第二讲 图形位置关系(含答案).doc
2022届高考数学(文)大一轮复习检测:第八章第2讲两直线的位置关系 Word版含答案

第2讲两直线的位置关系, [同学用书P145])1.两直线的平行、垂直与其斜率的关系条件两直线位置关系斜率的关系两条不重合的直线l1,l2,斜率分别为k1,k2平行k1=k2k1与k2都不存在垂直k1k2=-1k1与k2一个为零、另一个不存在2.两条直线的交点3.三种距离点点距点P1(x1,y1),P2(x2,y2)之间的距离|P1P2|=(x2-x1)2+(y2-y1)2点线距点P0(x0,y0)到直线l:Ax+By+C=0的距离d=|Ax0+By0+C|A2+B2线线距两条平行线Ax+By+C1=0与Ax+By+C2=0间的距离d=|C1-C2|A2+B21.辨明三个易误点(1)在推断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可依据相应公式或性质推断,若直线无斜率,要单独考虑.(2)求点到直线的距离时,若给出的直线不是一般式,则应化为一般式.(3)在运用两平行直线间的距离公式d=|C1-C2|A2+B2时,肯定要留意将两方程中x,y的系数化为相同的形式.2.与已知直线垂直及平行的直线系的设法与直线Ax+By+C=0(A2+B2≠0)垂直和平行的直线方程可设为:(1)垂直:Bx-Ay+m=0(m∈R);(2)平行:Ax+By+n=0(n∈R,且n≠C).1.教材习题改编已知A(2,3),B(-4,0),P(-3,1),Q(-m,m+1),若直线AB∥PQ,则m的值为()A.-1B.0C.1 D.2C[解析] 由于AB∥PQ,所以k AB=k PQ,即0-3-4-2=m+1-1-m-(-3),解得m=1,故选C.2.教材习题改编已知A(5,-1),B(m,m),C(2,3),若△ABC为直角三角形且AC边最长,则整数m 的值为()A.4 B.3C.2 D.1D[解析] 由题意得B=90°,即AB⊥BC,k AB·k BC=-1,所以m+1m-5·3-m2-m=-1.解得m=1或m=72,故整数m的值为1,故选D.3.直线2x-y=-10,y=x+1,y=ax-2交于一点,则实数a的值为________.[答案]234.教材习题改编两平行直线x-2y-1=0与x-2y+m=0的距离为5,则m=________.[解析] 由平行线间的距离公式得|-1-m|12+(-2)2=5,即|m+1|=5,所以m=4或m=-6.[答案] 4或-65.教材习题改编已知三点O(0,0),A(1,3),B(3,1),则△OAB的面积为________.[解析] 由于|AB|=(1-3)2+(3-1)2=2 2.AB所在的直线方程为y-31-3=x-13-1,即x+y-4=0.所以O 到AB 的距离d =|-4|2=2 2.所以S △OAB =12|AB |·d =12×22×22=4.[答案] 4两条直线平行与垂直[同学用书P146][典例引领](1)(2021·邢台摸底考试)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________.【解析】 (1)依题意,留意到直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎪⎨⎪⎧-a 3=-1a -2,1a -2≠1,解得a =-1,故选C.(2)法一:由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得⎩⎪⎨⎪⎧x =0,y =2,即P (0,2).由于l ⊥l 3,所以直线l 的斜率k =-43,所以直线l 的方程为y -2=-43x ,即4x +3y -6=0.法二:由于直线l 过直线l 1和l 2的交点,所以可设直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0. 由于l 与l 3垂直,所以3(1+λ)+(-4)(λ-2)=0, 所以λ=11,所以直线l 的方程为12x +9y -18=0, 即4x +3y -6=0.【答案】 (1)C (2)4x +3y -6=0将本例(2)中条件“与直线l 3:3x -4y +5=0垂直”改为“与直线l 3:3x -4y +5=0平行”,求此时直线l 的方程.[解] 法一:由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得⎩⎪⎨⎪⎧x =0,y =2,即P (0,2). 由于l ∥l 3,所以直线l 的斜率k =34,所以直线l 的方程为y -2=34x ,即3x -4y +8=0.法二:由于直线l 过直线l 1和l 2的交点,所以可设直线l 的方程为x -2y +4+λ(x +y -2)=0, 即(1+λ)x +(λ-2)y +4-2λ=0. 由于l 与l 3平行,所以3(λ-2)-(-4)(1+λ)=0,且(-4)(4-2λ)≠5(λ-2),所以λ=27,所以直线l 的方程为3x -4y +8=0.两直线平行或垂直的判定方法 (1)已知两直线的斜率存在①两直线平行⇔两直线的斜率相等且坐标轴上的截距不相等; ②两直线垂直⇔两直线的斜率之积为-1. (2)已知两直线的斜率不存在若两直线的斜率不存在,当两直线在x 轴上的截距不相等时,两直线平行;否则两直线重合. (3)已知两直线的一般方程设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0,l 1⊥l 2⇔A 1A 2+B 1B 2=0.该方法可避开对斜率是否存在进行争辩.已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且直线l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. [解] (1)由于l 1⊥l 2, 所以a (a -1)-b =0.又由于直线l 1过点(-3,-1), 所以-3a +b +4=0.故a =2,b =2.(2)由于直线l 2的斜率存在,l 1∥l 2, 所以直线l 1的斜率存在. 所以ab=1-a .①又由于坐标原点到这两条直线的距离相等, 所以l 1,l 2在y 轴上的截距互为相反数,即4b =b .②联立①②可得a =2,b =-2或a =23,b =2.距离公式(高频考点)[同学用书P147]距离公式包括两点间的距离公式、点到直线的距离公式和两平行线间的距离公式.在高考中经常消灭,多为简洁题或中档题.高考中对距离公式的考查主要有以下三个命题角度: (1)求距离;(2)已知距离求参数值; (3)已知距离求点的坐标. [典例引领](1)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( )A .95B .185C .2910D .295(2)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,若在坐标平面内存在一点P ,使|P A |=|PB |,且点P 到直线l 的距离为2,则P 点坐标为________.