5025 2.503 2.5035-1012相乘信号-5-4-3-2-1012345x 1050510155相乘信号频谱2.52.50012.50022.50032.50042.50052.50062.50072.50082.5009 2.501-0.500.51解调信号-5-4-3-2-1012345x 1050510155解调信号频谱figure('Name','Ðźŵ÷ÖÆ¹ý³ÌÖв¨Ðμ°ÆäƵÆ×','NumberTitle','off')a0=2;f0=2000;fc=20000;fs=1000000;t=[1:0.000001:4];am1=0*cos(2*pi*f0*t); %µ÷ÖÆÐźÅam=a0+am1;t1=cos(2*pi*fc*t); %ÔØ²¨s_am=am.*t1;AM1=fft(am1); T1=fft(t1); S_AM=fft(s_am);f=(0:3000000)*fs/3000001-fs/2;subplot(3,2,1); plot(t(1:1000),am1(1:1000)); title('ÐÅÏ¢ÐźŲ¨ÐÎ');subplot(3,2,2); plot(f,fftshift(abs(AM1))); title('ÐÅÏ¢ÐÅºÅÆµÆ×');subplot(3,2,3); plot(t(1:1000),t1(1:1000)); title('ÔØ²¨ÐźÅ');subplot(3,2,4); plot(f,fftshift(abs(T1))); title('ÔØ²¨ÐÅºÅÆµÆ×');subplot(3,2,5); plot(t(1:1000),s_am(1:1000)); title('Òѵ÷ÐźÅ');subplot(3,2,6); plot(f,fftshift(abs(S_AM))); title('Òѵ÷ÐÅºÅÆµÆ×');%²úÉúÔëÉùfigure('Name','Ìí¼ÓÔëÉù¼°´øÍ¨Â˲¨¹ý³Ì²¨Ðμ°ÆäƵÆ×','NumberTitle','off ');snr=5;y=awgn(s_am,snr);fcuts=[16000 17500 22500 24000];mags=[0 1 0];devs=[0.05 0.01 0.05];[n,Wn,beta,ftype]=kaiserord(fcuts,mags,devs,fs);hh=fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');[H,f]=freqz(hh,1,1024,fs);st_p=fftfilt(hh,y);Q=fft(st_p);Y=fft(y);f=(0:3000000)*fs/3000001-fs/2;subplot(2,2,1);plot(t(1500001:1501000),y(1500001:1501000));title('Ìí¼ÓÔëÉùºóÐźŲ¨ÐÎ');subplot(2,2,2);plot(f,fftshift(abs(Y)));title('Ìí¼ÓÔëÉùºóÐÅºÅÆµÆ×');subplot(2,2,3);plot(t(1500001:1501000),st_p(1500001:1501000));title('´øÍ¨Â˲¨ºóÐźŲ¨ÐÎ');subplot(2,2,4); plot(f,fftshift(abs(Q)));title('´øÍ¨Â˲¨ºóÐÅºÅÆµÆ×');%½âµ÷figure('Name','Ïà¸É½âµ÷ËùµÃ²¨Ðμ°ÆäƵÆ×','NumberTitle','off');ss_am=st_p.*t1;SS_AM=fft(ss_am)f=(0:3000000)*fs/3000001-fs/2;subplot(2,1,1);plot(t(1500001:1503000),ss_am(1500001:1503000));title( 'Ïà³ËÐźÅ');subplot(2,1,2); plot(f,fftshift(abs(SS_AM)));title('Ïà³ËÐÅºÅÆµÆ×'); fcuts1=[2500,30000];mags1=[1 0];devs1=[0.01 0.05];[n,Wn,beta,ftype]=kaiserord(fcuts1,mags1,devs1,fs);hh1=fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');[H,f]=freqz(hh1,1,1024,fs);m0=fftfilt(hh1,ss_am);M0=fft(m0);f=(0:3000000)*fs/3000001-fs/2;figuresubplot(2,1,1);plot(t(1500001:1501000),m0(1500001:1501000));title('½âµ÷ÐźÅ');subplot(2,1,2); plot(f,fftshift(abs(M0)));title('½âµ÷ÐÅºÅÆµÆ×');11.0005 1.001-101信息信号波形-505x 1050126信息信号频谱11.0005 1.001-101载波信号-505x 1050126载波信号频谱11.00051.001-505已调信号-55x 105024x 106已调信号频谱2.52.50052.501-505添加噪声后信号波形-505x 1050123x 106添加噪声后信号频谱2.52.50052.501-4-2024带通滤波后信号波形-55x 105012346带通滤波后信号频谱0%% AMµ÷ÖÆ2.5 2.5005 2.501 2.5015 2.502 2.5025 2.503 2.5035-10123相乘信号-5-4-3-2-1012345x 10501236相乘信号频谱2.52.50012.50022.50032.50042.50052.50062.50072.50082.5009 2.50100.511.5解调信号-5-4-3-2-1012345x 10501236解调信号频谱figure('Name','Ðźŵ÷ÖÆ¹ý³ÌÖв¨Ðμ°ÆäƵÆ×','NumberTitle','off')a0=10^100;f0=2000;fc=20000;fs=1000000;t=[1:0.000001:4];am1=0*cos(2*pi*f0*t); %µ÷ÖÆÐźÅam=a0+am1;t1=cos(2*pi*fc*t); %ÔØ²¨s_am=am.*t1;AM1=fft(am1); T1=fft(t1); S_AM=fft(s_am);f=(0:3000000)*fs/3000001-fs/2;subplot(3,2,1); plot(t(1:1000),am1(1:1000)); title('ÐÅÏ¢ÐźŲ¨ÐÎ');subplot(3,2,2); plot(f,fftshift(abs(AM1))); title('ÐÅÏ¢ÐÅºÅÆµÆ×');subplot(3,2,3); plot(t(1:1000),t1(1:1000)); title('ÔØ²¨ÐźÅ');subplot(3,2,4); plot(f,fftshift(abs(T1))); title('ÔØ²¨ÐÅºÅÆµÆ×');subplot(3,2,5); plot(t(1:1000),s_am(1:1000)); title('Òѵ÷ÐźÅ');subplot(3,2,6); plot(f,fftshift(abs(S_AM))); title('Òѵ÷ÐÅºÅÆµÆ×');%²úÉúÔëÉùfigure('Name','Ìí¼ÓÔëÉù¼°´øÍ¨Â˲¨¹ý³Ì²¨Ðμ°ÆäƵÆ×','NumberTitle','off ');snr=5;y=awgn(s_am,snr);fcuts=[16000 17500 22500 24000];mags=[0 