2019上海市二模试卷C卷答案知识分享

合集下载

2019年最新上海市第二次高考模拟高三数学试卷及答案解析

2019年最新上海市第二次高考模拟高三数学试卷及答案解析

第二学期期中高三年级数学学科教学质量监测试卷(满分150分,时间120分钟)一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果. 1. 若集合{}0A x x =>,{}1B x x =<,则AB = .2. 已知复数z 满1z i ⋅=+(i 为虚数单位),则z = .3. 函数()sinx cosxf x cosx sinx=的最小正周期是 .4. 已知双曲线222181x y a -=(0a >)的一条渐近线方程为3y x =,则a = .5. 若圆柱的侧面展开图是边长为4的正方形,则圆柱的体积为 .6. 已知x y ,满足0220x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值是 . 7. 直线12x t y t =-⎧⎨=-⎩(t 为参数)与曲线32x cos y sin θθ=⎧⎨=⎩(θ为参数)的交点个数是 .8. 已知函数()()220()01xx f x log x x ⎧≤⎪=⎨<≤⎪⎩ 的反函数是1()f x -,则11()2f -= .9. 设多项式231(1)(1)(1)nx x x x ++++++++(*0x n N ≠∈,)的展开式中x 项的系数为n T ,则2nn T limn →∞= .10. 生产零件需要经过两道工序,在第一、第二道工序中产生废品的概率分别为0.01和p ,每道工序产生废品相互独立.若经过两道工序后得到的零件不是废品的概率是0.9603,则p = .11. 设向量m ()x y =,,n ()x y =-,,P 为曲线1m n ⋅=(0x >)上的一个动点,若点P 到直线10x y -+=的距离大于λ恒成立,则实数λ的最大值为 .12. 设1210x x x ,,,为1210,,,的一个排列,则满足对任意正整数m n ,,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为 .二、选择题(本大题共有4题,满分20分,每题5分) 每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13. 设a b R ∈,,则“4a b +>”是“1a >且3b >”的………………………( )(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分又不必要条件14. 如图,P 为正方体1111ABCD A BC D -中1AC 与1BD 的交点,则PAC ∆在该正方体各个面上的射影可能是 …………………………………………………………………( )(A )①②③④ (B )①③ (C )①④ (D )②④ 15. 如图,在同一平面内,点P 位于两平行直线12l l ,同侧,且P 到12l l ,的距离分别为13,.点M N ,分别在12l l ,上,8PM PN +=,则PM PN ⋅的最大值为…………………( )(A )15 (B )12 (C )10 (D )9 16. 若存在t R ∈与正数m ,使()()F t m F t m -=+成立,则称“函数()F x 在x t =处存在距离为2m 的对称点”.设2()x f x xλ+=(0x >),若对于任意t ∈,总存在正数m ,使得“函数()f x 在x t =处存在距离为2m 的对称点”,则实数λ的取值范围是…………………………………………………………………………………………( )(A )(]02, (B )(]12,(C )[]12, (D )[]14, 三、解答题(本大题共有5题,满分76分) 解答下列各题必须在答题纸的相应位置写出 必要的步骤.17. (本题满分14分,第1小题满分8分,第2小题满分6分)如图,在正方体1111ABCD A BC D -中,E F 、分别是线段1BC CD 、的中点.(1)求异面直线EF 与1AA 所成角的大小; (2)求直线EF 与平面11AA B B 所成角的大小.18. (本题满分14分,第1小题6分,第2小题8分)已知抛物线22y px =(0p >),其准线方程为10x +=,直线l 过点(0)T t ,(0t >)且与抛物线交于A B 、两点,O 为坐标原点.(1)求抛物线方程,并证明:OB OA ⋅的值与直线l 倾斜角的大小无关; (2)若P 为抛物线上的动点,记||PT 的最小值为函数()d t ,求()d t 的解析式.19. (本题满分14分,第1小题6分,第2小题8分)对于定义域为D 的函数()y f x =,如果存在区间[]m n D ⊆,(m n <),同时满足: ①()f x 在[]m n ,内是单调函数;②当定义域是[]m n ,时,()f x 的值域也是[]m n ,.则称函数()f x 是区间[]m n ,上的“保值函数”. (1)求证:函数2()2g x x x =-不是定义域[01],上的“保值函数”; (2)已知211()2f x a a x=+-(0a R a ∈≠,)是区间[]m n ,上的“保值函数”,求a 的取值范围.20. (本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)数列{}n a 中,已知12121()n n n a a a a k a a ++===+,,对任意*n N ∈都成立,数列{}n a 的前n 项和为n S .(这里a k ,均为实数) (1)若{}n a 是等差数列,求k 的值;(2)若112a k ==-,,求n S ; (3)是否存在实数k ,使数列{}n a 是公比不为1的等比数列,且任意相邻三项12m m m a a a ++,,按某顺序排列后成等差数列?若存在,求出所有k 的值;若不存在,请说明理由.21. (本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)设T R ⊂≠,若存在常数0M >,使得对任意t T ∈,均有t M ≤,则称T 为有界集合,同时称M 为集合T 的上界.(1)设12121x x A y y x R ⎧⎫-⎪⎪==∈⎨⎬+⎪⎪⎩⎭,、212A x sinx ⎧⎫=>⎨⎬⎩⎭,试判断1A 、2A 是否为有界集合,并说明理由; (2)已知2()f x x u =+,记11()()()(())n n f x f x f x f f x -==,(23n =,,).若m R ∈,1[)4u ∈+∞,,且{}()n B f m n N *=∈为有界集合,求u 的值及m 的取值范围;(3)设a b c 、、均为正数,将222()()()a b b c c a ---、、中的最小数记为d .是否存在正数(01)λ∈,,使得λ为有界集合222{|dC y y a b c==++,a b c 、、均为正数}的上界,若存在,试求λ的最小值;若不存在,请说明理由.参考答案及评分标准一、填空题(本大题共有12题,满分54分) 1、()0,1 2、1 3、π 4、3 5、16π6、37、28、1-9、1210、0.03 1112、512 二、选择题(本大题共有4题,满分20分) 13、B 14、C 15、A 16、A三、解答题(本大题共有5题,满分76分)17. 解:(1)方法一:设正方体棱长为2,以D 为原点,直线DA ,DC ,1DD 为x ,y ,z 轴,建立空间直角坐标系,则(000)D ,,,(220)B ,,,(020)C ,,,1(002)D ,,,故(12E ,,,(011)F ,,,()111EF =--,,,()1002AA =,,, …………………4/设异面直线EF 与1AA 所成角的大小为α,向量EF 与1AA 所成角为β,则11EF AA cos cos EF AA αβ⋅==⋅…… 6/3==,……7/注意到02πα⎛⎤∈ ⎥⎝⎦,,故3arccosα=,即异面直线EF 与1AA 所成角的大小为3arccos.…………………8/ (2)由(1)可知,平面11AA B B 的一个法向量是(100)n =,,,…………………10/设直线EF 与平面11AA B B 所成角的大小是θ,向量EF 与n 所成角为γ,则EF n sin cos EF nθγ⋅==⋅………12/3=13/1又02πθ⎡⎤∈⎢⎥⎣⎦,,θ∴=线EF 与平面11AA B B 所成角的大小为.………………14/方法二:设正方体棱长为2.(1)在面11CC D D 内,作FH CD ⊥于H ,联结HE .因为正方体1111ABCD A BC D -,所以1AA ∥1DD ;在面11CC D D 内,有FH ∥1DD ,故异面直线EF 与1AA 所成的角就是EFH ∠(或其补角).………………………4/由已知及作图可知,H 为CD 的中点,于是,在Rt EFH ∆中,易得1FH =,HE=,故HE tanEFH FH∠=, ………………………………………… 6/== 7/ 又(0)2EFH π∠∈,,所以EFH∠=从而异面直线EF 与1AA 所成角的大小为8/(2)因为正方体1111ABCD A BC D -,所以平面11AA B B ∥平面11CC D D ,故直线EF 与平面11AA B B 所成角的大小就是直线EF 与平面11CC D D 所成角.注意到BC ⊥平面11CC D D ,即EC ⊥平面11CC D D ,所以直线EF 与平面11AA B B所成角的大小即为EFC∠. ………………………………10/在Rt EFC∆中,易得1EC FC ==,,故ECtan EFCFC∠=……………………12/2==,………………13/又(0)2EFCπ∠∈,,故2E F C a r c ta n∠=,即直线EF与平面11AA B B所成角的大小为……14/18.解:(1)方法一:由题意,2=p,所以抛物线的方程为xy42=.……………2/当直线l的斜率不存在时,直线l的方程为tx=,则(A t,(B t-,,ttOBOA42-=⋅.…………3/当直线l的斜率k存在时,则0≠k,设l的方程为)(txky-=,11()A x y,,22()B x y,,由24()y xy k x t⎧=⎨=-⎩消去x,得0442=--ktyky,故121244y yky y t⎧+=⎪⎨⎪=-⎩,所以,ttyyyyyyxx41622122212121-=+=+=⋅.…………………………………………5/综上,OBOA⋅的值与直线l倾斜角的大小无关.…………………………………………6/方法二:由题意,2=p,所以抛物线的方程为xy42=.………………………………2/依题意,可设直线l 的方程为x my t =+(m R ∈),11()A x y ,,22()B x y ,,由24y x x my t ⎧=⎨=+⎩得2440y my t --=, 故121244y y my y t+=⎧⎨=-⎩, 所以,12121212()()OA OB x x y y my t my t y y ⋅=+=+++221212(1)()m y y mt y y t =++++ …………………………5/22(1)(4)4m t mt m t =+-+⋅+24t t =-综上,OB OA ⋅的值与直线l倾斜角的大小无关. …………………………6/(2)设00()P x y ,,则0204x y =,||PT =, ……………………… (8)/注意到00≥x ,所以,若20t -≥,即2t ≥,则当02x t =-时,||PT 取得最小值,即()2)d t t =≥;………10/若20t -<,即有02t <<,则当00x =时,||PT 取得最小值,即()(02)d t t t =<<;………12/综上所述,()()2()02t d t tt ⎧≥⎪=⎨<<⎪⎩…………………………………………………14/19.解:(1)函数2()2g x x x =-在[01]x ∈,时的值域为[10]-,,…………………………4/不满足“保值函数”的定义,因此函数2()2g x x x =-不是定义域[01],上的“保值函数”.………………………6/(2)因xa a x f 2112)(-+=在[]m n ,内是单调增函数,故()()f m mf n n ==,,……8/这说明m n ,是方程x xa a =-+2112的两个不相等的实根, ………………………………10/其等价于方程1)2(222=++-x a a x a 有两个不相等的实根,……………………………11/由222(2)40a a a ∆=+->解得23-<a 或21>a . ………………………………………13/ 故a的取值范围为3122⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭,,. ………………………………………………14/20.解:(1)若{}n a 是等差数列,则对任意*n N ∈,有122n n n a a a ++=+,………………2/即121()2n n n a a a ++=+,………………………………………………………………………3/故12k =.………………………………………………………………………………………4/(2)当12k =-时,121()2n n n a a a ++=-+,即122n n n a a a ++=--, 211()n n n n a a a a ++++=-+,故32211()n n n n n n a a a a a a ++++++=-+=+. …………………………………………5/所以,当n 是偶数时,1234112()(11)22n n n n nS a a a a a a a a n -=++++++=+=+=;……………………7/当n 是奇数时,2312()2a a a a +=-+=-,12341n n n S a a a a a a -=++++++123451()()()n n a a a a a a a -=+++++++11(2)22n n -=+⨯-=-. ……………9/综上,()()222n n n S nn-=⎧⎪=⎨=⎪⎩(*k N ∈). …………………………………………10/(3)若}{n a 是等比数列 ,则公比a a a q ==12,由题意1≠a ,故1-=m m a a ,m m a a =+1,12++=m m a a .……11/① 若1m a +为等差中项,则122m m m a a a ++=+,即112m m m a a a -+=+⇔221a a =+,解得1=a (舍去);……12/② 若ma 为等差中项,则122m m m a a a ++=+,即112m m m a a a -+=+⇔22a a =+,因1≠a ,故解得,2a =-,11122215m m m m m m a a a k a a a a a +-++====-+++; ……………………………14/③ 若2m a +为等差中项,则212m m m a a a ++=+,即112221m mma a aa a+-=+⇔=+, 因为1≠a ,解得212215a a k a =-==-+,. …………………………………………15/综上,存在实数k满足题意,25k =-.…………………………………………………16/21.解:(1)对于1A ,由2121x xy -=+得1201x y y +=>-,解得11y -<<,………………2/1A ∴为有界集合; …………………………………………3/显然252266A x k x k k Z ππππ⎧⎫=+<<+∈⎨⎬⎭⎩,不是有界集合. ………………………4/(2)记()n n a f m =,则21n n a a u +=+.若14u =,则21()4f m m =+,22111()42n n n n n a a a a a +=+=-+≥,即1n n a a +≥,且211111()()2422n n n n a a a a +-=-=-+,从而1111222n n n a a a +-=-⋅+. (ⅰ)当12m =时,1()2n n f m a ==,所以1{}2B =,从而B 为有界集合.…………5/(ⅱ)当12m <时,由2114n n a a +=+,2111()()4a f m f m m ===+,显然,此时0n a >,利用数学归纳法可得12n a <,故B 为有界集合.…………………………………………6/(ⅲ)当12m >时,211111()()42n n a a a f m f m m m +≥≥≥===+≥>,2114n n n n a a a a +-=-+21()2n a =- 211()2a ≥-,即2111()2n n a a a +-≥-,由累加法得2111(1)()2n a a n a ≥+--→+∞,故B 不是有界集合.因此,当14u =,且12m ≤时,B 为有界集合;当14u =,且12m >时,B 不是有界集合; 若14u >,则211()()a f m f m m u u ===+≥,即114a u ≥>, 又2114n n a a u u +=+>>(n N *∈), 即14n a >(n N *∈). 于是,对任意n N *∈,均有221111()244n n n n n a a a a u a u u +-=-+=-+-≥-,即114n n a a u +-≥-(n N *∈),再由累加法得11(1)()4n a a n u ≥+--→+∞,故B 不是有界集合.………8/综上,当14u =,且12m ≤时,B 为有界集合;当14u =,且12m >时,B 不是有界集合;当14u >(m R ∈)时,B 不是有界集合. 故,满足题设的实数u 的值为14,且实数m 的取值范围是11[]22-,.………………10/ (3)存在.………………………………………………………………………11/不妨设a b c ≥≥.若2a cb +≤,则2a b c ≥-,且2()d b c =-. 故22222225()5()()d a b c b c a b c -++=--++22225()[(2)]b c b c b c ≤---++3(2)0c c b =-<,即22222215()05d d a b c a b c -++<⇔<++;…………13/若2a cb +>,则2a ac b <+<,即220a b a b <⇔-<, 又2a cb bc a b +>⇔->-,故2()d a b =-,又 22222225()5()()d a b c a b a b c -++=--++22(2)(2)0a b a b c =---<,即 2225()0d a b c -++<22215d a b c ⇔<++,因此,15是有界集合C 的一个上界.…………………………15/下证:上界15λ<不可能出现. 假设正数15λ<出现,取2a c b +=,1()05c a λ=->,则22a c d -⎛⎫= ⎪⎝⎭,此时,d22222213()()()55a b c a b c acλλ=+++-++-22221()()5a b c a acλλ>+++--222()a b c λ=++(*)…17/由式(*)可得222222()dd a b c a b c λλ>++⇔>++,与λ是C 的一个上界矛盾!.综上所述,满足题设的最小正数λ的值为15. …………………………………………18/。