【解析】 (1)由于36=48≠-125,所以两直线平行,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910.(2)设点P 的坐标为(a ,b ). 由于A (4,-3),B (2,-1),所以线段AB 的中点M 的坐标为(3,-2).而AB 的斜率k AB =-3+14-2=-1,所以线段AB 的垂直平分线方程为y +2=x -3, 即x -y -5=0.由于点P (a ,b )在直线x -y -5=0上, 所以a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2, 所以|4a +3b -2|5=2,即4a +3b -2=±10,②由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎨⎧a =277,b =-87.所以所求点P 的坐标为(1,-4)或⎝⎛⎭⎫277,-87. 【答案】 (1)C (2)(1,-4)或⎝⎛⎭⎫277,-87[题点通关]角度一 求距离 1.(2021·洛阳模拟)在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2的值为( )A .102B .10C .5D .10D [解析] 由题意知P (0,1),Q (-3,0),由于过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,所以M 位于以PQ 为直径的圆上,由于|PQ |=9+1=10,所以|MP |2+|MQ |2=|PQ |2=10,故选D. 角度二 已知距离求参数值2.若直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离是5,则m +n =( ) A .0 B .1 C .-1 D .2 A [解析] 由于直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离为5,所以⎩⎨⎧n =-2,|m +3|5=5,所以n =-2,m =2(负值舍去). 所以m +n =0.角度三 已知距离求点的坐标3.已知定点A (1,0),点B 在直线x -y =0上运动,当线段AB 最短时,点B 的坐标是( ) A .⎝⎛⎭⎫12,12 B .⎝⎛⎭⎫22,22 C .⎝⎛⎭⎫32,32 D .⎝⎛⎭⎫52,52 A [解析] 由于定点A (1,0),点B 在直线x -y =0上运动,所以当线段AB 最短时,直线AB 和直线x -y =0垂直,AB 的方程为y +x -1=0,它与x -y =0联立解得x =12,y =12,所以B 的坐标是⎝⎛⎭⎫12,12.对称问题[同学用书P148][典例引领]已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程. 【解】 (1)设A ′(x ,y ),由已知⎩⎨⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413. 所以A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设M ′(a ,b ),则⎩⎨⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0.得N (4,3).又由于m ′经过点N (4,3),所以由两点式得直线m ′的方程为9x -46y +102=0.(3)设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),由于P ′在直线l 上,所以2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.[通关练习]1.直线x +2y -3=0与直线ax +4y +b =0关于点A (1,0)对称,则b =________. [解析] 法一:由题知,点A 不在直线x +2y -3=0上, 所以两直线平行, 所以-12=-a4,所以a =2.又点A 到两直线距离相等, 所以|1-3|5=|2+b |25,所以|b +2|=4, 所以b =-6或b =2.由于点A 不在直线x +2y -3=0上,所以两直线不能重合, 所以b =2.法二:在直线x +2y -3=0上取两点P 1(1,1)、P 2(3,0), 则P 1、P 2关于点A 的对称点P ′1、P ′2都在直线ax +4y +b =0上. 由于易知P ′1(1,-1)、P ′2(-1,0),所以⎩⎪⎨⎪⎧a -4+b =0,-a +b =0,所以b =2.[答案] 22.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.[解析] 设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎨⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6), 所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. [答案] 6x -y -6=0,[同学用书P148])——忽视直线斜率的不存在性致误已知直线l 过点A (1,2),且原点到直线l 的距离为1,求直线l 的方程.【解】 当直线l 过点A (1,2)且斜率不存在时,直线l 的方程为x =1,原点到直线l 的距离为1,满足题意.当直线l 过点A (1,2)且斜率存在时,由题意设直线l 的方程为y -2=k (x -1),即kx -y -k +2=0. 由于原点到直线l 的距离为1,所以|-k +2|k 2+1=1,解得k =34.所以所求直线l 的方程为y -2=34(x -1),即3x -4y +5=0.综上所述,所求直线l 的方程为x =1或3x -4y +5=0.(1)解决本题易忽视直线的斜率不存在的状况,从而只求得一条直线.(2)在解决与直线方程或直线位置关系有关问题时,若题目中没有明确直线的斜率是否存在,要留意对斜率的存在性进行分类争辩.已知经过点A (-2,0)和点B (1,3a )的直线l 1与经过点P (0,-1)和点Q (a ,-2a )的直线l 2相互垂直,则实数a 的值为________.[解析] l 1的斜率k 1=3a -01-(-2)=a .当a ≠0时,l 2的斜率k 2=-2a -(-1)a -0=1-2aa .由于l 1⊥l 2,所以k 1k 2=-1,即a ·1-2aa =-1,解得a =1.当a =0时,P (0,-1),Q (0,0),这时直线l 2为y 轴, A (-2,0),B (1,0),直线l 1为x 轴,明显l 1⊥l 2.综上可知,实数a 的值为1或0. [答案] 1或0,[同学用书P339(独立成册)])1.若直线l 1:mx -y -2=0与直线l 2:(2-m )x -y +1=0相互平行,则实数m 的值为( ) A .-1 B .0 C .1 D .2 C [解析] 由于直线l 1:mx -y -2=0与直线l 2:(2-m )x -y +1=0相互平行,所以⎩⎪⎨⎪⎧-m +(2-m )=0,m +2(2-m )≠0,解得m =1.故选C. 2.