1 0];devs=[0.05 0.01 0.05];[n,Wn,beta,ftype]=kaiserord(fcuts,mags,devs,fs);hh=fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');[H,f]=freqz(hh,1,1024,fs);st_p=fftfilt(hh,y);Q=fft(st_p);Y=fft(y);f=(0:3000000)*fs/3000001-fs/2;subplot(2,2,1);plot(t(1500001:1501000),y(1500001:1501000));title('Ìí¼ÓÔëÉùºóÐźŲ¨ÐÎ');subplot(2,2,2);plot(f,fftshift(abs(Y)));title('Ìí¼ÓÔëÉùºóÐÅºÅÆµÆ×');subplot(2,2,3);plot(t(1500001:1501000),st_p(1500001:1501000));title('´øÍ¨Â˲¨ºóÐźŲ¨ÐÎ');subplot(2,2,4); plot(f,fftshift(abs(Q)));title('´øÍ¨Â˲¨ºóÐÅºÅÆµÆ×');%½âµ÷figure('Name','Ïà¸É½âµ÷ËùµÃ²¨Ðμ°ÆäƵÆ×','NumberTitle','off');ss_am=st_p.*t1;SS_AM=fft(ss_am)f=(0:3000000)*fs/3000001-fs/2;subplot(2,1,1);plot(t(1500001:1503000),ss_am(1500001:1503000));title( 'Ïà³ËÐźÅ');subplot(2,1,2); plot(f,fftshift(abs(SS_AM)));title('Ïà³ËÐÅºÅÆµÆ×'); fcuts1=[2500,30000];mags1=[1 0];devs1=[0.01 0.05];[n,Wn,beta,ftype]=kaiserord(fcuts1,mags1,devs1,fs);hh1=fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');[H,f]=freqz(hh1,1,1024,fs);m0=fftfilt(hh1,ss_am);M0=fft(m0);f=(0:3000000)*fs/3000001-fs/2;figuresubplot(2,1,1);plot(t(1500001:1501000),m0(1500001:1501000));title('½âµ÷ÐźÅ');subplot(2,1,2); plot(f,fftshift(abs(M0)));title('½âµ÷ÐÅºÅÆµÆ×');11.0005 1.001-101信息信号波形-505x 1050126信息信号频谱1 1.0005 1.001-101载波信号-505x 1050126载波信号频谱11.00051.001-101x 10100已调信号-55x 105012x 10106已调信号频谱2.52.5005 2.501-1-0.500.51x 10100添加噪声后信号波形-505x 105051015x 10105添加噪声后信号频谱2.52.5005 2.501-2-1012100带通滤波后信号波形-55x 10501106带通滤波后信号频谱FM 调制与解调%%FMfigure('Name','FMµ÷ÖÆ²¨ÐÎÓëÆµÆ×')2.5 2.5005 2.501 2.5015 2.502 2.5025 2.503 2.5035-50510x 1099相乘信号-5-4-3-2-1012345x 105051015105相乘信号频谱2.52.50012.50022.50032.50042.50052.50062.50072.50082.5009 2.5013.93.913.923.93x 1099解调信号-1-0.500.51x 105123105解调信号频谱f0=2000; fc=20000; fs=1000000; Am=1; kf=0.5; Tc=8; Ta=0.001; dt=0.000001;t=[0:1/fs:3];f=(0:length(t)-1)*fs/(length(t))-fs/2;fm0=cos(2*pi*f0*t);mt=fm0;%»ý·ÖÆ÷Éè¼Æw1=0;w2=0;for m=1:length(t)w1=mt(m)+w2;w2=mt(m)+w1;fi(m)=w1/(2*fs);endfi=fi*2*pi/max(abs(fi));I=cos(kf*fi);Q=sin(kf*fi);y1=Am*cos(2*pi*fc*t).*I-Am*sin(2*pi*fc*t).*Q;subplot(2,1,1);plot(t,y1);title('²¨ÐÎ')axis([1e-3 4e-3 -2 2]);Y1=fft(y1);subplot(2,1,2);plot(f,fftshift(abs(Y1))/1e6); title('ƵÆ×') %%ÔØ²¨ÆµÆ×axis([-4e4 4e4 0 1]);figure('Name','FMµ÷ÖÆºó¼ÓÔëÉù²¨ÐÎÓë½âµ÷ºó²¨ÐÎÒÔ¼°Â˳ýÖ±Á÷·ÖÁ¿ºóµÄ²¨ÐÎ')y1o=awgn(y1,40);subplot(3,1,1);plot(t,y1o); title('¼ÓÔëÉùºó²¨ÐÎ') %%¼ÓÔëÉùºóµÄÐźÅaxis([1e-3 4e-3 -2 2]);%%´øÍ¨Â˲¨KSband=2*(3+1)*f0;fcutsb=[fc-KSband-2000 fc-KSband fc+KSbandfc+KSband+2000]; %%½ÓÊÕ»úǰ¶Ë´øÍ¨Â˲¨magsb=[0 1 0];devsb=[0.05 0.01 0.05];[nb,Wnb,betab,ftypeb]=kaiserord(fcutsb,magsb,devsb,fs);hhb=fir1(nb,Wnb,ftypeb,kaiser(nb+1,betab),'noscale'); %´øÍ¨Â˲¨Æ÷£»st_pb=fftfilt(hhb,y1o);subplot(3,1,2);st_pb=st_pb/1e6;plot(t,st_pb); title('´øÍ¨Â˲¨Æ÷ºóµÄ²¨ÐÎ')axis([1e-3 4e-3 -2e-6 2e-6]);%΢·ÖÆ÷Éè¼Æfor i=1:length(t)-1 %½ÓÊÕÐźÅͨ¹ý΢·ÖÆ÷´¦Àídiff_st_pb(i)=(st_pb(i+1)-st_pb(i))/dt;endsfm=abs(hilbert(diff_st_pb));subplot(3,1,2);plot(t,[sfm*20 0]);axis([1e-3 4e-3 0 4]);%%¸ôÖ±% KSbandh=2*(3+1)*f0;fcutsh=[0.01 3000];magsh=[0 1];devsh=[0.01 0.05];[nh,Wnh,betah,ftypeh]=kaiserord(fcutsh,magsh,devsh,fs);hhh=fir1(nh,Wnh,ftypeh,kaiser(nh+1,betah),'noscale');sfm_out=fftfilt(hhh,sfm*20);subplot(3,1,3);plot(t,[sfm_out 0]);title('¸ôÖ±ºóµÄ²¨ÐÎ')axis([1e-3 4e-3 -2 2]);11.522.533.54x 10-3-2-1012波形-4-3-2-101234x 10400.51频谱11.522.533.54x 10-3-202加噪声后波形11.522.53 3.54x 10-302411.522.533.54x 10-3-202隔直后的波形。