2019届上海高三英语二模汇编--阅读C篇(解析版)

2019届上海高三英语二模汇编--阅读C篇(解析版)

2019届上海高三英语二模汇编--阅读C篇(解析版)2019届高三英语二模汇编——阅读C篇1、2019黄浦二模Directions: Read the following three passages. Each passage is followed by several questions or unfinished statements. For each of them there are four choices marked A, B, C and D. Choose the one that fits best according to the information given in the passage you have just read.(C)Right now, I am looking at a shelf full of relics, a collection of has-beens, old-timers, antiques, fossils. Right now, I am looking at a shelf full of books. Yes, that’s right. If you have some spare cash (the going rate is about $89) and you are looking to enhance your reading experience, then I highly suggest you consider purchasing an e-reader. E-readers are replacing the books of old and I welcome them with open arms (as you should).An e-reader is a device that allows you to read e-books. An e-book is a book-length publication in digital form, consisting of text, images or both, and produced on, published through and readable on computers or other electronic devices. Sometimes the equivalent of a conventional printed book, e-books can also be born digital. The Oxford Dictionary of English defines the e-book as “an electronic version of a printed book”, but e-books can and do exist without any printed equivalent.E-readers put printed books to shame. E-readers are superior to printed books because they save space, are environmentally friendly and provide helpful reading tips and tools that printed books do not.The average e-reader can store thousands of digital books,providing a genuine library at your fingertips. What is more, the e-reader itself is very small. It is easy to hold and can fit in a pocketbook or briefcase easily. This makes handling wooden giant such as War and Peace and Anna Karenina a breeze. Perhaps the only drawback to the space-saving aspect of an e-reader is that it requires you to find new things to put on your shelves.In addition, e-readers are environmentally friendly. The average novel is about 300 pages long. So, if a novel is printed 1000 times, it will use 300,000 pieces of paper. That’s a lot of paper! And for the super bestsellers, these figures increase dramatically. For example, the Harry Potter book series has sold o ver 450 million copies. That’s about 2 million trees! Upon viewing these figures, it is not hard to grasp the severe impact of printed books on the environment. Since e-readers use no trees, they represent a significant amount of preservation in terms of the environment and its resources.Finally, e-readers provide helpful reading tips and tools that printed books do not. The typical e-reader allows its user to adjust letter size, letterform and line spacing. It also allows highlighting and electronic bookmarking.Furthermore, it grants users the ability to get an overview of a book and then jump to a specific location based on that overview. While these are all nice features, perhaps the most helpful of all is the ability to get dictionary definitions at the touch of a finger. On even the most basic e-reader, users can find instant definitions without having to hunt through a physical dictionary.It can be seen that e-readers are superior to printed books. They save space, are environmentally friendly and provide helpfulreading tips and tools that printed books do not. So what good are printed books? Well, they certainly make nice decorations.63. As used in paragraph 1, it can be inferred that “has-beens, old-timers, antiques, fossils”are all words that describe something ____________.A. outdatedB. typicalC. meaningfulD. useless64. Based on information in the passage, it can be inferred that printed books of War and Peace and AnnaKarenina are all ____________.A. superior and dramaticB. dense and environmentalC. awkward and heavyD. significant and resistant65. According to the author, which of the following reading tips and tools are offered by the e-reader?①line spacing customization②the ability to quickly jump to the end of a book③access to a printed dictionary at the touch of a fingerA. ①and ②onlyB. ①and ③onlyC. ②and ③onlyD. ①, ②and ③66. Which of the following sentences from the passage best summarizes the author’s main point?A. “If you have some spare cash(the going rate is about $89)and are looking to enhance your readingexperience, then I highly suggest you consider purchasing ane-reader.”B. “E-readers are replacing the books of old, and I welcome them with open arms (as you should).”C. “An e-reader is a device that allows you to read e-books. An e-book is a book-length publication in digitalform, consisting of text, images, or both, and produced on, published through, and readable on computers or other electronic devices.”D. “E-readers are superior to printed books because they save space, are environmentally friendly, and providehelpful reading tips and tools that printed books do not.”答案:63-66 ACAD难度:中等解析:本文为说明文。

上海市闵行区2019年中考数学二模试卷及答案(word解析版)

上海市闵行区2019年中考数学二模试卷及答案(word解析版)