已知直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a =( ) A .2或12B .13或-1C .13D .-1B [解析] 由于直线l 1:2ax +(a +1)y +1=0, l 2:(a +1)x +(a -1)y =0,l 1⊥l 2, 所以2a (a +1)+(a +1)(a -1)=0, 解得a =13或a =-1.故选B.3.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .其次象限C .第三象限D .第四象限B [解析] 由⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k ,得⎩⎨⎧x =k k -1,y =2k -1k -1.又由于0<k <12,所以x =kk -1<0,y =2k -1k -1>0,故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在其次象限.4.(2021·石家庄模拟)已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .x -y +1=0 B .x -y =0 C .x +y +1=0 D .x +y =0A [解析] 由题意知直线l 与直线PQ 垂直,直线PQ 的斜率k PQ =-1,所以直线l 的斜率k =-1k PQ=1.又直线l 经过PQ 的中点(2,3),所以直线l 的方程为y -3=x -2,即x -y +1=0.5.已知点A (3,2)和B (-1,4)到直线mx +y +3=0的距离相等,则m 的值为( ) A .-6或12B .-12或1C .-12或12D .0或12A [解析] |3m +2+3|m 2+12=|-m +4+3|m 2+12,即|3m +5|=|7-m |,解得m =-6或12.6.若动点P 1(x 1,y 1),P 2(x 2,y 2)分别在直线l 1:x -y -5=0,l 2:x -y -15=0上移动,则线段P 1P 2的中点P 到原点的距离的最小值是( )A .522B .5 2C .1522D .15 2B [解析] 由题意得,线段P 1P 2的中点P 的轨迹方程是x -y -10=0,由于原点到直线x -y -10=0的距离为d =102=52,所以线段P 1P 2的中点P 到原点的距离的最小值为5 2.7.已知A ,B 两点分别在两条相互垂直的直线2x -y =0和x +ay =0上,且AB 线段的中点为P ⎝⎛⎭⎫0,10a ,则线段AB 的长为________.[解析] 依题意,a =2,P (0,5),设A (x ,2x ),B (-2y ,y ),故⎩⎪⎨⎪⎧x -2y =0,2x +y =10,则 A (4,8),B (-4,2),所以|AB |=(4+4)2+(8-2)2=10.[答案] 108.已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =-x 对称,则直线l 2的斜率为________.[解析] 由于l 1,l 2关于直线y =-x 对称,所以l 2的方程为-x =-2y +3,即y =12x +32,即直线l 2的斜率为12. [答案] 129.已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是________.[解析] 当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.由于A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.[答案] x +2y -3=010. 如图,已知A (-2,0),B (2,0),C (0,2),E (-1,0),F (1,0),一束光线从F 点动身射到BC 上的D 点,经BC 反射后,再经AC 反射,落到线段AE 上(不含端点),则直线FD 的斜率的取值范围为________.[解析] 从特殊位置考虑.如图,由于点A (-2,0)关于直线BC :x +y =2的对称点为A 1(2,4),所以kA 1F =4.又点E (-1,0)关于直线AC :y =x +2的对称点为E 1(-2,1),点E 1(-2,1)关于直线BC :x +y =2的对称点为E 2(1,4),此时直线E 2F 的斜率不存在,所以k FD >kA 1F ,即k FD ∈(4,+∞).[答案] (4,+∞)11.正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程. [解] 点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5), 则点C 到直线x +3y +m =0的距离 d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0, 则点C 到直线3x -y +n =0的距离d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0.12.(2021·洛阳统考)已知点P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( )A .过点P 且与l 垂直的直线B .过点P 且与l 平行的直线C .不过点P 且与l 垂直的直线D .不过点P 且与l 平行的直线D [解析] 由于点P (x 0,y 0)不在直线Ax +By +C =0上,所以Ax 0+By 0+C ≠0,所以直线Ax +By +C+(Ax 0+By 0+C )=0不经过点P ,排解A 、B ;又直线Ax +By +C +(Ax 0+By 0+C )=0与直线l :Ax +By +C=0平行,排解C ,故选D.13.已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程;(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由. [解] (1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),明显,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2. 若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图. 由l ⊥OP ,得k l k OP =-1, 所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2),即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.14.A ,B 两个工厂距一条河分别为400 m 和100 m ,A ,B 两工厂之间距离500 m ,把小河看作一条直线,今在小河边上建一座供水站,供A ,B 两工厂用水,要使供水站到A ,B 两工厂铺设的水管长度之和最短,问供水站应建在什么地方?[解] 如图,以小河所在直线为x 轴,过点A 的垂线为y 轴,建立直角坐标系,则点A (0,400),点B (a ,100). 过点B 作BC ⊥AO 于点C .在△ABC 中,AB =500,AC =400-100=300, 由勾股定理得BC =400, 所以B (400,100).点A (0,400)关于x 轴的对称点A ′(0,-400), 由两点式得直线A ′B 的方程为y =54x -400.令y =0,得x =320, 即点P (320,0).故供水站(点P )在距O 点320 m 处时,到A ,B 两厂铺设的水管长度之和最短.。