(完整word版)基于Matlab的AM振幅调制与解调仿真..

(完整word版)基于Matlab的AM振幅调制与解调仿真..

基于Matlab的AM振幅调制与解调仿真摘要:本次高频电子电路大作业的设计,我组所选的题目为振幅调制电路(AM)及解调。

在本课程设计报告中,首先说明了进行此次课程设计的目的、内容及要求;阐明了标准振幅调制与解调的基本原理以及操作方法,同时也对滤波电路的原理加以说明。

接着叙述了利用Matlab软件对振幅调制、解调以及滤波器等所设计编写的程序,并附上了调试后输出的载波信号、调制信号、AM已调信号及滤波前后的解调信号等的波形图和频谱图,另外还附上了滤波器的增益响应和双边带总功率与平均总功率之比。

报告的最后,是个人对本次大作业结果的分析、过程反思以及总结。

关键词:振幅调制解调AM Matlab仿真Abstract:In The high-frequency electronic circuit designing job, our group selected the topic as amplitude modulation circuit (AM) and demodulation. In this course design report, first explains the purpose, content and requirements of the curriculum design; clarify the basic principles and methods of operation standard amplitude modulation and demodulation, and also to illustrate the principles of the filter circuit. Then describes the use of Matlab and other amplitude modulation, demodulation and filter design program written, along with the carrier signal debugging output modulation signal, AMmodulated and demodulated signal waveform signal before and after filtering, etc. map and spectrum, also attached a total power and average power ratio of the total gain response and bilateral band filter. At the end of the report is to analyze the individual results of this large operation, process reflection and summary.Keywords: amplitude modulation, demodulation, Matlab simulation引言:无线通信系统中,信号通过一定的传输介质在发射机和接受机之间进行传送时,信号的原始形式一般不适合传输。

AM基于matlab信号调制解调课程设计

AM基于matlab信号调制解调课程设计

专业课程设计报告题目:调幅(AM)信号的调制传输解调系别信息工程系专业班级通信082班学生姓名李慧明指导教师罗浩提交日期 2011年11月 25日 ____目录一、设计目的 (1)二、设计要求和设计指标 (1)三、设计内容 (1)3.1 设计步骤 (1)3.2仿真结果与分析 (3)3.3工作原理 (3)四、本设计改进建议 (3)五、总结(感想和心得等) (4)六、主要参考文献 (4)一、设计目的1.本课程设计课题主要研究模拟系统AM调制与解调的设计和实现方法。

2.通过完成本课题的设计,拟主要达到以下几个目的:掌握模拟系统AM调制与解调的原理及实现方法。

3.掌握模拟系统AM调制与解调的设计方法;4.掌握熟悉MATLAB应用,进一步锻炼应用Matlab进行编程仿真的能力;5.熟悉基于Simulink的动态建模和仿真的步骤和过程;二、设计要求和设计指标(1)根据设计指导书给定的系统性能指标参数及具体要求,初步确定实现AM调制及解调,设计并画出电路原理图。

(2)根据设计的系统框图,给出具体的参数,进行基于Simulink的动态仿真设计。

实现AM调制及解调的系统动态仿真设计,要求包括调制和解调的部分,并给出系统的基于Simulink的动态建模和仿真的系统方框图,同时记录系统的各个输出点的波形和频谱图。

具体参数自定。

三、设计内容3.1 设计步骤首先打开simulink模块库窗口,在simulink模块库窗口中单击菜单项“File/New/Model”,即可以建立一个新的simulink模型文件。

如图2-1所示。

利用鼠标单击Simulink模块库窗口中的子库,选取函数模块中所需要的模型模块,将它拖动到新建模型文件窗口的合适的位置。

然后对“sine wave”模型模块进行参数设置和修改,双击修改传递函数参数,在弹出对话框中对“DSB AMDemodulatorPassband”模型模块中参数sample time系数改为“0.005”,“ AWGNChannel”中参数mode改为variance from mask。

基于Matlab的AM振幅调制及解调仿真

基于Matlab的AM振幅调制及解调仿真

目录摘要: (2)1实验原理 (4)1.1调制 (4)1.2调幅电路分析 (4)2 MATLAB仿真 (5)2.1 载波信号 (5)2.1.1 仿真程序 (5)2.1.2仿真波形 (6)2.2调制信号 (6)2.2.1 仿真程序 (6)2.2.2仿真波形 (7)2.3 AM调制 (8)2.3.1 仿真程序 (8)2.3.2仿真波形 (9)2.4 AM波解调(包络检波法) (9)2.4.1 仿真程序 (9)2.4.2仿真波形 (10)2.5 AM波解调(同步乘积型检波法) (11)2.5.1 仿真程序 (11)2.5.2仿真波形 (12)2.6 AM波的功率 (14)2.6.1 仿真程序 (14)2.6.2仿真波形 (15)2.7 调制度m对AM调制的影响 (15)2.7.1 仿真程序 (15)2.7.2仿真波形 (17)3结果分析: (18)4总结: (19)基于Matlab的AM振幅调制及解调仿真摘要:本课程设计主要是为了进一步理解AM调制系统的构成及其工作原理,并能通过matlab软件来实现对AM调制系统的仿真,且通过对各个元件的参数进行不同的设置,来观察系统中各个模块的输出波形。