上海市闵行区2019年中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)、B与=(、3.(4分)(2019•闵行区二模)不等式组:的解集是()><<x≤1,∴解集为25.(4分)(2019•闵行区二模)在△ABC与△A′B′C′中,已知AB=A′B′,∠A=∠A′,要使二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2019•闵行区二模)计算:=2.=8.(4分)(2019•闵行区二模)因式分解:2x2y﹣xy=xy(2x﹣1).9.(4分)(2019•闵行区二模)方程的根是x=2.10.(4分)(2019•闵行区二模)已知关于x的一元二次方程x2﹣4x+m=0有两个实数根,那么m的取值范围是m≤4.11.(4分)(2019•闵行区二模)一次函数y=2(x﹣1)+5的图象在y轴上的截距为3.12.(4分)(2019•闵行区二模)已知反比例(k≠0)的图象经过点(2,﹣1),那么当x>0时,y随x的增大而增大(填“增大”或“减小).解:∵反比例函数13.(4分)(2019•闵行区二模)已知抛物线y=ax2+bx+2经过点(3,2),那么该抛物线的对称轴是直线x=.﹣﹣=..14.(4分)(2019•闵行区二模)布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.=.故答案为15.(4分)(2019•闵行区二模)在▱ABCD中,AC与BD相交于点O,,,那么=(用和表示).=,,又由平行四边形法则求得:==+,则问题得解.OA=OC==,=,,=++,==(+).故答案为:.16.(4分)(2019•闵行区二模)已知:⊙O1、⊙O2的半径长分别为2、5,如果⊙O1与⊙O2相交,那么这两圆的圆心距d的取值范围是3<d<7.②17.(4分)(2019•闵行区二模)如图,在正方形ABCD中,E为边BC的中点,EF⊥AE,与边CD相交于点F,如果△CEF的面积等于1,那么△ABE的面积等于4.EC=BC18.(4分)(2019•闵行区二模)如图,在Rt△ABC中,∠C=90°,∠A=50°,点D、E分别在边AB、BC上,将△BDE沿直线DE翻折,点B与点F重合,如果∠ADF=45°,那么∠CEF= 35度.三、解答题:(本大题共7题,满分78分)19.(10分)(2019•闵行区二模)先化简,再求值:,其中.•.时,原式=20.(10分)(2019•杨浦区二模)解方程组:)式组成方程组:或,经检验,原方程组的解是:21.(10分)(2019•闵行区二模)如图,在△ABC中,AB=AC,点D在边AB上,以点A 为圆心,线段AD的长为半径的⊙A与边AC相交于点E,AF⊥DE,垂足为点F,AF的延长线与边BC相交于点G,联结GE.已知DE=10,,.求:(1)⊙A的半径AD的长;(2)∠EGC的余切值.DAF=,利用勾股定理即可求得DF=EF=DE=DAF=,==.FEG=.EGC=22.(10分)(2019•闵行区二模)为了有效地利用电力资源,电力部门推行分时用电.即在居民家中安装分时电表,每天6:00至22:00用电每千瓦时0.61元,每天22:00至次日6:00用电每千瓦时0.30元.原来不实行分时用电时,居民用电每千瓦时0.61元.某户居民为了解家庭的用电及电费情况,于去年9月随意记录了该月6天的用电情况,见下表(单位:用户去年9月总用电量约为多少千瓦时.(2)如果该用户今年3月份的分时电费为127.8元,而按照不实行分时用电的计费方法,其电费为146.4元,试问该用户今年3月份6:00至22:00与22:00至次日6:00两个时段的用电量各为多少千瓦时?(注:以上统计是从每个月的第一天6:00至下一个月的第一天6:00止)=24023.(12分)(2019•闵行区二模)已知:如图,在梯形ABCD中,AD∥BC,AB=CD,BC=2AD.DE⊥BC,垂足为点F,且F是DE的中点,联结AE,交边BC于点G.(1)求证:四边形ABGD是平行四边形;(2)如果AD=,求证:四边形DGEC是正方形.BG=CG=BG=CG=AB DC=24.(12分)(2019•闵行区二模)已知:在平面直角坐标系中,一次函数y=x+3的图象与y 轴相交于点A,二次函数y=﹣x2+bx+c的图象经过点A、B(1,0),D为顶点.(1)求这个二次函数的解析式,并写出顶点D的坐标;(2)将上述二次函数的图象沿y轴向上或向下平移,使点D的对应点C在一次函数y=x+3的图象上,求平移后所得图象的表达式;(3)设点P在一次函数y=x+3的图象上,且S△ABP=2S△ABC,求点P的坐标..AC==AP=2AC=2CP=CA+AP=3=,CA==AC=.AP=2AC=225.(14分)(2019•闵行区二模)如图,在平行四边形ABCD中,AB=8,tanB=2,CE⊥AB,垂足为点E(点E在边AB上),F为边AD的中点,联结EF,CD.(1)如图1,当点E是边AB的中点时,求线段EF的长;(2)如图2,设BC=x,△CEF的面积等于y,求y与x的函数解析式,并写出自变量的取值范围;(3)当BC=16时,∠EFD与∠AEF的度数满足数量关系:∠EFD=k∠AEF,其中k≥0,求k的值.,证出==AB=4PC==4PCEF=PC=2BE=EC BE=x﹣PC•﹣AD=8PF=PC==,AB=4PC===4PCEF=PC=2,=2BE=ECBE=﹣﹣PF==x﹣﹣+AD=8PC。

2019年上海市徐汇区中考数学二模试卷

2019年上海市徐汇区中考数学二模试卷
第 6页(共 24页)
ZZDS PDF EDITOR
∵m2≥0, ∴m2+4>0,即△>0, ∴方程有两个不相等的实数根.
故选:A. 【点评】本题考查了一元二次方程 ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当 △>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方

16.(4 分)某校九年级学生共 300 人,为了解这个年级学生的体能,从中随机抽取 50 名学
生进行 1 分钟的跳绳测试,结果统计的频率分布如图所示,其中从左至右前四个小长方
形的高依次为 0.004、0.008、0.034、0.03,如果跳绳次数不少于 135 次为优秀,根据这次
抽查的结果,估计全年级达到跳绳优秀的人数为
ZZDS PDF EDITOR
2019 年上海市徐汇区中考数学二模试卷
一、选择题(每小题 4 分,共 24 分)
1.(4 分)在下列各式中,运算结果为 x2 的是( )
A.x4﹣x2
B.x4•x﹣2
C.x6÷x3
D.(x﹣1)2
2.(4 分)下列函数中,图象在第一象限满足 y 的值随 x 的值增大而减少的是( )
法则是解题的关键.
2.(4 分)下列函数中,图象在第一象限满足 y 的值随 x 的值增大而减少的是( )
A.y=2x
B.y=
C.y=2x﹣3
D.y=﹣x2
【分析】直接利用一次函数以及反比例函数和二次函数的增减性进而分析得出答案. 【解答】解:A、y=2x 图象在第一象限满足 y 的值随 x 的值增大而增大,故此选项错误; B、y= ,图象在第一象限满足 y 的值随 x 的值增大而减小,故此选项正确;

上海市静安区2019届高三英语二模考试试题(含解析)

上海市静安区2019届高三英语二模考试试题(含解析)
Section A
Directions: In Section A, you will hear ten short conversations between two speakers. At the end of each conversation, a question will be asked about what was said. The conversations and the questions will be spoken only once. After you hear a conversation and the question about it. read the four possible answers on your paper, and decide which one is the best answer to the question you have heard.
D. Because the quality of the gas in the station is terrible.
【答案】C
【解析】
【分析】
此题为听力题,解析略。
【详解】此题为听力题,解析略。
2.
A. 5 dollarsB. 6 dollarsC. 7 dollarsD. 11 dollars
D. The new movie wasn’t welcomed by the critics.
【答案】D
【解析】
【分析】
此题为听力题,解析略。
【详解】此题为听力题,解析略。
4.
A. They will be home on time.
B. Her mother is in an area with poor signal reception.