平面图形的位置关系(讲义及作业)含答案

C'DCBA平面图形的位置关系一、知识点睛1.平面上两条直线的位置关系只有两种,即_______和______. 2.________________________________________叫做平行线. 3.平行的两个定理:__________________________________;_________________________________________________. 4.垂直的定义:_______________________________________. 5.垂直的两个定理:___________________________________; __________________________________________________. 6.几何语言书写规范:①过点A 作AC ∥BD②过点A 作AC ⊥BD ,垂足为C7.如果两个角的和等于90°,就说这两个角互为________,即其中一个角是另一个角的_______.8.如果两个角的和等于180°,就说这两个角互为________,即其中一个角是另一个角的__________.9.同角或等角的余角_______,同角或等角的补角_______.10.有公共顶点并且两边互为反向延长线的两个角互为______.对顶角_____________.二、精讲精练1.两条直线相交,只有______个交点. 2.平面内三条两两相交的直线( )A .有一个交点B .有一个或三个交点C .有三个交点D .有两个交点3.在平面内有任意四个点,那么这四个点可以确定( )条直线.A .1或6B .4C .6D .1或4或64.如图,已知长方体ABCD-A ′B ′C ′D ′,请你指出图中所有的平行线段.5.若AB ∥CD ,HG ∥CD ,则有_______∥_______∥_______. 6.下列推理正确的是( )A .因a ∥b ,b ∥c ,故c ∥dB .因a ∥b ,b ∥d ,故c ∥dC .因a ∥b ,a ∥c ,故b ∥cD .因a ∥b ,c ∥d ,故a ∥c7.如图,要从小河引水到村庄A ,请设计并作出一最佳路线,理由是____________________________________.lCB A P第7题图 第8题图8.如图,P 是直线l 外一点,A ,B ,C 在直线l 上,且PB ⊥l ,那么下列说法中不正确的是 ( )A .点P 到直线l 的距离是线段BP 的长B .P A ,PB ,PC 三条线段中,PB 最短 C .P A 是点P 到直线l 的垂线段D .点A 到直线PB 的距离是线段AB 的长 9.直线a 外有一定点A ,A 到a 的距离是5cm ,P 是直线a 上的任意一点,则( ) A .AP >5cm B .AP ≥5cm C .AP =5cm D .AP <5cm 10.如图,△ABC 中,∠C =90°,AC =3,点P 是边BC 上的动点,则AP 长不可能是( )A .2.5B .3C .4D .511.若点A 到直线l 的距离为7cm ,点B 到直线l 的距离为3cm ,则线段AB 的长度为( )A .10cmB .4cmC .10cm 或4cmD .至少4cmCBACBA12.下列推理正确的是( )A .因a ⊥b ,b ⊥c ,故a ∥cB .因a ⊥b ,b ∥c ,故a ∥cC .因a ∥b ,b ⊥c ,故a ∥cD .因a ⊥b ,b ∥c ,故a ⊥c 13.下列说法中正确的个数为( )①在同一平面内不相交的两条直线叫做平行线 ②平面内经过一点有且只有一条直线与已知直线垂直 ③经过一点有且只有一条直线与已知直线平行 ④平行同一直线的两直线平行A .1个B .2个C .3个D .4个 14.下列推理中,错误的是( )A .在m 、n 、p 三个量中,如果m =n ,n =p ,那么m =pB .在∠A 、∠B 、∠C 、∠D 四个角中,若∠A =∠B ,∠C =∠D ,∠A =∠D ,则∠B =∠CC .a 、b 、c 是同一平面内的三条直线,如果a ∥b ,b ∥c ,那么a ∥cD .a 、b 、c 是同一平面内的三条直线,如果a 丄b ,b 丄c ,那么a 丄c 15.下列说法正确的是( )A .过一点能作已知直线的一条平行线B .平面内,过一点有且只有一条直线与已知直线垂直C .射线AB 的端点是A 和BD .点可以用一个大写字母表示,也可用小写字母表示 16.如图,请按要求完成(不写作法):(1)过点C 作与线段AB 平行的直线l ,并用符号表示其平行关系; (2)在直线l 上任取不与点C 重合的点P ,过点C 、点P 分别作CD ⊥AB 于点D , PQ ⊥AB 于Q ;(3)请根据你的操作和测量直接判断CD 与线段PQ 的关系.(位置关系、数量关系)17.如图所示,在长方形ABED 中,分别指出互相平行的线段和互相垂直的线段(各举三组).BDCOAαβO BADCAE CD18.若∠2=60°,则∠2的余角为_____度,∠2的补角为____度. 19.一个角的补角是36°35′,这个角是________.20.已知一个角的余角等于42°35′,则它的补角等于________. 21.∠A 的余角与∠A 的补角互为补角,那么2∠A 是( )A .直角B .锐角C .钝角D .以上三种都有可能 22.如图,∠1,∠2是对顶角的是( )D.C.B.A.2221112123.一副三角板按如图所示的方式放置,则∠α+∠β=____度.24.如图,∠AOC 和∠BOD 都是直角,如果∠AOB =140°,则∠DOC 的度数是( )A .30°B .40°C .50°D .60°25.如图,∠COD 为平角,AO ⊥OE ,∠AOC = 2∠DOE ,则有∠AOC =________. 26.如图,已知OA ⊥OB ,直线CD 经过顶点O ,若∠BOD :∠AOC =5:2,则∠AOC =____,∠BOD =_____.第23题图 第24题图 第25题图 第26题图27.如图,∠AOB =180°,∠AOC =90°,∠DOE =90°,则图中相等的角有_____对,分别为____________________________;互余的角有_____对;互补的角有_______对.OCEBD A【讲义答案】一、知识点睛1.平行,相交2. 在同一平面内,不相交的两条直线3. 经过直线外一点,有且只有一条直线与这条直线平行;如果两条直线都与第三条直线平行,那么这两条直线互相平行4.如果两条直线相交成直角,那么这两条直线互相垂直5. 平面内,过一点有且只有一条直线与已知直线垂直;直线外一点与直线上各点连接的所有线段中,垂线段最短7. 