在课程设计中,我们将用到matlab仿真平台,学习AM调制原理,AM调制就是由调制信号去控制高频载波的幅度,使之随调制信号作线性变化的过程。

在波形上,幅度已调信号的幅度随基带信号的规律而呈正比地变化。

解调方法利用相干解调。

解调就是实现频谱搬移,通过相乘器与载波相乘来实现。

通过相干解调,通过低通滤波器得到解调信号。

相干解调时,接收端必须提供一个与接受的已调载波严格同步的本地载波,它与接受的已调信号相乘后,经低通滤波器取出低频分量,得到原始的基带调制信号。

利用Matlab仿真建立AM调制的系统模型,用Matlab仿真程序画出调制信号、载波、已调信号、相干解调之后信号的波形以及功率频谱密度,分析所设计系统性能。

关键字:AM调制,解调,Matlab仿真,滤波Abstract: This course is designed primarily to further understanding of the composition and working principle of AM modulation system , and through matlab software to achieve the AM modulation system simulation , and the parameters of the various components through different settings , to observe the system output waveforms of respective modules. Curriculum design, we will use matlab simulation platform , learning AM modulation principle , AM modulation is controlled by the modulation signal to the amplitude of the high frequency carrier , making the process with the modulated signal as a linear change. On the waveform , the amplitude of the amplitude modulated signal is a baseband signal with the law and is proportional to the change . Demodulation method using coherent demodulation. Demodulation is to move the spectrum , multiplied by multiplication with the carrier to achieve. By coherent demodulation , a demodulated signal obtained through the low -pass filter. The coherent demodulation , the receiver must be provided with a local carrier wave modulated carrier received strict synchronization , after it is multiplied with the received modulated signal , the low pass filter to remove low frequency components to get the original modulating baseband signal . Create a system model simulation using Matlab AM modulation , using Matlab simulation program to draw modulated signal carrier modulated signal waveform signal after coherent demodulation and the power spectral density analysis of the design of the system performance.Keywords:AM modulation, demodulation, Matlab simulation, filter1实验原理1.1调制所谓调制,就是在传送信号的一方将所要传送的信号附加在高频振荡上,再由天线发射出去。

基于Matlab的模拟调制与解调实验报告

基于Matlab的模拟调制与解调实验报告

基于Matlab的模拟调制与解调(开放实验)一、实验目的(一)了解AM、DSB和SSB 三种模拟调制与解调的基本原理(二)掌握使用Matlab进行AM调制解调的方法1、学会运用MATLAB对基带信号进行AM调制2、学会运用MATLAB对AM调制信号进行相干解调3、学会运用MATLAB对AM调制信号进行非相干解调(包络检波)(三)掌握使用Matlab进行DSB调制解调的方法1、学会运用MATLAB对基带信号进行DSB调制2、学会运用MATLAB对DSB调制信号进行相干解调(四)掌握使用Matlab进行SSB调制解调的方法1、学会运用MATLAB对基带信号进行上边带和下边带调制2、学会运用MATLAB对SSB调制信号进行相干解调二、实验环境MatlabR2020a三、实验原理(一)滤波法幅度调制(线性调制)(二)常规调幅(AM)1、AM表达式2、AM波形和频谱3、调幅系数m(三)抑制载波双边带调制(DSB-SC)1、DSB表达式2、DSB波形和频谱(四)单边带调制(SSB)(五)相关解调与包络检波四、实验过程(一)熟悉相关内容原理 (二)完成作业已知基带信号()()()sin 10sin 30m t t t ππ=+,载波为()()cos 2000c t t π= 1、对该基带信号进行AM 调制解调(1)写出AM 信号表达式,编写Matlab 代码实现对基带进行进行AM 调制,并分别作出3种调幅系数(1,1,1m m m >=<)下的AM 信号的时域波形和幅度频谱图。

代码 基带信号fs = 10000; % 采样频率 Ts = 1/fs; % 采样时间间隔t = 0:Ts:1-Ts; % 时间向量m = sin(10*pi*t) + sin(30*pi*t); % 基带信号载波信号fc = 1000; % 载波频率c = cos(2*pi*fc*t); % 载波信号AM调制Ka = [1, 0.5, 2]; % 调制系数m_AM = zeros(length(Ka), length(t)); % 存储AM调制信号相干解调信号r = zeros(length(Ka), length(t));绘制AM调制信号的时域波形和幅度频谱图figure;for i = 1:length(Ka)m_AM(i, :) = (1 + Ka(i)*m).*c; % AM调制信号subplot(3, 2, i);plot(t, m_AM(i, :));title(['AM调制信号(Ka = ' num2str(Ka(i)) ')']);xlabel('时间');ylabel('幅度');ylim([-2, 2]);subplot(3, 2, i+3);f = (-fs/2):fs/length(m_AM(i, :)):(fs/2)-fs/length(m_AM(i, :));M_AM = fftshift(abs(fft(m_AM(i, :))));plot(f, M_AM);title(['AM调制信号的幅度频谱图(Ka = ' num2str(Ka(i)) ')']);xlabel('频率');ylabel('幅度');r(i, :) = m_AM(i, :) .* c; % 相干解调信号end绘制相干解调信号的时域波形和幅度频谱图figure;for i = 1:length(Ka)subplot(length(Ka), 1, i);plot(t, r(i, :));title(['相干解调信号(Ka = ' num2str(Ka(i)) ')']);xlabel('时间');ylabel('幅度');end图像(2)编写Matlab代码实现对AM调制信号的相干解调,并作出图形。