上海市沪教版数学高考二模试卷含详细答案2套选择填空有解析

上海市沪教版数学高考二模试卷含详细答案2套选择填空有解析

目录第一套:2019年上海市静安区高考数学二模试卷第二套:2019年上海市虹口高考数学二模试卷2019年上海市静安区高考数学二模试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.设f ﹣1(x )为的反函数,则f ﹣1(1)= .2.函数y=2sin 2(2x )﹣1的最小正周期是 . 3.设i 为虚数单位,复数,则|z|= .4.= .5.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是 .6.设等差数列{a n }的前n 项和为S n ,若=,则= .7.直线(t 为参数)与曲线(θ为参数)的公共点的个数是 .8.已知双曲线C 1与双曲线C 2的焦点重合,C 1的方程为,若C 2的一条渐近线的倾斜角是C 1的一条渐近线的倾斜角的2倍,则C 2的方程为 . 9.若,则满足f (x )>0的x 的取值范围是 .10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为 .11.设等差数列{a n }的各项都是正数,前n 项和为S n ,公差为d .若数列也是公差为d 的等差数列,则{a n }的通项公式为a n = .12.设x ∈R ,用[x]表示不超过x 的最大整数(如[2.32]=2,[﹣ 4.76]=﹣5),对于给定的n ∈N *,定义C =,其中x ∈[1,+∞),则当时,函数f (x )=C的值域是 .二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.命题“若x=1,则x 2﹣3x+2=0”的逆否命题是( ) A .若x ≠1,则x 2﹣3x+2≠0 B .若x 2﹣3x+2=0,则x=1 C .若x 2﹣3x+2=0,则x ≠1 D .若x 2﹣3x+2≠0,则x ≠1 14.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,M 、E 是AB 的三等分点,G 、N 是CD 的三等分点,F 、H 分别是BC 、MN 的中点,则四棱锥A 1﹣EFGH 的左视图是( )A .B .C .D .15.已知△ABC 是边长为4的等边三角形,D 、P 是△ABC 内部两点,且满足,,则△ADP 的面积为( ) A .B .C .D .16.已知f (x )是偶函数,且f (x )在[0,+∞)上是增函数,若f (ax+1)≤f (x ﹣2)在上恒成立,则实数a 的取值范围是( )A .[﹣2,1]B .[﹣2,0]C .[﹣1,1]D .[﹣1,0]三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ﹣b=2,c=4,sinA=2sinB . (Ⅰ)求△ABC 的面积; (Ⅱ)求sin (2A ﹣B ).18.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=8,BC=5,AA 1=4,平面α截长方体得到一个矩形EFGH ,且A 1E=D 1F=2,AH=DG=5.(1)求截面EFGH 把该长方体分成的两部分体积之比; (2)求直线AF 与平面α所成角的正弦值.19.如图,已知椭圆C :(a >b >0)过点,两个焦点为F 1(﹣1,0)和F 2(1,0).圆O 的方程为x 2+y 2=a 2. (1)求椭圆C 的标准方程;(2)过F 1且斜率为k (k >0)的动直线l 与椭圆C 交于A 、B 两点,与圆O 交于P 、Q 两点(点A 、P 在x 轴上方),当|AF 2|,|BF 2|,|AB|成等差数列时,求弦PQ 的长.20.如果函数y=f (x )的定义域为R ,且存在实常数a ,使得对于定义域内任意x ,都有f (x+a )=f (﹣x )成立,则称此函数f (x )具有“P(a )性质”.(1)判断函数y=cosx 是否具有“P (a )性质”,若具有“P (a )性质”,求出所有a 的值的集合;若不具有“P(a )性质”,请说明理由;(2)已知函数y=f (x )具有“P(0)性质”,且当x ≤0时,f (x )=(x+m )2,求函数y=f (x )在区间[0,1]上的值域; (3)已知函数y=g (x )既具有“P (0)性质”,又具有“P (2)性质”,且当﹣1≤x ≤1时,g (x )=|x|,若函数y=g (x )的图象与直线y=px 有2019个公共点,求实数p 的值.21.给定数列{a n },若满足a 1=a (a >0且a ≠1),对于任意的n ,m ∈N *,都有a n+m =a n •a m ,则称数列{a n }为指数数列. (1)已知数列{a n },{b n }的通项公式分别为,,试判断{a n },{b n }是不是指数数列(需说明理由);(2)若数列{a n }满足:a 1=2,a 2=4,a n+2=3a n+1﹣2a n ,证明:{a n }是指数数列;(3)若数列{a n }是指数数列,(t ∈N *),证明:数列{a n }中任意三项都不能构成等差数列.2019年上海市静安区高考数学二模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.设f﹣1(x)为的反函数,则f﹣1(1)= 1 .【考点】4R:反函数.【分析】根据反函数的性质,原函数的值域是反函数的定义域即可求解【解答】解:的反函数,其反函数f﹣1(x),反函数的性质,反函数的定义域是原函数的值域,即.可得:x=1,∴f﹣1(x)=1.故答案为1.2.函数y=2sin2(2x)﹣1的最小正周期是.【考点】H1:三角函数的周期性及其求法.【分析】利用二倍角公式基本公式将函数化为y=Acos(ωx+φ)的形式,再利用周期公式求函数的最小正周期,【解答】解:函数y=2sin2(2x)﹣1,化简可得:y=1﹣cos4x﹣1=﹣cos4x;∴最小正周期T=.故答案为3.设i为虚数单位,复数,则|z|= 1 .【考点】A8:复数求模.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数===﹣i,则|z|=1.故答案为:1.4. = 3 .【考点】8J:数列的极限.【分析】通过分子分母同除3n+1,利用数列极限的运算法则求解即可.【解答】解: ===3.故答案为:3.5.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是30°.【考点】MI:直线与平面所成的角.【分析】根据圆锥的底面积公式和侧面积公式,结合已知可得l=2R ,进而解母线与底面所成角,然后求解母线与轴所成角即可. 【解答】解:设圆锥的底面半径为R ,母线长为l ,则: 其底面积:S 底面积=πR 2,其侧面积:S 侧面积=2πRl=πRl, ∵圆锥的侧面积是其底面积的2倍, ∴l=2R ,故该圆锥的母线与底面所成的角θ有, cosθ==, ∴θ=60°,母线与轴所成角的大小是:30°. 故答案为:30°.6.设等差数列{a n }的前n 项和为S n ,若=,则=.【考点】85:等差数列的前n 项和. 【分析】=,可得3(a 1+4d )=5(a 1+2d ),化为:a 1=d .再利用等差数列的求和公式即可得出. 【解答】解:∵=,∴3(a 1+4d )=5(a 1+2d ),化为:a 1=d .则==.故答案为:.7.直线(t为参数)与曲线(θ为参数)的公共点的个数是 1 .【考点】QK:圆的参数方程;QJ:直线的参数方程.【分析】根据题意,将直线的参数方程变形为普通方程,再将曲线的参数方程变形为普通方程,分析可得该曲线为圆,且圆心坐标为(3,5),半径r=,求出圆心到直线的俄距离,分析可得直线与圆相切,即可得直线与圆有1个公共点,即可得答案.【解答】解:根据题意,直线的参数方程为,则其普通方程为x+y﹣6=0,曲线的参数方程为,则其普通方程为(x﹣3)2+(y ﹣5)2=2,该曲线为圆,且圆心坐标为(3,5),半径r=,圆心到直线x+y﹣6=0的距离d===r,则圆(x﹣3)2+(y﹣5)2=2与直线x+y﹣6=0相切,有1个公共点;故答案为:1.8.已知双曲线C1与双曲线C2的焦点重合,C1的方程为,若C2的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的2倍,则C2的方程为.【考点】KC:双曲线的简单性质.【分析】求出双曲线的焦点坐标,利用渐近线的倾斜角的关系,列出方程,然后求解即可.【解答】解:双曲线C1与双曲线C2的焦点重合,C1的方程为,焦点坐标(±2,0).双曲线C1的一条渐近线为:y=,倾斜角为30°,C 2的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的2倍,可得C2的渐近线y=.可得,c=2,解得a=1,b=,所求双曲线方程为:.故答案为:.9.若,则满足f(x)>0的x的取值范围是(1,+∞).【考点】7E:其他不等式的解法.【分析】由已知得到关于x的不等式,化为根式不等式,然后化为整式不等式解之.【解答】解:由f(x)>0得到即,所以,解得x>1;故x的取值范围为(1,+∞);故答案为:(1,+∞);10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为.【考点】C9:相互独立事件的概率乘法公式. 【分析】利用对立事件的概率公式,计算即可,【解答】解:设至少有一种新产品研发成功的事件为事件A 且事件B 为事件A 的对立事件,则事件B 为一种新产品都没有成功, 因为甲乙研发新产品成功的概率分别为和. 则P (B )=(1﹣)(1﹣)=,再根据对立事件的概率之间的公式可得P (A )=1﹣P (B )=,故至少有一种新产品研发成功的概率.故答案为.11.设等差数列{a n }的各项都是正数,前n 项和为S n ,公差为d .若数列也是公差为d 的等差数列,则{a n }的通项公式为a n =.【考点】84:等差数列的通项公式. 【分析】由题意可得:S n =na 1+d .a n >0.=+(n ﹣1)d ,化简n ≠1时可得:a 1=(n ﹣1)d 2+2d ﹣d .分别令n=2,3,解出即可得出.【解答】解:由题意可得:S n =na 1+d .a n >0.=+(n ﹣1)d ,可得:S n =a 1+(n ﹣1)2d 2+2(n ﹣1)d .∴na 1+d=a 1+(n ﹣1)2d 2+2(n ﹣1)d . n ≠1时可得:a 1=(n ﹣1)d 2+2d ﹣d . 分别令n=2,3,可得:a 1=d 2+2d ﹣d ,a 1=2d 2+2d ﹣d .解得a 1=,d=. ∴a n =+(n ﹣1)=.故答案为:.12.设x ∈R ,用[x]表示不超过x 的最大整数(如[2.32]=2,[﹣ 4.76]=﹣5),对于给定的n ∈N *,定义C =,其中x ∈[1,+∞),则当时,函数f (x )=C的值域是.【考点】57:函数与方程的综合运用.【分析】分类讨论,根据定义化简C x n ,求出C x 10的表达式,再利用函数的单调性求出C x 10的值域.【解答】解:当x ∈[,2)时,[x]=1,∴f (x )=C =, 当x ∈[,2)时,f (x )是减函数,∴f (x )∈(5,);当x ∈[2,3)时,[x]=2,∴f (x )=C=,当x ∈[2,3)时,f (x )是减函数,∴f (x )∈(15,45]; ∴当时,函数f (x )=C 的值域是,故答案为:.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.命题“若x=1,则x 2﹣3x+2=0”的逆否命题是( ) A .若x ≠1,则x 2﹣3x+2≠0 B .若x 2﹣3x+2=0,则x=1 C .若x 2﹣3x+2=0,则x ≠1 D .若x 2﹣3x+2≠0,则x ≠1 【考点】25:四种命题间的逆否关系.【分析】根据逆否命题的定义,我们易求出命题的逆否命题 【解答】解:将命题的条件与结论交换,并且否定可得逆否命题:若x 2﹣3x+2≠0,则x ≠1 故选:D14.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,M 、E 是AB 的三等分点,G 、N 是CD 的三等分点,F 、H 分别是BC 、MN 的中点,则四棱锥A 1﹣EFGH 的左视图是( )A .B .C .D .