余角,余角8. 补角,补角9. 相等,相等10. 对顶角,相等二、精讲精练1. 一2. B3. D4. 略5. AB、CD、HG(不要求顺序)6. C7. 直线外一点与直线上各点连接的所有线段中,垂线段最短8. C9. B 10. A 11. D 12. D 13. C 14. D 15. B 16. 略17. 略18. 30,120 19. 143°25′ 20. 132°35′ 21. A 22. C 23. 9024. B 25. 60°26. 60°,150°27. 5,略;4,7作业:平面图形的位置关系1.如图:PC∥AB,QC∥AB,则点P、C、Q在一条直线上,理由是_______________________________________.2.已知同一平面内的直线l1,l2,l3,如果l1⊥l2,l2⊥l3,那么l1与l3的位置关系是()A.平行B.相交C.垂直D.无法判断3.在同一平面内两条直线的位置关系可能是()A.相交或垂直B.垂直或平行C.平行或相交D.以上都不对4.下列说法中正确的是()A.在同一平面内,两条不平行的线段必相交B.在同一平面内,不相交的两条线段是平行线C.两条射线或线段平行是指它们所在的直线平行D.一条直线有可能同时与两条相交直线平行5.下列结论正确的是()A.如果a⊥b,b⊥c,那么a⊥cB.a⊥b,b∥c,那么a∥cC.如果a∥b,b⊥c,那么a∥cD.如果a⊥b,b∥c,那么a⊥c6.河边有一村庄(近似看作点A),如果在河岸上建一码头(近似看作点B),使村庄的人到码头最近,应如何作?依据是什么?OD EC BAB .A .D .C .121212217. 如图,直线AB 、CD 相交于点E ,EF ⊥AB ,则__________与∠3互为余角.321FEDCBA CDOBA第7题图 第8题图8. 如图,∠AOC =90°,∠BOC 与∠COD 互补,∠COD =115°,则∠AOB 的度数为_______.9. 如图所示,直线AB ,CD 相交于点O ,OE ⊥AB ,那么下列结论错误的是( )A .∠AOC 与∠COE 互为余角B .∠BOD 与∠COE 互为余角C .∠COE 与∠BOE 互为补角D .∠AOC 与∠BOD 是对顶角10. 如图所示,∠1与∠2是对顶角的是( )11. 下列说法正确的是( )A .锐角一定等于它的余角B .钝角大于它的补角C .锐角不小于它的补角D .直角小于它的补角 12. 已知∠1与∠2互余,且∠1=35°,则∠2的补角的度数为 . 13. 已知∠α是它的余角的2倍,则∠α=________.14. 若互余的两个角的比是2:3,则其中较大角的补角是_______度. 15. 一个角的余角比它的补角小_____度.16. 一个角的余角的补角比这个角的补角的一半大90°,则这个角的度数为_________.17. 据下列语句作图,不要求写作法: (1)过点C 作直线MN ∥AB ;(2)过C 作CD ⊥AB ,交BA 延长线于D 点.CAB【作业答案】1. 过直线外一点有且只有一条直线与已知直线平行2. A3. C4. C5. D6. 连接直接外一点与直线上各点的所有线段中,垂线段最短7. ∠1 8. 25°9. C 10. D 11. B 12. 125°13. 60°14. 126 15. 90 16. 60°17.略。
数学一轮复习第8章立体几何第2讲空间点线面的位置关系试题1理

第八章立体几何第二讲空间点、直线、平面之间的位置关系练好题·考点自测1。
下列说法正确的是()A.梯形一定是平面图形B.过三点确定一个平面C.三条直线两两相交确定一个平面D。
若两个平面有三个公共点,则这两个平面重合2.[广东高考,5分]若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A。
l与l1,l2都不相交B。
l与l1,l2都相交C.l至多与l1,l2中的一条相交D。
l至少与l1,l2中的一条相交3.若∠AOB=∠A1O1B1,且OA∥O1A1,OA⃗⃗⃗⃗⃗ 与O1A1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的方向相同,则下列结论中正确的是()A。
OB∥O1B1且OB⃗⃗⃗⃗⃗ 与O1B1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的方向相同B。
OB∥O1B1C。
OB与O1B1不平行D.OB与O1B1不一定平行4.[2017全国卷Ⅰ,6,5分]如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A B C D5.[2020长春市第四次质量监测]已知正方体ABCD—A1B1C1D1的棱长为2,点N是棱CC1的中点,则异面直线AN与BC所成角的余弦值为。
6.[2016全国卷Ⅱ,14,5分][理]α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β。
②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β。
④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等。
其中正确的命题有.(填写所有正确命题的编号)拓展变式1。
如图8-2-4所示,E,F分别是正方体ABCD—A1B1C1D1的棱CC1,AA1的中点,试画出平面BED1F与平面ABCD的交线。
2.如图8—2-7为正方体表面的一种展开图,则在原正方体的四条线段AB,CD,EF,GH所在直线中,互为异面直线的有对。
直线、圆的位置关系

程:x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ∈R);
(3)过圆C1:x2+y2+D1x+E1y+F1=0和圆C2:x2+y2+D2x+E2y+F2=0交点的
圆系方程:x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)(该圆系
不含圆C2,解题时,注意检验圆C2是否满足题意,以防漏解).
注意 判断圆与圆的位置关系时,一般不用代数法,因为利用代数法不
能判断内切或外切,内含或外离;利用几何法的关键是判断圆心距
|C1C2|与R+r,R-r的关系.
考法3 圆的弦长问题
示例6 [2020湖北部分重点中学高三测试]已知直线l:mx+y+3m+ 3=0
与圆x2+y2=12交于A,B两点,若|AB|=2 3,则实数m的值为
圆C2:x2+y2+D2x+E2y+F2=0
①,
②,
若两圆相交,则有一条公共弦,由①-②,得(D1-D2)x+(E1-E2)y+F1-F2=0
方程③表示圆C1与圆C2的公共弦所在直线的方程.
注意 (1)方程③存在的前提是两圆相交;(2)两圆公共弦的垂直平分线过
两圆的圆心;(3)求公共弦长时,几何法比代数法简单且易求.
(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.
思维导引 (1)利用设而不求法,借助向量的方法推证 ·≠0,进而得出不
会出现AC⊥BC的情况.