基于matlab的am信号的调制与解调

基于matlab的am信号的调制与解调

目录第一章绪论.....................................................................................................................................1 1.1 背景以及意义..................................................................................................................1 1.2 发展前景 (1)第二章AM 信号的原理以及特点.................................................................................................4 2.1 噪声模型 (4)2.1.1 噪声的分类 (4)2.1.2 本文噪声模型 (4)2.2 通用调制模型 (5)2.3.1 AM 信号数字模型以及特点 (6)8 AM 信号的非相干解调 (8)3.4 抗噪声性能的分析模型 (9)3.5 相干解调的抗噪声性能............................................................................................. . 9 3.6 非相干解调的抗噪声性能.. (11)3.6.1 大信噪比的情况 (11)3.6.2 小信噪比情况 (12)第四章仿真结果及结论 (13)参考文献(References) (18)致谢 (19)附录 (20)基于MATLAB 的AM 信号的调制与解调摘要: 摘要:现在的社会越来越发达,科学技术不断的在更新,在信号模拟电路里面经常要用到调制与解调,而AM 的调制与解调是最基本的,也是经常用到的.用AM 调制与解调可以在电路里面实现很多功能, 制造出很多有用又实惠的电子产品, 为我们的生活带来便利. 在我们日常生活中用的收音机也是采用了AM 调制方式,而且在军事民用领域都有十分重要的研究课题.本文主要的研究内容是了解AM 信号的数学模型及调制方式以及其方法.不同的解调方法在不同的信噪比情况下的解调结果,那种方法更好,作出比较.要求是进行双音及以上的AM 信号的调制与解调.先从AM 的调制研究,研究它的功能及在现实生活中的运用.其次研究AM 的解调,以及一些有关的知识点,以及通过它在通信方面的运用更加深入的了解它.从单音AM 信号的数学模型及调制解调方式出发,得出双音AM 信号的数学模型及其调制与框图调制解调波形.利用MATLAB 编程语言实现对双音AM 信号的调制与解调,给出不同信噪比情况下的解调结果对比. 关键词:AM 信号,调制,解调,信噪比,MA TLAB 关键词第二章AM 信号的原理以及特点2.2 通用调制模型从理论上来说,各种信号都可以用正交调制的方法来实现,其时域形式都可以表示为: s (t ) = I (t ) cos(ω0t ) + Q(t ) sin(ω0t ) 若调制信号在数字域上实现时要对式(2.2.1)进行数字化: (2.2.1) nω nω s (n) = I (n) cos 0 + Q(n) sin 0 ωs ωs (2.2.2) 从式(2.2.1)和式(2.2.2)可以看出, 调制信号的信息都应该包括在I (t ) 和Q (t ) 内. 2.2.1 图给出了调制信号的正交调制框图. 本文规定所有调制信号所调制时所用载波的初始相位均为0, 在后面的分析中不再另作说明. cos(ω0t ) 信源I 多相滤波相乘相加信源Q 多相滤波相乘sin(ω0t ) 图2.2.1 调制信号正交调制框图5 2.3 AM 信号的调制原理2.3.1 AM 信号数字模型以及特点AM 是指调制信号去控制高频载波的幅度,使其随调制信号呈线性变化的过程.AM 信号的调制原理模型如下[6]: 图 2.3.1 AM 信号的调制原理模型M(t)为基带信号,它可以是确知信号,也可以是随机信号,但通常认为它的平均值为0. 载波为 C ( t ) = A0 cos( w C t + ¢0 ) 上式中, A0 为载波振幅, Wc 为载波角频率0 为载波的初始相位. 2.3.2 AM 信号的波形和频谱特性(2.3.1) 虽然实际模拟基带信号m(t)是随机的,但我们还是从简单入手, 先考虑m(t)是确知信号的傅氏频谱,然后在分析m(t)是随机信号时调幅信号的功率谱密度. 可知[7] S AM = [ A0 + m( t )]cosw c t = A0 cosw c t + m( t )cosw c t 设m(t)的频谱为M(w) ,由傅氏变换的理论可得已调信号(2.3.2) 1 S AM ( w ) = лA 0 [δ(w - w c ) + δ(w + w c )] + [ M (w - w c ) + M (w + w c )] 2 AM 的波形和相应的频谱图如下(2.3.3) 6 图2.3.2 AM 信号的时域波形及其频谱可以看出,第一:AM 的频谱与基带信号的频谱呈线性关系,只是将基带信号的频谱搬移,并没有产生新的频谱成分,因此AM 调制属于线性调制;第二:AM 信号波形的包络与基带信号成正比,所以AM 信号的解调即可以采用相干解调,也可以采用非相干解调(包络检波) .第三:AM 的频谱中含有载频和上,下两个边带,无论是上边带还是下边带,都含有原调制信号的完整信息,股已调波形的带宽为原基带信号带宽的两倍,即BAM = 2 f 其中f H 为调制信号的最高频率. H (2.3.4) 7第三章AM 信号的解调原理以及特点3.1 AM 信号的解调原理及方式解调是将位于载波的信号频谱再搬回来,并且不失真的恢复出原始基带信号. 解调的方式有两种[6]:相干解调与非相干解调.相干解调适用于各种线性调制系统,非相干解调一般适用幅度调制(AM)信号.3.2 AM 信号的相干解调所谓相干解调是为了从接受的已调信号中, 不失真地恢复原调制信号, 要求本地载波和接收信号的载波保证同频同相.相干载波的一般模型如下: 图 3.2.1 AM 信号的相干解调原理框图将已调信号乘上一个与调制器同频同相的载波,得S AM ( t) cosw c t = [ A0 + m(t )] cos 2 wc t 1 1 = [ A0 + m(t )] + [ A0 + m(t )] cos 2 wc t 2 2 原始的调制信号(3.2.1) 由上式可知,只要用一个低通滤波器,就可以将第1项与第2项分离,无失真的恢复出1 M 0 (T ) = [ A0 + M (T )] 2 不到满足,则会破坏原始信号的恢复.3.3 AM 信号的非相干解调(3.2.2) 相干关键是必须产生一个与调制器同频同相位的载波. 如果同频同相位的条件得所谓非相干解调是在接收端解调信号时不需要本地载波, 而是利用已调信号中的包络信号来恢复原基带信号[7].因此,非相干解调一般只适用幅度调制(AM)系统.忧郁包络解调器电路简单,效率高,所以几乎所有的幅度调制(AM)接收机都采用这种电路.如下为串联型包络检波器的具体电路. 图 3.3.1 AM 信号的非相干解调原理8 当RC 满足条件1 w c ≤ RC ≤ 1 w h 时,包络检波器的输出基本与输入信号的包络变化呈线性关系,即m(t) A0 + m(t) = o 其中, A0 ≥ m(t) .隔去直流后就得到原信号m(t ) max3.4 抗噪声性能的分析模型(3.3.1) 各种线性已调信号在传输过程中不可避免地要受到噪声的干扰, 为了讨论问题的简单起见,我们这里只研究加性噪声对信号的影响.因此,接收端收到的信号是发送信号与加性噪声之[8]. 由于加性噪声只对已调信号的接收产生影响, 因而调制系统的抗噪声性能主要用解调器的抗噪声性能来衡量. 为了对不同调制方式下各种解调器性能进行度量, 通常采用信噪比增益G(又称调制制度增益)来表示解调器的抗噪声性能,即[9] G= 输出信噪比S 0 N 0 = 输入信噪比S i N i (3.4.1) 有加性噪声时解调器的数学模型如图图3.4.1 AM 信号的解调原理图图中S m (t ) 为已调信号,n(t)为加性高斯白噪声. S m (t ) n(t)首先经过一带通滤波器, 滤出有用信号,滤除带外的噪声.经过带通滤波器后到达解调器输入端的信号为S m (t ) ,噪声为高斯窄带噪声n i (t ) ,显然解调器输入端的噪声带宽与已调信号的带宽是相同的.最后经解调器解调输出的有用信号为m 0 (t ) ,噪声为n0 (t ) ..5 相干抗噪声性能各种线性调制系统的相干解调模型如下图所示. 9 图3.5.1 线性调制系统的相干解调模型图中S m (t ) 可以是各种调幅信号,如AM,DSB,SSB VSB,带通滤波器的带宽等于已调信号带宽[10].下面讨论各种线性调制系统的抗噪声性能[11]. AM 信号的时域表达式为S AM ( t ) = [ A0 + m( t )]cosw c t 通过分析可得AM 信号的平均功率为(3.5.1) ( S i ) AM = A02 m 2 ( t ) + 2 2 (3.5.2) 又已知输入功率N i = n 0 B , 其中B 表示已调信号的带宽. 由此可得AM 信号在解调器的输入信噪比为( S i N i ) AM = AM 信号经相干解调器的输出信号为2 A02 + m 2 ( t ) A0 + m 2 ( t ) = 2n 0 B AM 4n 0 f H (3.5.3) m 0 (t) = 因此解调后输出信号功率为1 m( t ) 2 1 2 m (t ) 4 (3.5.4) 2 ( S 0 ) AM = m 0 ( t ) = (3.5.5) 在上图中输入噪声通过带通滤波器之后,变成窄带噪声n i ( t ) ,经乘法器相乘后的输出噪声为n p (t) = n i (t)cosw c t = [n c (t)cosw c t-n s (t)sinw c t]cosw c t = 经LPF 后, 1 1 n c (t) + [nc (t)cos2w c t-n s (t)sin2w c t] 2 2 1 n c (t ) 2 (3.5.6) n 0 (t) = 因此解调器的输出噪声功率为(3.5.7) 10 2 N 0 = n 0 (t) = 1 2 1 n c (t ) = N i 4 4 m 2 (t) m 2 (t ) = n0B 2n 0 f H (3.5.8) 可得AM 信号经过解调器后的输出信噪比为( S 0 N 0 ) AM = (3.5.9) 由上面分析的解调器的输入,输出信噪比可得AM 信号的信噪比增益为G AM =3.6 非相干抗噪声性能S0 N 0 2m 2 ( t ) = Si N i A02 + m 2 ( t ) (3.5.10) 只有AM 信号可以采用非相干解调[12].实际中,AM 信号常采用包络检波器解调,有噪声时包络检波器的数字模型如下: 图 3.6.1 有噪声时包络检波器的数字模型设包络检波器输入信号S m ( t ) 为S m ( t ) = [ A0 + m( t )]cosw c t ,其中A0 ≥ m( t ) max 输入噪声n i ( t ) 为(3.6.1) ni ( t ) = n c ( t )cosw c t - n s ( t )sinw c t 显然,解调器输入信噪功率(3.6.2) A02 m 2 ( t ) Si = +2 2 噪声功率(3.6.3) N i = n i2 ( t ) = n 0 B 3.6.1 大信噪比的情况(3.6.4) 所谓大信噪比是指输入信号幅度远大于噪声幅度[13].即满足条件A0 + m(t) n i (t) 由此可知,包络检波器输出的有用信号是m(t) ,输出噪声是n c (t) ,信号与噪声是分开的. 直流成分A0 可被低通滤波器滤除.故输出的平均信号功率及平均噪声功率分别为11 S0 = m 2 (t) 2 N 0 = n c ( t ) = n i2 ( t ) = n 0 B (3.6.5) 于是,可以得到G AM S0 N 0 2m 2 ( t ) = = Si N i A02 + m 2 ( t ) (3.6.7) 此结果与相干解调时得到的噪声增益一致.可见在大噪声比情况下,AM 信号包络检波器的性能几乎与相干解调性能相同. 3.6.2 小信噪比情况所谓小信噪比是指噪声幅度远大于信号幅度.在此情况下,包络检波器会把有用信号扰乱成噪声,即有用信号"淹没"在噪声中,这种现象通常称为门限效应.进一步说,所谓门限效应, 就是当包络检波器的输入信噪比降低到一个特定的数值后, 检波器输出信噪比出现急剧恶化的一种现象[14-16]. 小信噪比输入时,包络检波器输出信噪比计算很复杂,而且详细计算它一般也无必要. 12。