【考点】L7:简单空间图形的三视图.【分析】确定5个顶点在面DCC 1D 1上的投影,即可得出结论. 【解答】解:A 1在面DCC 1D 1上的投影为点D 1,E 在面DCC 1D 1的投影为点G ,F 在面DCC 1D 1上的投影为点C ,H 在面DCC 1D 1上的投影为点N ,因此侧视图为选项C 的图形. 故选C15.已知△ABC 是边长为4的等边三角形,D 、P 是△ABC 内部两点,且满足,,则△ADP 的面积为( ) A .B .C .D .【考点】9V :向量在几何中的应用.【分析】以A 为原点,以BC 的垂直平分线为y 轴,建立直角坐标系.由于等边三角形△的边长为4,可得B ,C 的坐标,再利用向量的坐标运算和数乘运算可得,,利用△APD 的面积公式即可得出.【解答】解:以A 为原点,以BC 的垂直平分线为y 轴,建立直角坐标系.∵等边三角形△的边长为4, ∴B (﹣2,﹣2),C (2,﹣2),由足= [(﹣2,﹣2)+(2,﹣2)]=(0,﹣),=(0,﹣)+(4,0)=(,﹣),∴△ADP的面积为S=||•||=××=,故选:A.16.已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若f(ax+1)≤f(x﹣2)在上恒成立,则实数a的取值范围是()A.[﹣2,1] B.[﹣2,0] C.[﹣1,1] D.[﹣1,0]【考点】3N:奇偶性与单调性的综合.【分析】因为偶函数在对称区间上单调性相反,根据已知中f(x)是偶函数,且f(x)在(0,+∞)上是增函数,易得f(x)在(﹣∞,0)上为减函数,又由若时,不等式f(ax+1)≤f(x﹣2)恒成立,结合函数恒成立的条件,求出时f(x﹣2)的最小值,从而可以构造一个关于a的不等式,解不等式即可得到实数a的取值范围.【解答】解:∵f(x)是偶函数,且f(x)在(0,+∞)上是增函数,∴f(x)在(﹣∞,0)上为减函数,当时,x﹣2∈[﹣,﹣1],故f(x﹣2)≥f(﹣1)=f(1),若时,不等式f(ax+1)≤f(x﹣2)恒成立,则当时,|ax+1|≤1恒成立,∴﹣1≤ax+1≤1,∴≤a≤0,∴﹣2≤a≤0,故选B.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.在△ABC中,内角A,B,C的对边分别为a,b,c,已知a ﹣b=2,c=4,sinA=2sinB.(Ⅰ)求△ABC的面积;(Ⅱ)求sin(2A﹣B).【考点】GL:三角函数中的恒等变换应用.【分析】解法一:(I)由已知及正弦定理可求a,b的值,由余弦定理可求cosB,从而可求sinB,即可由三角形面积公式求解.(II)由余弦定理可得cosA,从而可求sinA,sin2A,cos2A,由两角差的正弦公式即可求sin(2A﹣B)的值.解法二:(I)由已知及正弦定理可求a,b的值,又c=4,可知△ABC为等腰三角形,作BD⊥AC于D,可求BD==,即可求三角形面积.(II)由余弦定理可得cosB,即可求sinB,由(I)知A=C⇒2A ﹣B=π﹣2B.从而sin(2A﹣B)=sin(π﹣2B)=sin2B,代入即可求值.【解答】解:解法一:(I)由sinA=2sinB⇒a=2b.又∵a﹣b=2,∴a=4,b=2.cosB===.sinB===.=acsinB==.∴S△ABC(II)cosA===.sinA===.sin2A=2sinAcosA=2×.cos2A=cos2A﹣sin2A=﹣.∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.解法二:(I)由sinA=2sinB⇒a=2b.又∵a﹣b=2,∴a=4,b=2.又c=4,可知△ABC为等腰三角形.作BD ⊥AC 于D ,则BD===.∴S △ABC ==. (II )cosB===. sinB===.由(I )知A=C ⇒2A ﹣B=π﹣2B . ∴sin (2A ﹣B )=sin (π﹣2B )=sin2B =2sinBcosB =2××=.18.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=8,BC=5,AA 1=4,平面α截长方体得到一个矩形EFGH ,且A 1E=D 1F=2,AH=DG=5. (1)求截面EFGH 把该长方体分成的两部分体积之比; (2)求直线AF 与平面α所成角的正弦值.【考点】MI :直线与平面所成的角;LF :棱柱、棱锥、棱台的体积.【分析】(1)由题意,平面α把长方体分成两个高为5的直四棱柱,转化求解体积推出结果即可.(2)解法一:作AM ⊥EH ,垂足为M ,证明HG ⊥AM ,推出AM ⊥平面EFGH .通过计算求出AM=4.AF ,设直线AF 与平面α所成角为θ,求解即可.解法二:以DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,求出平面α一个法向量,利用直线AF 与平面α所成角为θ,通过空间向量的数量积求解即可.【解答】(本题满分,第1小题满分,第2小题满分8分) 解:(1)由题意,平面α把长方体分成两个高为5的直四棱柱,,… ,…所以,.…(2)解法一:作AM ⊥EH ,垂足为M ,由题意,HG ⊥平面ABB 1A 1,故HG ⊥AM ,所以AM ⊥平面EFGH . … 因为,,所以S △AEH =10,)因为EH=5,所以AM=4. … 又,…设直线AF 与平面α所成角为θ,则.… 所以,直线AF 与平面α所成角的正弦值为. …解法二:以DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A (5,0,0),H (5,5,0),E (5,2,4),F (0,2,4),… 故,,…设平面α一个法向量为,则即所以可取. …设直线AF 与平面α所成角为θ,则. …所以,直线AF 与平面α所成角的正弦值为. …19.如图,已知椭圆C :(a >b >0)过点,两个焦点为F 1(﹣1,0)和F 2(1,0).圆O 的方程为x 2+y 2=a 2. (1)求椭圆C 的标准方程;(2)过F 1且斜率为k (k >0)的动直线l 与椭圆C 交于A 、B 两点,与圆O 交于P 、Q 两点(点A 、P 在x 轴上方),当|AF 2|,|BF 2|,|AB|成等差数列时,求弦PQ 的长.【考点】KH:直线与圆锥曲线的综合问题;K3:椭圆的标准方程;KL:直线与椭圆的位置关系.【分析】(1)求出c=1,设椭圆C的方程为,将点代入,解得a2=4,然后求解椭圆C的方程.(2)由椭圆定义,|AF1|+|AF2|=4,|BF1|+|BF2|=4,通过|AF2|,|BF2|,|AB|成等差数列,推出.设B(x,y),通过解得B,然后求解直线方程,推出弦PQ的长即可.【解答】(本题满分,第1小题满分,第2小题满分8分)解:(1)由题意,c=1,…设椭圆C的方程为,将点代入,解得a2=4(舍去),…所以,椭圆C的方程为.…(2)由椭圆定义,|AF1|+|AF2|=4,|BF1|+|BF2|=4,两式相加,得|AB|+|AF 2|+|BF 2|=8,因为|AF 2|,|BF 2|,|AB|成等差数列,所以|AB|+|AF 2|=2|BF 2|, 于是3|BF 2|=8,即. …设B (x 0,y 0),由解得,…(或设,则,解得,,所以). 所以,,直线l 的方程为,即,… 圆O 的方程为x 2+y 2=4,圆心O 到直线l 的距离,…此时,弦PQ 的长. …20.如果函数y=f (x )的定义域为R ,且存在实常数a ,使得对于定义域内任意x ,都有f (x+a )=f (﹣x )成立,则称此函数f (x )具有“P(a )性质”.(1)判断函数y=cosx 是否具有“P (a )性质”,若具有“P (a )性质”,求出所有a 的值的集合;若不具有“P(a )性质”,请说明理由;(2)已知函数y=f (x )具有“P(0)性质”,且当x ≤0时,f (x )=(x+m )2,求函数y=f (x )在区间[0,1]上的值域; (3)已知函数y=g (x )既具有“P (0)性质”,又具有“P (2)性质”,且当﹣1≤x ≤1时,g (x )=|x|,若函数y=g (x )的图象与直线y=px 有2019个公共点,求实数p 的值.【考点】57:函数与方程的综合运用.【分析】(1)根据题意可知cos(x+a)=cos(﹣x)=cosx,故而a=2kπ,k∈Z;(2)由新定义可推出f(x)为偶函数,从而求出f(x)在[0,1]上的解析式,讨论m与[0,1]的关系判断f(x)的单调性得出f(x)的最值;(3)根据新定义可知g(x)为周期为2的偶函数,作出g(x)的函数图象,根据函数图象得出p的值.【解答】解:(1)假设y=cosx具有“P(a)性质”,则cos(x+a)=cos(﹣x)=cosx恒成立,∵cos(x+2kπ)=cosx,∴函数y=cosx具有“P(a)性质”,且所有a的值的集合为{a|a=2kπ,k∈Z}.(2)因为函数y=f(x)具有“P(0)性质”,所以f(x)=f (﹣x)恒成立,∴y=f(x)是偶函数.设0≤x≤1,则﹣x≤0,∴f(x)=f(﹣x)=(﹣x+m)2=(x﹣m)2.①当m≤0时,函数y=f(x)在[0,1]上递增,值域为[m2,(1﹣m)2].②当时,函数y=f(x)在[0,m]上递减,在[m,1]上递增,y=f(m)=0,,值域为[0,(1﹣m)2].min③当时,y=f(m)=0,,值域为[0,m2].min④m>1时,函数y=f(x)在[0,1]上递减,值域为[(1﹣m)2,m2].(3)∵y=g(x)既具有“P(0)性质”,即g(x)=g(﹣x),∴函数y=g(x)偶函数,又y=g(x)既具有“P(2)性质”,即g(x+2)=g(﹣x)=g (x),∴函数y=g(x)是以2为周期的函数.作出函数y=g(x)的图象如图所示:由图象可知,当p=0时,函数y=g(x)与直线y=px交于点(2k,0)(k∈Z),即有无数个交点,不合题意.当p>0时,在区间[0,2016]上,函数y=g(x)有1008个周期,要使函数y=g(x)的图象与直线y=px有2019个交点,则直线在每个周期内都有2个交点,且第2019个交点恰好为,所以.同理,当p<0时,.综上,.21.给定数列{a n },若满足a 1=a (a >0且a ≠1),对于任意的n ,m ∈N *,都有a n+m =a n •a m ,则称数列{a n }为指数数列. (1)已知数列{a n },{b n }的通项公式分别为,,试判断{a n },{b n }是不是指数数列(需说明理由);(2)若数列{a n }满足:a 1=2,a 2=4,a n+2=3a n+1﹣2a n ,证明:{a n }是指数数列;(3)若数列{a n }是指数数列,(t ∈N *),证明:数列{a n }中任意三项都不能构成等差数列. 【考点】8B :数列的应用.【分析】(1)利用指数数列的定义,判断即可; (2)求出{a n }的通项公式为,即可证明:{a n }是指数数列;(3)利用反证法进行证明即可.【解答】(1)解:对于数列{a n },因为a 3=a 1+2≠a 1•a 2,所以{a n }不是指数数列. …对于数列{b n },对任意n ,m ∈N *,因为,所以{b n }是指数数列. …(2)证明:由题意,a n+2﹣a n+1=2(a n+1﹣a n ),所以数列{a n+1﹣a n }是首项为a 2﹣a 1=2,公比为2的等比数列. … 所以.所以,=,即{a n }的通项公式为(n ∈N *). …所以,故{a n }是指数数列. …(3)证明:因为数列{a n }是指数数列,故对于任意的n ,m ∈N *,有a n+m =a n •a m ,令m=1,则,所以{a n }是首项为,公比为的等比数列,所以,. …假设数列{a n }中存在三项a u ,a v ,a w 构成等差数列,不妨设u <v <w ,则由2a v =a u +a w ,得,所以2(t+4)w ﹣v (t+3)v ﹣u =(t+4)w ﹣u +(t+3)w ﹣u ,… 当t 为偶数时,2(t+4)w ﹣v (t+3)v ﹣u 是偶数,而(t+4)w ﹣u 是偶数,(t+3)w ﹣u 是奇数,故2(t+4)w ﹣v (t+3)v ﹣u =(t+4)w ﹣u +(t+3)w ﹣u 不能成立; … 当t 为奇数时,2(t+4)w ﹣v (t+3)v ﹣u 是偶数,而(t+4)w ﹣u 是奇数,(t+3)w ﹣u 是偶数,故2(t+4)w ﹣v (t+3)v ﹣u =(t+4)w ﹣u +(t+3)w ﹣u 也不能成立.