第二讲图形位置关系(含解析)

第二讲图形位置关系(含解析)本卷须知1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2、选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3、请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第二讲图形位置关系【前言】在中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。
在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
综合整个2017一模来看,18套题中有17套都是很明确的采用圆与三角形问题的一证一算方式来考察。
这个信息告诉我们中考中这一类题几乎必考。
由于此类题目基本都是上档次解答题的第二道,紧随线段角计算之后,难度一般中等偏上。
所以如何将此题分数尽揽怀中就成为了每个考生与家长不得不重视的问题。
从题目本身来看,一般都是采取很标准的两问式.第一问证明切线,考察切线判定定理以及切线性质定理及推论,第二问通常会给定一线段长度和一角的三角函数值,求其他线段长,综合考察圆与三角形的知识点。
一模尚且如此,中考也不会差的太远。
至于其他图形位置关系,我们将会在后面的专题中涉及到.所以本讲笔者将从一模真题出发,总结关于圆的问题的一般思路与解法。
第一部分真题精讲【例1】〔2017,丰台,一模〕:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E、〔1〕求证:DE为⊙O的切线;〔2〕假设DE=2,TANC=12,求⊙O的直径、A【思路分析】此题和大兴的那道圆题如出一辙,只不过这两个题的三角形一个是躺着一个是立着,让人怀疑他们是不是串通好了…近年来此类问题特别爱将中点问题放进去一并考察,考生一定要对中点以及中位线所引发的平行等关系非常敏感,尤其不要忘记圆心也是直径的中点这一性质。
高中数学第二讲直线与圆的位置关系五与圆有关的比例线段教材梳理素材

五 与圆有关的比例线段庖丁巧解牛知识·巧学一、相交弦定理1。
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
2。
定理的证明:如图2-5—2,已知⊙O 的两条弦AB 、CD 相交于圆内的一点P 。
图2—5-2求证:PA·PB=PC·PD.证明:连结AC 、BD ,则由圆周角定理有∠B=∠C,又∵∠BPD=∠CPA,∴△APC∽△DPB.∴PA∶PD=PC∶PB,即PA·PB=PC·PD.当然,连结AD 、BC 也能利用同样道理,证得同样结论。
3。
由于在问题的证明中,⊙O 的弦AB 、CD 是任意的,因此,PA·PB=PC·PD 成立,表明“过圆内一定点P 的弦,被P 点分成的两条线段长的积应为一个定值”.虽然过定点P 的弦有无数多条,然而在这众多的弦中有一些长度比较特殊的弦,如过点P 的最长或最短的弦,通过它们可以找到定值。
图2-5-3如图2—5-3(1),考察动弦AB ,若AB 过⊙O 的圆心O ,则AB 为过点P 的最长的弦,设⊙O 的半径为R ,则PA·PB=(R+OP )(R —OP )。
如图2-5—3(2),考察过点P 的弦中最短的弦,AB 为过⊙O 内一点P 的直径,CD 为过点P 且垂直于AB 的弦,显然,由垂直定理和相交弦定理,应有PA·PB=PC·PD=(21CD)2=OC 2—OP 2= R 2-OP 2。
由于⊙O 是定圆,P 为⊙O 内一定点,故⊙O 的半径R 与OP 的长为定值.设OP=d,比较上述两式,其结论是一致的,即PA·PB=(R+d )(R-d )=R 2-d 2,为定值.于是,相交弦定理可进一步表述为:“圆内的两条相交弦,被交点分成的两条线段长的积为一定量,它等于圆的半径与交点到圆心距离的平方差.”定圆的任一弦被定点分得两线段长的积为定值,这个定值与点P 的位置有关,对圆内不同的点P,一般来说,定值是不同的,即这个定值是相对于定点P 与定圆O 而言的。
高中数学第二讲直线与圆的位置关系二圆内接四边形的性质与判定定理目标导引素材

学必求其心得,业必贵于专精
二圆内接四边形的性质与判定定理
一览众山小
学习目标
1。
了解圆内接四边形的概念,掌握圆内接四边形的性质与判定定理,会运用圆的内接四边形的性质与判定定理证明和计算一些问题.
2。
通过圆内接四边形的判定定理掌握反证法证题的思路和一般步骤.
3。
在探究圆内接四边形的判定定理的过程中,体会数学证明方法的多样性。
学法指导
首先复习圆内接三角形的知识,再利用几何图形,类比圆内接三角形探究圆内接四边形的性质;对于圆内接四边形的判定定理,要结合点与圆的位置关系,分类加以研究,所采用的方法称为反证法,理解反证法证题的思路和一般步骤,即先假设结论不成立,再推导出矛盾,从而肯定原结论。
诱学导入
材料:如图2—2-1,在⊙O中,A、B、C、D都在同一个圆上,
图2—2—1
问题:①指出图中圆内接四边形的外角有几个?
②∠DCH的内对角是哪些角,∠DBG呢?
③与∠DEA互补的角是哪个角?
④∠ECB+()=180°.