基于MATLAB的AM信号的调制与解调

基于MATLAB的AM信号的调制与解调

基于MATLAB的AM信号的调制与解调(陕西理工学院物理与电信工程学院通信工程专业1203班,陕西汉中723003)指导教师:井敏英[摘要]:本文主要的研究内容是了解AM信号的数学模型及调制方式以及其解调的方法。

不同的解调方法在不同的信噪比情况下的解调结果,那种方法更好,作出比较。

进行AM信号的调制与解调。

先从AM的调制研究,研究它的功能及在现实生活中的运用。

其次研究AM的解调,以及一些有关的知识点,以及通过它在通信方面的运用更加深入的了解它。

从AM信号的数学模型及调制解调方式出发,得出AM调制与解调的框图和调制解调波形。

利用MA TLAB编程语言实现对AM 信号的调制与解调,给出不同信噪比情况下的解调结果对比。

[关键词]:AM信号;调制;解调;信噪比MATLAB.Modulation and demodulation of AM signalbased on MATLAB(Grade 2012,Class 3,Major of Communication Engineering,School of Physics and Telecommunication Engineering of Shaanxi University of Technology,Hanzhong 723000,Shaanxi)Tutor: Jing Mingying[Abstract]: The main content of this paper is to understand the mathematical model of the AM signal and the modulation and the demodulation method. Demodulation different methods in different circumstances of the demodulation signal to noise ratio the results of methods that better, to make the comparison. Requirement is more than double the sound and the AM signal modulation and demodulation. AM modulation first study of its function and in real life use. AM demodulation followed by research, as well as some related knowledge, as well as through its use of communications more in-depth understanding of it. AM signal from the tone of the mathematical model and the modulation and demodulation methods,the two-tone AM signal to draw a mathematical model and the block diagram of modulation and demodulation and modulation and demodulation waveforms. MATLAB programming language to use to achieve the two-tone AM signal modulation and demodulation, given the different circumstances of the demodulation signal to noise ratio compared the results.[Keywords]: AM signal, Modulation, Demodulation, Noise ratio signal, MATLAB目录1.绪论背景以及意义现在的社会越来越发达,科学技术不断的在更新,在信号和模拟通信的中心问题是要把载有消息的信号经系统加工处理后,送入信道进行传送,从而实现消息的相互传递。

基于MATLAB的AM信号的调制与解调

基于MATLAB的AM信号的调制与解调

基于MATLAB的AM信号的调制与解调(陕西理工学院物理与电信工程学院通信工程专业1203班,陕西汉中723003)指导教师:井敏英[摘要]:本文主要的研究内容是了解AM信号的数学模型及调制方式以及其解调的方法。