… 所以,对任意t ∈N *,2(t+4)w ﹣v (t+3)v ﹣u =(t+4)w ﹣u +(t+3)w ﹣u不能成立,即数列{a n }的任意三项都不成构成等差数列. …2019年上海市虹口高考数学二模试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.设f ﹣1(x )为的反函数,则f ﹣1(1)= .2.函数y=2sin 2(2x )﹣1的最小正周期是 . 3.设i 为虚数单位,复数,则|z|= .4.= .5.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是 .6.设等差数列{a n }的前n 项和为S n ,若=,则= .7.直线(t 为参数)与曲线(θ为参数)的公共点的个数是 .8.已知双曲线C 1与双曲线C 2的焦点重合,C 1的方程为,若C 2的一条渐近线的倾斜角是C 1的一条渐近线的倾斜角的2倍,则C 2的方程为 .9.若,则满足f (x )>0的x 的取值范围是 .10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为 .11.设等差数列{a n }的各项都是正数,前n 项和为S n ,公差为d .若数列也是公差为d 的等差数列,则{a n }的通项公式为a n = .12.设x ∈R ,用[x]表示不超过x 的最大整数(如[2.32]=2,[﹣ 4.76]=﹣5),对于给定的n ∈N *,定义C =,其中x ∈[1,+∞),则当时,函数f (x )=C的值域是 .二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.命题“若x=1,则x 2﹣3x+2=0”的逆否命题是( ) A .若x ≠1,则x 2﹣3x+2≠0 B .若x 2﹣3x+2=0,则x=1 C .若x 2﹣3x+2=0,则x ≠1 D .若x 2﹣3x+2≠0,则x ≠1 14.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,M 、E 是AB 的三等分点,G 、N 是CD 的三等分点,F 、H 分别是BC 、MN 的中点,则四棱锥A 1﹣EFGH 的左视图是( )A.B.C.D.15.已知△ABC是边长为4的等边三角形,D、P是△ABC内部两点,且满足,,则△ADP的面积为()A.B.C.D.16.已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若f(ax+1)≤f(x﹣2)在上恒成立,则实数a的取值范围是()A.[﹣2,1] B.[﹣2,0] C.[﹣1,1] D.[﹣1,0]三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.在△ABC中,内角A,B,C的对边分别为a,b,c,已知a ﹣b=2,c=4,sinA=2sinB.(Ⅰ)求△ABC 的面积; (Ⅱ)求sin (2A ﹣B ).18.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=8,BC=5,AA 1=4,平面α截长方体得到一个矩形EFGH ,且A 1E=D 1F=2,AH=DG=5. (1)求截面EFGH 把该长方体分成的两部分体积之比; (2)求直线AF 与平面α所成角的正弦值.19.如图,已知椭圆C :(a >b >0)过点,两个焦点为F 1(﹣1,0)和F 2(1,0).圆O 的方程为x 2+y 2=a 2. (1)求椭圆C 的标准方程;(2)过F 1且斜率为k (k >0)的动直线l 与椭圆C 交于A 、B 两点,与圆O 交于P 、Q 两点(点A 、P 在x 轴上方),当|AF 2|,|BF 2|,|AB|成等差数列时,求弦PQ 的长.20.如果函数y=f (x )的定义域为R ,且存在实常数a ,使得对于定义域内任意x ,都有f (x+a )=f (﹣x )成立,则称此函数f (x )具有“P(a )性质”.(1)判断函数y=cosx 是否具有“P (a )性质”,若具有“P (a )性质”,求出所有a 的值的集合;若不具有“P(a )性质”,请说明理由;(2)已知函数y=f (x )具有“P(0)性质”,且当x ≤0时,f (x )=(x+m )2,求函数y=f (x )在区间[0,1]上的值域; (3)已知函数y=g (x )既具有“P (0)性质”,又具有“P (2)性质”,且当﹣1≤x ≤1时,g (x )=|x|,若函数y=g (x )的图象与直线y=px 有2019个公共点,求实数p 的值.21.给定数列{a n },若满足a 1=a (a >0且a ≠1),对于任意的n ,m ∈N *,都有a n+m =a n •a m ,则称数列{a n }为指数数列. (1)已知数列{a n },{b n }的通项公式分别为,,试判断{a n },{b n }是不是指数数列(需说明理由);(2)若数列{a n }满足:a 1=2,a 2=4,a n+2=3a n+1﹣2a n ,证明:{a n }是指数数列;(3)若数列{a n }是指数数列,(t ∈N *),证明:数列{a n }中任意三项都不能构成等差数列.2019年上海市虹口高考数学二模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.设f﹣1(x)为的反函数,则f﹣1(1)= 1 .【考点】4R:反函数.【分析】根据反函数的性质,原函数的值域是反函数的定义域即可求解【解答】解:的反函数,其反函数f﹣1(x),反函数的性质,反函数的定义域是原函数的值域,即.可得:x=1,∴f﹣1(x)=1.故答案为1.2.函数y=2sin2(2x)﹣1的最小正周期是.【考点】H1:三角函数的周期性及其求法.【分析】利用二倍角公式基本公式将函数化为y=Acos(ωx+φ)的形式,再利用周期公式求函数的最小正周期,【解答】解:函数y=2sin2(2x)﹣1,化简可得:y=1﹣cos4x﹣1=﹣cos4x;∴最小正周期T=.故答案为3.设i为虚数单位,复数,则|z|= 1 .【考点】A8:复数求模.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数===﹣i,则|z|=1.故答案为:1.4. = 3 .【考点】8J:数列的极限.【分析】通过分子分母同除3n+1,利用数列极限的运算法则求解即可.【解答】解: ===3.故答案为:3.5.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是30°.【考点】MI:直线与平面所成的角.【分析】根据圆锥的底面积公式和侧面积公式,结合已知可得l=2R ,进而解母线与底面所成角,然后求解母线与轴所成角即可. 【解答】解:设圆锥的底面半径为R ,母线长为l ,则: 其底面积:S 底面积=πR 2, 其侧面积:S 侧面积=2πRl=πRl, ∵圆锥的侧面积是其底面积的2倍, ∴l=2R ,故该圆锥的母线与底面所成的角θ有, cosθ==, ∴θ=60°,母线与轴所成角的大小是:30°. 故答案为:30°.6.设等差数列{a n }的前n 项和为S n ,若=,则=.【考点】85:等差数列的前n 项和. 【分析】=,可得3(a 1+4d )=5(a 1+2d ),化为:a 1=d .再利用等差数列的求和公式即可得出. 【解答】解:∵=,∴3(a 1+4d )=5(a 1+2d ),化为:a 1=d .则==.故答案为:.7.直线(t为参数)与曲线(θ为参数)的公共点的个数是 1 .【考点】QK:圆的参数方程;QJ:直线的参数方程.【分析】根据题意,将直线的参数方程变形为普通方程,再将曲线的参数方程变形为普通方程,分析可得该曲线为圆,且圆心坐标为(3,5),半径r=,求出圆心到直线的俄距离,分析可得直线与圆相切,即可得直线与圆有1个公共点,即可得答案.【解答】解:根据题意,直线的参数方程为,则其普通方程为x+y﹣6=0,曲线的参数方程为,则其普通方程为(x﹣3)2+(y ﹣5)2=2,该曲线为圆,且圆心坐标为(3,5),半径r=,圆心到直线x+y﹣6=0的距离d===r,则圆(x﹣3)2+(y﹣5)2=2与直线x+y﹣6=0相切,有1个公共点;故答案为:1.8.已知双曲线C1与双曲线C2的焦点重合,C1的方程为,若C2的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的2倍,则C2的方程为.【考点】KC:双曲线的简单性质.【分析】求出双曲线的焦点坐标,利用渐近线的倾斜角的关系,列出方程,然后求解即可.【解答】解:双曲线C1与双曲线C2的焦点重合,C1的方程为,焦点坐标(±2,0).双曲线C1的一条渐近线为:y=,倾斜角为30°,C 2的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的2倍,可得C2的渐近线y=.可得,c=2,解得a=1,b=,所求双曲线方程为:.故答案为:.9.若,则满足f(x)>0的x的取值范围是(1,+∞).【考点】7E:其他不等式的解法.【分析】由已知得到关于x的不等式,化为根式不等式,然后化为整式不等式解之.【解答】解:由f(x)>0得到即,所以,解得x>1;故x的取值范围为(1,+∞);故答案为:(1,+∞);10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为.【考点】C9:相互独立事件的概率乘法公式. 【分析】利用对立事件的概率公式,计算即可,【解答】解:设至少有一种新产品研发成功的事件为事件A 且事件B 为事件A 的对立事件,则事件B 为一种新产品都没有成功, 因为甲乙研发新产品成功的概率分别为和. 则P (B )=(1﹣)(1﹣)=,再根据对立事件的概率之间的公式可得P (A )=1﹣P (B )=,故至少有一种新产品研发成功的概率.故答案为.11.设等差数列{a n }的各项都是正数,前n 项和为S n ,公差为d .若数列也是公差为d 的等差数列,则{a n }的通项公式为a n =.【考点】84:等差数列的通项公式. 【分析】由题意可得:S n =na 1+d .a n >0.=+(n ﹣1)d ,化简n ≠1时可得:a 1=(n ﹣1)d 2+2d ﹣d .分别令n=2,3,解出即可得出.【解答】解:由题意可得:S n =na 1+d .a n >0.=+(n ﹣1)d ,可得:S n =a 1+(n ﹣1)2d 2+2(n ﹣1)d .∴na 1+d=a 1+(n ﹣1)2d 2+2(n ﹣1)d . n ≠1时可得:a 1=(n ﹣1)d 2+2d ﹣d . 分别令n=2,3,可得:a 1=d 2+2d ﹣d ,a 1=2d 2+2d ﹣d .解得a 1=,d=. ∴a n =+(n ﹣1)=.故答案为:.12.设x ∈R ,用[x]表示不超过x 的最大整数(如[2.32]=2,[﹣ 4.76]=﹣5),对于给定的n ∈N *,定义C =,其中x ∈[1,+∞),则当时,函数f (x )=C的值域是.【考点】57:函数与方程的综合运用.【分析】分类讨论,根据定义化简C x n ,求出C x 10的表达式,再利用函数的单调性求出C x 10的值域.【解答】解:当x ∈[,2)时,[x]=1,∴f (x )=C =, 当x ∈[,2)时,f (x )是减函数,∴f (x )∈(5,);当x ∈[2,3)时,[x]=2,∴f (x )=C=,当x ∈[2,3)时,f (x )是减函数,∴f (x )∈(15,45]; ∴当时,函数f (x )=C 的值域是,故答案为:.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.命题“若x=1,则x 2﹣3x+2=0”的逆否命题是( ) A .若x ≠1,则x 2﹣3x+2≠0 B .若x 2﹣3x+2=0,则x=1 C .若x 2﹣3x+2=0,则x ≠1 D .若x 2﹣3x+2≠0,则x ≠1 【考点】25:四种命题间的逆否关系.【分析】根据逆否命题的定义,我们易求出命题的逆否命题 【解答】解:将命题的条件与结论交换,并且否定可得逆否命题:若x 2﹣3x+2≠0,则x ≠1 故选:D14.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,M 、E 是AB 的三等分点,G 、N 是CD 的三等分点,F 、H 分别是BC 、MN 的中点,则四棱锥A 1﹣EFGH 的左视图是( )。