导入:观察图形发现结论。
1。
图形的位置关系与判定

图形的位置关系与判定图形的位置关系与判定是数学领域中一个重要的概念。
在几何学中,图形的位置关系指的是不同图形之间的相对位置,而图形的判定指的是判断一个图形是否满足某种特定的位置关系。
本文将介绍一些常见的图形位置关系及其判定方法。
一、图形的位置关系1. 平行关系平行关系是最基本的图形位置关系之一。
当两条直线或两个平面上的点、线或面互不相交,并且距离始终相等时,我们称它们为平行关系。
判定方法:对于平面上两条直线的判定,可以使用斜率来判断。
如果两条直线的斜率相等且不相交,则它们是平行的。
对于三维空间中的平行关系,可以利用向量的方法进行判断。
2. 垂直关系垂直关系是指两条直线、线段或两个平面互相垂直的位置关系。
在二维平面中,如果两条直线的斜率相乘等于-1,则可以判定它们垂直。
判定方法:在二维平面上,两条直线垂直的条件是斜率的乘积为-1。
在三维空间中,可以利用向量的方法计算两个平面的法向量,如果两个法向量垂直,则可以判定它们互相垂直。
3. 相交关系相交关系是指两个图形有公共点或线的位置关系。
在二维空间中,两条直线相交于一点,两条线段相交于一个点或线段,两个平面相交于一条直线。
判定方法:判断两条直线是否相交可以比较它们的斜率和截距。
如果斜率相等且截距不相等,则可以判定两条直线相交。
对于线段和平面的相交判定,常用的方法有直接比较坐标和向量运算。
二、图形的判定1. 同位角判定同位角是指两条平行直线被一条截线所切割,形成的对应角。
如果一条截线与两条平行直线的同位角相等,则可以判定这条直线与另一条直线平行。
判定方法:使用同位角定义,通过测量两个角是否相等来判断平行关系。
2. 内角和判定内角和是指一个图形内部的各个角度之和。
例如,正三角形的内角和是180度。
通过计算图形的内角和,可以判断该图形是否是某个特定图形的角。
判定方法:根据各种图形的内角和公式,计算图形的内角和与特定图形的内角和进行比较,如果相等,则可以判定该图形是特定图形的角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学重难点专题讲座第二讲图形位置关系【前言】在中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。
在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
综合整个2010一模来看,18套题中有17套都是很明确的采用圆与三角形问题的一证一算方式来考察。
这个信息告诉我们中考中这一类题几乎必考。
由于此类题目基本都是上档次解答题的第二道,紧随线段角计算之后,难度一般中等偏上。
所以如何将此题分数尽揽怀中就成为了每个考生与家长不得不重视的问题。
从题目本身来看,一般都是采取很标准的两问式.第一问证明切线,考察切线判定定理以及切线性质定理及推论,第二问通常会给定一线段长度和一角的三角函数值,求其他线段长,综合考察圆与三角形的知识点。
一模尚且如此,中考也不会差的太远。
至于其他图形位置关系,我们将会在后面的专题中涉及到.所以本讲笔者将从一模真题出发,总结关于圆的问题的一般思路与解法。
第一部分真题精讲【例1】(2010,丰台,一模)已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线;(2)若DE=2,tan C=12,求⊙O的直径.A【思路分析】本题和大兴的那道圆题如出一辙,只不过这两个题的三角形一个是躺着一个是立着,让人怀疑他们是不是串通好了…近年来此类问题特别爱将中点问题放进去一并考察,考生一定要对中点以及中位线所引发的平行等关系非常敏感,尤其不要忘记圆心也是直径的中点这一性质。
对于此题来说,自然连接OD,在△ABC中OD就是中位线,平行于BC。
所以利用垂直传递关系可证OD⊥DE。
至于第二问则重点考察直径所对圆周角是90°这一知识点。
利用垂直平分关系得出△ABC是等腰三角形,从而将求AB转化为求BD,从而将圆问题转化成解直角三角形的问题就可以轻松得解。
【解析】(1)证明:联结OD.∵ D为AC中点, O为AB中点,A∴ OD为△ABC的中位线.∴OD∥BC.∵ DE⊥BC,∴∠DEC=90°.∴∠ODE=∠DEC=90°. ∴OD⊥DE于点D.∴ DE为⊙O的切线.(2)解:联结DB.∵AB为⊙O的直径,∴∠ADB=90°.∴DB⊥AC.∴∠CDB=90°.∵ D为AC中点,∴AB=AC.在Rt△DEC中,∵DE=2 ,tanC=12,∴EC=4tanDEC=. (三角函数的意义要记牢)由勾股定理得:DC=.在Rt△DCB 中, BD=tanDC C⋅= BC=5.∴AB=BC=5.∴⊙O的直径为5.【例2】(2010,海淀,一模)已知:如图,O为ABC∆的外接圆,BC为O的直径,作射线BF,使得BA平分CBF∠,过点A作AD BF⊥于点D.(1)求证:DA为O的切线;(2)若1BD=,1tan2BAD∠=,求O的半径.FC【思路分析】本题是一道典型的用角来证切线的题目。
题目中除垂直关系给定以外,就只给了一条BA平分∠CBF。
看到这种条件,就需要大家意识到应该通过角度来证平行。
用角度来证平行无外乎也就内错角同位角相等,同旁内角互补这么几种。
本题中,连OA之后发现∠ABD=∠ABC,而OAB构成一个等腰三角形从而∠ABO=∠BAO,自然想到传递这几个角之间的关系,从而得证。
第二问依然是要用角的传递,将已知角∠BAD通过等量关系放在△ABC 中,从而达到计算直径或半径的目的。