不同的解调方法在不同的信噪比情况下的解调结果,那种方法更好,作出比较。

进行AM信号的调制与解调。

先从AM的调制研究,研究它的功能及在现实生活中的运用。

其次研究AM的解调,以及一些有关的知识点,以及通过它在通信方面的运用更加深入的了解它。

从AM信号的数学模型及调制解调方式出发,得出AM调制与解调的框图和调制解调波形。

利用MA TLAB编程语言实现对AM 信号的调制与解调,给出不同信噪比情况下的解调结果对比。

[关键词]:AM信号;调制;解调;信噪比MATLAB.Modulation and demodulation of AM signalbased on MATLAB(Grade 2012,Class 3,Major of Communication Engineering,School of Physics and Telecommunication Engineering of Shaanxi University of Technology,Hanzhong 723000,Shaanxi)Tutor: Jing Mingying[Abstract]: The main content of this paper is to understand the mathematical model of the AM signal and the modulation and the demodulation method. Demodulation different methods in different circumstances of the demodulation signal to noise ratio the results of methods that better, to make the comparison. Requirement is more than double the sound and the AM signal modulation and demodulation. AM modulation first study of its function and in real life use. AM demodulation followed by research, as well as some related knowledge, as well as through its use of communications more in-depth understanding of it. AM signal from the tone of the mathematical model and the modulation and demodulation methods, the two-tone AM signal to draw a mathematical model and the block diagram of modulation and demodulation and modulation and demodulation waveforms. MATLAB programming language to use to achieve the two-tone AM signal modulation and demodulation, given the different circumstances of the demodulation signal to noise ratio compared the results.[Keywords]: AM signal, Modulation, Demodulation, Noise ratio signal, MATLAB目录1.绪论 (1)1.1 背景以及意义 (1)1.2 发展前景 (1)2. AM信号调制原理以及特点 (3)2.1 噪声模型 (3)2.1.1 噪声的分类 (3)2.1.2 本文噪声模型 (3)2.2 通用调制模型 (4)2.3 AM信号的调制原理 (4)2.3.1 AM信号数字模型以及特点 (4)2.3.2 AM信号的波形和频谱特性 (5)3. AM信号的解调原理以及特点 (6)3.1 AM信号的解调原理及方式 (6)3.2 AM信号的相干解调 (6)3.3 AM信号的非相干解调 (6)4. 抗噪声性能的分析模型 (7)4.1 相干解调的抗噪声性能 (7)4.2非相干解调的抗噪声性能 (9)4.3小信噪比情况 (9)5. AM调制与解调的仿真 (9)5.1 AM调制 (9)5.1.1 建立仿真模型 (9)5.1.2 参数设置 (10)5.1.3 仿真波形图 (12)5.2 AM信号的解调仿真 (13)5.2 .1AM相干解调模型仿真 (13)5.2.2参数设置 (13)5.2.3 仿真波形图 (14)5.2.4相干解调抗噪声性能分析 (15)6.AM信号的频谱分析 (16)7.总结 (20)致谢 (21)参考文献 (22)1.绪论1.1 背景以及意义现在的社会越来越发达,科学技术不断的在更新,在信号和模拟通信的中心问题是要把载有消息的信号经系统加工处理后,送入信道进行传送,从而实现消息的相互传递。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于MATLAB的AM调制与解调摘要:主要研究AM的调制与解调,通过建立数学模型,运用MATLAB进行仿真,得到了AM已调波的波形图和频谱图。

改变调制系数m,得到了AM调制信号,验证了在振幅调制过程中为了避免产生过量调幅失真,要求调制系数m满足:0<m<1.这一工程结论,为了滤除解调出来的信号含有的高频分量,运用MATLAB的窗体函数设计了FIR低通滤波器,从而滤除了高频分量,使得解调出来的信号还原度提高。

关键字:MATLAB AM调制解调The main research AM modulation and demodulation, by a mathematical model, using MATLAB simulation, has been AM modulated wave waveforms and frequency spectrum. Changing the modulation factor m, to obtain an AM modulated signal in the amplitude modulation verification process in order to avoid excessive distortion of amplitude modulation, the modulation index m satisfies the requirements:. 0 <m <1 conclusion of this project, in order to filter out of the demodulated signal contains high frequency components, the use of MATLAB functions designed form FIR low-pass filter, which filters out high frequency components, making the demodulated signal reduction degree.Keywords: MATLAB AM modulation and demodulation实验原理:一 振幅调制产生原理所谓调制,就是在传送信号的一方将所要传送的信号附加在高频振荡上,再由天线发射出去。

这里高频振荡波就是携带信号的运载工具,也叫载波。

振幅调制,就是由调制信号去控制高频载波的振幅,直至随调制信号做线性变化。

在线性调制系列中,最先应用的一种幅度调制是全调幅或常规调幅,简称为调幅(AM )。

在频域中已调波频谱是基带调制信号频谱的线性位移;在时域中,已调波包络与调制信号波形呈线性关系。

设正弦载波为)cos()(0ϕω+=t A t c c 式中,A 为载波幅度;c ω为载波角频率;0ϕ为载波初始相位(通常假设0ϕ=0).调制信号(基带信号)为)(t m 。

根据调制的定义,振幅调制信号(已调信号)一般可以表示为)cos()()(t t Am t s c m ω=设调制信号)(t m 的频谱为)(ωM ,则已调信号)(t s m 的频谱)(ωm S :)]()([2)(c c m M M A S ωωωωω-++= 二 调幅电路方案分析标准调幅波(AM )产生原理调制信号是只来来自信源的调制信号(基带信号),这些信号可以是模拟的,亦可以是数字的。

为首调制的高频振荡信号可称为载波,它可以是正弦波,亦可以是非正弦波(如周期性脉冲序列)。

载波由高频信号源直接产生即可,然后经过高频功率放大器进行放大,作为调幅波的载波,调制信号由低频信号源直接产生,二者经过乘法器后即可产生双边带的调幅波。

设载波信号的表达式为t c ωcos ,调制信号的表达式为t A t m m m ωcos )(= ,则调幅信号的表达式为 t t m A t s c AM ωcos )]([)(0+=)(t m )(t标准调幅波示意图三信号解调思路从高频已调信号中恢复出调制信号的过程称为解调(demodulation ),又称为检波(detection )。