上海2019学年第二学期闵行区地理二模试卷答案

上海2019学年第二学期闵行区地理二模试卷答案

2020/6/1上海2019学年第二学期闵行区地理二模试卷上海2019学年第二学期闵行区地理二模试卷(详解)一、选择题(本大题共20小题,每小题2分,共40分)1. A.地月系B.太阳系C.银河系D.河外星系【答案】【解析】比邻星是距离太阳最近的一颗恒星,两者相距约4.2光年。

比邻星位于C 根据材料,比邻星属于恒星,且距离太阳有4.2光年,范围在银河系内,但是不属于地月系、太阳系和河外星系,ABD错,C对,故本题选C。

2. A.正午前后B.黄昏前后C.子夜前后D.黎明前后【答案】【解析】“超级月亮”比平时的满月更大,这时月球位于公转轨道近地点附近。

闵敏同学想观察、拍摄“超级月亮”刚从地平线升起后的场景,应该选择在该现象当天的B “超级月亮”属于满月,黄昏升起,清晨落下,观察、拍摄“超级月亮”刚从地平线升起时应该选择在该现象当天的黄昏前后。

故本题选B。

3. A.流水的侵蚀、搬运作用B.流水的搬运、堆积作用C.海浪的侵蚀、搬运作用D.海浪的搬运、堆积作用【答案】【解析】江苏盐城的沿海滩涂是候鸟重要的栖息地,这里的地貌其形成主要受到D沿海滩涂主要位于沿海地区,受到海浪的搬运和堆积作用,细小颗粒物在海岸堆积形成,D说法正确。

流水的侵蚀、搬运和堆积一般形成于河流经过地区,排除A和B。

海浪的侵蚀一般形成深水港湾,滩涂主要是浅水地区,排除C;故本题选D。

4.按照板块构造学说的解释,菲律宾海沟位于2020/6/1上海2019学年第二学期闵行区地理二模试卷A.板块相互张裂的生长边界B.板块相互张裂的消亡边界C.板块相互碰撞的生长边界D.板块相互碰撞的消亡边界【答案】【解析】D 海底地形包括大陆架、大陆坡、海沟、洋盆和海岭等基本类型,海沟是海底地形中海拔最低深度最深的地形类型,世界上主要的海沟包括马里亚纳海沟、日本海沟、千岛海沟、菲律宾海沟、秘鲁智利海沟、波多黎各海沟、开曼海沟、爪哇海沟、毛里求斯海沟、弗拉马海沟、利特克海沟等等。

2019年上海市长宁区、嘉定区高考数学二模试卷(含解析)

2019年上海市长宁区、嘉定区高考数学二模试卷(含解析)