【解析】证明:连接AO .FC∵ AO BO =, ∴ 23∠=∠. ∵ BA CBF ∠平分, ∴ 12∠=∠. ∴ 31∠=∠ .∴ DB ∥AO . (得分点,一定不能忘记用内错角相等来证平行) ∵ AD DB ⊥,∴ 90BDA ∠=︒.∴ 90DAO ∠=︒. ∵ AO 是⊙O 半径,∴ DA 为⊙O 的切线. (2)∵ AD DB ⊥,1BD =,1tan 2BAD ∠=,∴ 2AD =.由勾股定理,得AB = ∴ sin 4∠=.(通过三角函数的转换来扩大已知条件) ∵ BC 是⊙O 直径,∴ 90BAC ∠=︒.∴ 290C ∠+∠=︒. 又∵ 4190∠+∠=︒, 21∠=∠,∴ 4C ∠=∠. (这一步也可以用三角形相似直接推出BD/AB=AB/AC=sin ∠BAD ) 在Rt △ABC 中,sin AB BC C ==sin 4AB∠=5. ∴ O 的半径为52.【例3】(2010,昌平,一模)已知:如图,点D 是⊙O 的直径CA 延长线上一点,点B在⊙O 上,且.OA AB AD == (1)求证:BD 是⊙O 的切线;(2)若点E 是劣弧BC 上一点,AE 与BC 相交于点F ,且8BE =,tan BFA ∠= 求⊙O 的半径长.【思路分析】 此题条件中有OA=AB=OD ,聪明的同学瞬间就能看出来BA 其实就是三角形OBD 中斜边OD 上的中线。
那么根据直角三角形斜边中线等于斜边一半这一定理的逆定理,马上可以反推出∠OBD=90°,于是切线问题迎刃而解。
事实上如果看不出来,那么连接OB 以后像例2那样用角度传递也是可以做的。
本题第二问则稍有难度,额外考察了有关圆周角的若干性质。
利用圆周角相等去证明三角形相似,从而将未知条件用比例关系与已知条件联系起来。
近年来中考范围压缩,圆幂定理等纲外内容已经基本不做要求,所以更多的都是利用相似三角形中借助比例来计算,希望大家认真掌握。
【解析】(1)证明:连接OB .∵,OA AB OA OB ==,∴OA AB OB ==. ∴ABO ∆是等边三角形.∴160BAO ∠=∠=︒. ∵AB AD =,∴230D ∠=∠=︒.∴1290∠+∠=︒.∴DB BO ⊥ . (不用斜边中线逆定理的话就这样解,麻烦一点而已) 又∵点B 在⊙O 上, ∴DB 是⊙O 的切线 .(2)解:∵CA 是⊙O 的直径, ∴90ABC ∠=︒.在Rt ABF △中,tan AB BFA BF ∠==∴设,AB 则2BF x =,∴3AF x = . ∴23BF AF = . (设元的思想很重要) ∵,34C E ∠=∠∠=∠, ∴BFE ∆ ∽ AFC ∆. ∴23BE BF AC AF == .CC∵8BE=,∴12AC= .∴6AO=.………………………………………5分【例4】(2010,密云,一模)如图,等腰三角形ABC中,6交AB于点D,交AB=.以BC为直径作OAC BC==,8⊥,垂足为F,交CB的延长线于点E.AC于点G,DF AC(1)求证:直线EF是O的切线;(2)求sin E∠的值.【思路分析】本题和前面略有不同的地方就是通过线段的具体长度来计算和证明。
欲证EF 是切线,则需证OD垂直于EF,但是本题中并未给OD和其他线角之间的关系,所以就需要多做一条辅助线连接CD,利用直径的圆周角是90°,并且△ABC是以AC,CB为腰的等腰三角形,从而得出D是中点。
成功转化为前面的中点问题,继而求解。
第二问利用第一问的结果,转移已知角度,借助勾股定理,在相似的RT三角形当中构造代数关系,通过解方程的形式求解,也考察了考生对于解三角形的功夫。
【解析】AFDGEOCB(1)证明:如图,连结CD,则90∠=︒.BDC∴CD AB⊥.∵ AC BC=,∴AD BD=.∴D是AB的中点.∵O是BC的中点,∴DO AC∥.∵EF AC⊥于F.∴EF DO⊥.∴EF是O的切线.( 2 ) 连结BG,∵BC是直径, ∴90∠=︒=∠.(直径的圆周角都是90°)BGC CFE∴BG EF ∥.∴sin FC CGE EC BC∠==. 设CG x =,则6AG x =-.在Rt BGA △中,222BG BC CG =-. 在Rt BGC △中,222BG AB AG =-.(这一步至关重要,利用两相邻RT △的临边构建等式,事实上也可以直接用直角三角形斜边高分比例的方法)∴()2222686x x -=--.解得23x =.即23CG =.在Rt BGC △中.∴ 213sin 69CG E BC ∠===.【例5】2010,通州,一模如图,平行四边形ABCD 中,以A 为圆心,AB 为半径的圆交AD 于F ,交BC 于G ,延长BA 交圆于E .(1)若ED 与⊙A 相切,试判断GD 与⊙A 的位置关系,并证明你的结论; (2)在(1)的条件不变的情况下,若GC =CD =5,求AD 的长.G FEDCBA【思路分析】本题虽然是圆和平行四边形的位置关系问题,但是依然考察的是如何将所有条件放在最基本的三角形中求解的能力。
判断出DG 与圆相切不难,难点在于如何证明。
事实上,除本题以外,门头沟,石景山和宣武都考察了圆外一点引两条切线的证明。
这类题目最重要是利用圆半径相等以及两个圆心角相等来证明三角形相似。
第二问则不难,重点在于如何利用角度的倍分关系来判断直角三角形中的特殊角度,从而求解。
【解析】(1)结论:GD 与O 相切654321GF EDCBA证明:连接AG ∵点G 、E 在圆上, ∴AG AE = ∵四边形ABCD 是平行四边形, ∴AD BC ∥∴123B ∠=∠∠=∠, ∵AB AG =∴3B ∠=∠∴12∠=∠ (做多了就会发现,基本此类问题都是要找这一对角,所以考生要善于把握已知条件往这个上面引) 在AED ∆和AGD ∆ 12AE AG AD AD =⎧⎪∠=∠⎨⎪=⎩∴AED AGD ∆∆≌ ∴AED AGD ∠=∠ ∵ED 与A 相切 ∴90AED ∠=︒ ∴90AGD ∠=︒ ∴AG DG ⊥∴GD 与A 相切(2)∵5GC CD ==,四边形ABCD 是平行四边形 ∴AB DC =,45∠=∠,5AB AG == ∵AD BC ∥ ∴46∠=∠∴1562B ∠=∠=∠∴226∠=∠ (很多同学觉得题中没有给出特殊角度,于是无从下手,其实用倍分关系放在RT 三角形中就产生了30°和60°的特殊角) ∴630∠=︒∴10AD = .【总结】 经过以上五道一模真题,我们可以得出这类题型的一般解题思路。
要证相切,做辅助线连接圆心与切点自不必说,接下来就要考虑如何将半径证明为是圆心到切线的距离,即“连半径,证垂直”。
近年来中考基本只要求了这一种证明切线的思路,但是事实上证明切线有三种方式。
为以防遇到,还是希望考生能有所了解。
第一种就是课本上所讲的先连半径,再证垂直。
这样的前提是题目中所给条件已经暗含了半径在其中。
例如圆外接三角形,或者圆与线段交点这样的。
把握好各种圆的性质关系就可以了。