对于振幅调制信号,解调(demodulation )就是从它的幅度变化上提取调制信号的过程。

解调(demodulation )是调制的逆过程。

可利用乘积型同步检波器实现振幅的解调,让已调信号与本地恢复载波信号相乘并通过低通滤波可获得解调信号。

Matlab仿真载波信号与调制信号分析t=-1:0.00001:1;A0=10; %载波信号振幅f=6000; %载波信号频率w0=2*f*pi;Uc=A0*cos(w0*t); %载波信号figure(1);subplot(2,1,1);plot(t,Uc);title('载频信号波形');axis([0,0.01,-15,15]);subplot(2,1,2);Y1=fft(Uc); %对载波信号进行傅里叶变换plot(abs(Y1));title('载波信号频谱');axis([5800,6200,0,1000000]);图1分析:给出一个载波信号,载波是一个高频信号这里取f=6000,并且对其进行傅里叶变换,分别得到了载波信号波形和载波信号频谱。

调制信号程序代码:t=-1:0.00001:1;A1=5; %调制信号振幅f=6000; %载波信号频率w0=2*f*pi;mes=A1*cos(0.001*w0*t); %调制信号subplot(2,1,1);plot(t,mes);xlabel('t'),title('调制信号');subplot(2,1,2);Y2=fft(mes); % 对调制信号进行傅里叶变换plot(abs(Y2));title('调制信号频谱');axis([198000,202000,0,1000000]);图2分析:定义一个单频调制信号,调制信号相对于载波是一个低频信号,对其进行傅里叶变换,同时得到调制信号波形和调制信号频谱。

AM已调信号t=-1:0.00001:1;A0=10; %载波信号振幅A1=5; %调制信号振幅A2=3; %已调信号振幅f=3000; %载波信号频率w0=2*f*pi;m=0.15; %调制度mes=A1*cos(0.001*w0*t); %调制信号Uam=A2*(1+m*mes).*cos((w0).*t); %AM 已调信号subplot(2,1,1);plot(t,Uam);grid on;title('AM调制信号波形');subplot(2,1,2);Y3=fft(Uam); % 对AM已调信号进行傅里叶变换plot(abs(Y3)),grid;title('AM调制信号频谱');axis([5950,6050,0,500000]);图3 m=0.15图4 m=1图5 m=100分析:根据已学知识,建立已调AM信号的数学方程,调制系数m=0.15,对AM 已调信号进行傅里叶变换,同时得到已调AM的波形和频谱如图3。

由频谱图可知,单频调幅波并不是一个简单的正弦波,其中包含三个频率分量,即载波分量6000,上边频分量5996,下变频分量6006。

上下边频分量对于载波是对称的,每个边频分量的振幅是调幅波的一半。

由此可见,单频调幅实质是把低频信号的频谱搬移到载波的上下边频,调幅过程实质是一个频谱的线性搬移。

由图可以看出调幅波的特点:调幅波的振幅随调制信号变化,而且包络的变化规律与调制信号一致,表明调制信号的信息记录在调幅波的包络中。

当改变调制系数m=1时,此时包络振幅的最小值0;当m=100时,如图5,已调波的包络形状与调制信号不一样,产生了严重的包络失真,这种情况称为过量调幅。

因此在振幅调制过程中为了避免产生过量调幅失真,要求调制系数m满足:0<m<1.二设计FIR数字低通滤波器FIR滤波器采用间接法,常用的方法有窗函数法、频率采样法和切比雪夫等波纹逼近法。

对于线性相位滤波器,经常采用FIR滤波器。

对于数字高通、带通滤波器设计,通用方法为双线性变换法。

可以借助于模拟滤波器的频率转换设计一个所需类型的过渡模拟滤波器,再经过双线性变换将其转换成那个所需的数字滤波器。

具体设计步骤如下:(1)确定所需类型数字滤波器的技术指标。

(2)将所需类型数字滤波器的边界频率转换成相应的模拟滤波器的边界频率,转换公式为Ω=2/T tan(0.5ω)(3)将相应类型的模拟滤波器技术指标转换成模拟低通滤波器技术指标。

(4)设计模拟低通滤波器。

(5)通过频率变换将模拟低通转换成相应类型的过渡模拟滤波器。

(6)采用双线性变换法将相应类型的过渡模拟滤波器转换成所需类型的数字滤波器。

我们知道,脉冲响应不变法的主要缺点是会产生频谱混叠现象,使数字滤波器的频响偏离模拟滤波器的频响特性。

为了克服之一缺点,可以采用双线性变换法。

下面我们介绍用窗函数法设计FIR滤波器的步骤。

如下:(1)根据对阻带衰减及过渡带的指标要求,选择串窗数类型(矩形窗、三角窗、汉宁窗、哈明窗、凯塞窗等),并估计窗口长度N。

先按照阻带衰减选择窗函数类型。

原则是在保证阻带衰减满足要求的情况下,尽量选择主瓣的窗函数。

(2)构造希望逼近的频率响应函数。

(3)计算h(n).。

(4)加窗得到设计结果。

接下来,我们根据语音信号的特点给出有关滤波器的技术指标:低通滤波器的性能指标:通带边界频率fp=300Hz,阻带截止频率fc=320Hz,阻带最小衰减As=100db , 通带最大衰减Ap=1dB在Matlab中,可以利用函数fir1设计FIR滤波器,利用函数butter,cheby1和ellip设计IIR滤波器,利用Matlab中的函数freqz画出各步步器的频率响应。

hn=fir1(M,wc,window),可以指定窗函数向量window。

如果缺省window参数,则fir1默认为哈明窗。

其中可选的窗函数有Rectangular Barlrtt Hamming Hann Blackman窗,其相应的都有实现函数。

MATLAB信号处理工具箱函数buttp buttor butter是巴特沃斯滤波器设计函数,其有5种调用格式,本课程设计中用到的是[N,wc]=butter(N,wc,Rp,As,’s’),该格式用于计算巴特沃斯模拟滤波器的阶数N和3dB截止频率wc。

MATLAB信号处理工具箱函数cheblap,cheblord和cheeby1是切比雪夫I型滤波器设计函数。

我们用到的是cheeby1函数,其调用格式如下:[B,A]=cheby1(N,Rp,wpo,’ftypr’)[B,A]=cheby1(N,Rp,wpo,’ftypr’,’s’) 函数butter,cheby1和ellip设计FIR滤波器时都是默认的双线性变换法,所以在设计滤波器时只需要代入相应的实现函数即可。

相关文档
最新文档