2019年上海市长宁区、嘉定区高考数学二模试卷一、选择题(本大题共4小题,共20.0分)1.已知x∈R,则“1x>1”是“x<1”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件2.产能利用率是指实际产出与生产能力的比率,工业产能利用率是衡量工业生产经营状况的重要指标,下图为国家统计局发布的2015年至2018年第2季度我国工业产能利用率的折线图(%).在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2016年第二季度与2015年第二季度相比较:环比是指本期统计数据与上期统计数据相比较,例如2015二季度与2015年第一季度相比较根据上述信息,下列结论中正确的是()A. 2015年第三季度环比有所提高B. 2016年第一季度同比有所提高C. 2017年第三季度同比有所提高D. 2018年第一季度环比有所提高3.已知圆(x-2)2+y2=9的圆心为C,过点M(-2,0)且与x轴不重合的直线l交圆A、B两点,点A在点M与点B之间.过点M作直线AC的平行线交直线BC于点P,则点P的轨迹为()A. 圆的一部分B. 椭圆的一部分C. 双曲线的一部分D. 抛物线的一部分4.对于△ABC,若存在△A1B1C1,满足cosAsinA1=cosBsinB1=cosCsinC1=1,则称△ABC为“V类三角形”.“V类三角形”一定满足()A. 有一个内角为30∘B. 有一个内角为45∘C. 有一个内角为60∘D. 有一个内角为75∘二、填空题(本大题共12小题,共54.0分)5.已知集合A={1,2,3,4},B={x|2<x<5,x∈R},则A∩B=______6.已知复数z满足z−i=3+4i(i是虚数单位),则|z|=______7.若线性方程组的增广矩阵为(20mn12),解为{y=1x=1则m+n=______8.在(x+1x)4的二项展开式中,常数项的值为______9. 已知一个圆锥的主视图(如图所示)是边长分别为5,5,4的三角形,则该圆锥的侧面积为______ 10. 已知实数x ,y 满足{x ≥0y ≤1y ≥x −1,则x +2y 的最小值为______11. 设函数f(x)=√x −a (其中a 为常数)的反函数为f -1(x ),若函数f -1(x )的图象经过点(0,1),则方程f -1(x )=2的解为______12. 学校从3名男同学和2名女同学中任选2人参加志愿者服务活动,则选出的2人中至少有1名女同学的概率为______(结果用数值表示) 13. 已知直线{y =tsinαx=1+tcosα(t 为参数)与抛物线y 2=4x 相交于A 、B 两点,若线段AB 中点的坐标为(m ,2),线段AB 的长为______.14. 在△ABC 中,已知CD ⃗⃗⃗⃗⃗ =2DB ⃗⃗⃗⃗⃗⃗ ,P 为线段AD 上的一点,且满足CP ⃗⃗⃗⃗⃗ =12CA ⃗⃗⃗⃗⃗ +m CB ⃗⃗⃗⃗⃗ ,若△ABC 的面积为2√3,∠ACB =π3,则|CP⃗⃗⃗⃗⃗ |的最小值为______. 15. 已知有穷数列{a n }共有m 项,记数列{a n }的所有项和为S (1),第二项及以后所有项和为S (2),……第n (1≤n ≤m )项及以后所有项和为S (n ),若S (n )是首项为1,公差为2的等差数列的前n 项和,则当1≤n <m 时,a n =______16. 已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且当0≤x ≤1时,f (x )=log 2(x +a ),若对于x 属于[0,1]都有f(−x 2+tx +12)≥1−log 23,则实数t 的取值范围为______三、解答题(本大题共5小题,共76.0分)17. 已知正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,A 1B与底面ABCD 所成的角为π4(1)求三棱锥A 1-BCD 的体积;(2)求异面直线A 1B 与B 1C 所成的角的大小.18. 已知函数f(x)=cosx(sinx +cosx)−12,(1)若0<α<π2,且sinα=√22,求f (α)的值(2)求函数f (x )最小正周期及函数f (x )在[0,π2]上单调递减区间.19. 为了在夏季降温和冬季取暖时减少能源消耗,业主决定对房屋的屋顶和外墙喷涂某种新型隔热材料,该材料有效使用年限为20年,已知该房屋外表喷涂一层这种隔热材料的费用为每毫米厚6万元,且每年的能源消耗费用H (万元)与隔热层厚度x (毫米)满足关系H(x)=403x+5(0≤x ≤10)设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)请解释H (0)的实际意义,并求f (x )的表达式;(2)当隔热层喷涂厚度为多少毫米时,业主所付的总费用f (x )最少?并求此时与不建隔热层相比较,业主可节省多少钱?20. 已知椭圆Γ:x 24+y 23=1的左、右焦点分别为F 1、F 2,过F 2的直线l 与椭圆Γ相交于P 、Q .(1)求△F 1PQ 的周长;(2)设点A 为椭圆Γ的上顶点,点P 在第一象限,点M 在线段AF 2上,若F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =23F 1P ⃗⃗⃗⃗⃗⃗⃗ ,求点P 的横坐标;(3)设直线l 不平行于坐标轴,点R 为点P 关于x 轴对称点,直线QR 与x 轴交于点N 求△QF 2N 面积的最大值.21. 记无穷数列{a n }的前n 项中最大值为M n ,最小值为m n ,令b n =M n +m n2.求:(1)若a n =2n −3n ,写出b 1,b 2,b 3,b 4的值;(2)设a n =2n −λn ,若b 3=-3,求λ的值及n ≥4时数列{b n }的前n 项和S n ; (3)求证:“数列{a n }是等差数列”的充要条件是“数列{b n }是等差数列.答案和解析1.【答案】A【解析】解:“”⇔0<x<1.∴“”是“x<1”的充分不必要条件.故选:A.利用不等式的解法解出:“”,即可判断出结论.本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.2.【答案】C【解析】解:2015年第二季度利用率为74.3%,第三季度利用率为74.0%,故2015年第三季度环比有所下降,故A错误;2015年第一季度利用率为74.2%,2016年第一季度利用率为72.9%,故2016年第一季度同比有所下降,故B错误;2016年底三季度利用率率为73.2%,2017年第三季度利用率为76.8%,故2017年第三季度同比有所提高,故C正确;2017年第四季度利用率为78%,2018年第一季度利用率为76.5%,故2018年第一季度环比有所下降,故D错误.故选:C.根据同比和环比的定义比较两期数据得出结论.本题考查了新定义的理解,图表认知,属于基础题.3.【答案】C【解析】解:可得圆(x-2)2+y2=9的圆心为C(2,0),半径为R=3.如图,∵CB=CA=R=3,∴∠CBA=∠CAB,∵AC∥MP,∴,∴∠CBA=∠CAB=∠PMA,∴PM=PB=PC+BC⇒PM-PC=BC=3(定值),且3<MC.∴点P的轨迹是双曲线的一部分,故选:C.根据题意可得PM-PC=BC=3(定值),且3<MC.即可得点P的轨迹是双曲线的一部分.本题考查了动点根据的求解,考查了转化思想,属于中档题.4.【答案】B【解析】解:设A=B,由已知得sinA1=sinB1,cosA=sinA1,cosB=sinB1,cosC=sinC1,则A1=B1,所以A+A1=90°,B+B1=90°,C+C1=90°,(舍),或A+A1=90°,B+B1=90°,C=C1-90°,解得:C=45°.故选:B.设等腰△ABC中A=B,由已知得sinA1=sinB1,cosA=sinA1,cosB=sinB1,cosC=sinC1,则A1=B1,结合同角三角函数关系进行化简求值即可.本题主要考查三角函数的化简求值,注意新定义运算法则,诱导公式的应用,属于基础题.5.【答案】{3,4}【解析】解:∵A={1,2,3,4},B={x|2<x<5,x∈R};∴A∩B={3,4}.故答案为:{3,4}.进行交集的运算即可.考查列举法、描述法的定义,以及交集的运算.6.【答案】5【解析】解:由i=3+4i,得,∴|z|=||=.故答案为:5.把已知等式变形,利用复数代数形式的乘除运算,再由复数模的计算公式求解.本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.7.【答案】3【解析】解:由题意,可将增广矩阵的形式还原为线性方程组,得:,∵解为,∴m=2,n=1.∴m+n=3.故答案为:3.本题可可将增广矩阵的形式还原为线性方程组的形式,然后将解代入方程组即可得到m、n的值,即可得到结果.本题主要考查增广矩阵的相关概念及线性方程组的求参数.本题属基础题.8.【答案】6【解析】解:在的二项展开式中,通项公式为:T r+1=x4-r=x4-2r,令4-2r=0,解得r=2.∴常数项==6.故答案为:6.利用通项公式即可得出.本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.9.【答案】10π【解析】解:根据圆锥的主视图可知:圆锥的母线长为5,底面半径为2,所以底面周长为4π,侧面积为×5×4π=10π,故答案为:10π.根据圆锥的主视图可知:圆锥的母线长为5,底面半径为2,所以底面周长为4π再代入侧面积公式可得.本题考查了圆锥的侧面积,属基础题.10.【答案】-2【解析】解:由实数x,y满足,作出可行域如图,由解得A(0,-1).化z=x+2y为y=-x+,由图可知,当直线y=-x+过A(0,-1)时,直线在y轴上的截距最小,z有最小值等于z=0+2×(-1)=-2.故答案为:-2.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.11.【答案】x=1【解析】解:由y=f(x)=,得x-a=y2(y≥0),∴函数f(x)的反函数f-1(x)=x2+a(x≥0).把点(0,1)代入,可得a=1.∴f-1(x)=x2+1(x≥0).由f-1(x)=2,得x2+1=2,即x=1.故答案为:x=1.求出原函数的反函数,代入已知点的坐标求得a,则方程f-1(x)=2的解可求.本题考查函数的反函数的求法,关键是明确反函数的定义域是原函数的值域,是基础题.12.【答案】710【解析】解:学校从3名男同学和2名女同学中任选2人参加志愿者服务活动,基本事件总数n==10.选出的2人中至少有1名女同学包含的基本事件个数m==7,则选出的2人中至少有1名女同学的概率为p=.故答案为:.基本事件总数n==10.选出的2人中至少有1名女同学包含的基本事件个数m==7,由此能求出选出的2人中至少有1名女同学的概率.本题考查概率的求法,考查相互独立事件概率计算公式等基础知识,考查运算求解能力,是基础题.13.【答案】8【解析】解:直线(t为参数),可得直线的方程y=k(x-1),k=tanα,把直线的方程代入抛物线方程可得:ky2-4y-4k=0,直线(t为参数)与抛物线y2=4x相交于A、B两点,设A(x1,y1),B (x2,y2),线段AB中点的坐标为(m,2),可得y1+y2=4,解得k=1,y2-4y-4=0,y1y2=-4,线段AB的长:=•==8.故答案为:8.化简直线的参数方程为普通方程与抛物线方程联立,利用韦达定理求出m,通过弦长公式求解即可.本题考查直线与抛物线的位置关系的综合应用,弦长公式的应用,考查计算能力.14.【答案】2【解析】解∵=∵A,P,D三点共线,∴,即m=.∴===,又∵.∴,即CA•CB=8.∴====.故答案为:2.利用A,P,D三点共线可求出m=,并得到.再利用平面向量的基本性质和基本不等式即可求出的最小值.本题考查平面向量共线定理,是中档题,解题时要认真审题,注意平面向量线性运算的运用.15.【答案】-2n-1【解析】解:S(n)是首项为1,公差为2的等差数列的前n项和,所以S(n)=n+=n2,则a n=S(n)-S(n+1)=n2-(n+1)2=-2n-1,故填:-2n-1.设数列{a n}的前n项和为T n,则S(n)=T m-T n,又知道S(n)是首项为1,公差为2的等差数列的前n项和,则当1≤n<m时,即可得到a n的表达式.本题考查了数列通项的求法,等差数列的前n项和公式,属于基础题.16.【答案】[0,3]【解析】解:由题意,f(x)为周期为4的函数,且是奇函数.0在函数定义域内,故f(0)=0,得a=1,所以当0≤x≤1时,f(x)=log2(x+1),当x∈[-1,0]时,-x∈[0,1],此时f(x)=-f(-x)=-log2(-x+1),又知道f(x+2)=-f(x)=f(-x),所以f(x)以x=1为对称轴.且当x∈[-1,1]时f(x)单调递增,当x∈[1,3]时f(x)单调递减.当x∈[-1,3]时,令f(x)=1-log23,得x=-,或x=,所以在[-1,3]内当f(x)>1-log23时,x∈[-,].设g(x)=-,若对于x属于[0,1]都有,因为g (0)=∈[-,].,故g(x)∈[-,].①当<0时,g(x)在[0,1]上单调递减,故g(x)∈[t-,]⊆[-,].得t≥0,无解.②0≤t≤1时,,此时g(t)最大,g(1)最小,即g(x)∈[t-1,]⊆[-,].得t∈[0,1].③当1<t≤2时,即,此时g(0)最小,g(t)最大,即g(x)∈[,]⊆[-,].得t∈(1,2],④当t>2时,g(x)在[0,1]上单调递增,故g(x)∈[,t-]⊆[-,].解得,t∈(2,3],综上t∈[0,3].故填:[0,3].f(x)为周期为4的函数,且是奇函数.0在函数定义域内,故f(0)=0,得a=1,先得到[-1,3]一个周期内f(x)的图象,求出该周期内使f(x)≥1-log23成立的x 的范围,从而推出的范围,再分t的范围讨论即可.本题考查了复合函数的值域、对称区间上函数解析式的求法、二次函数在闭区间上的最值、函数的对称性、周期性、恒成立等知识.属于难题.17.【答案】解:(1)∵正四棱柱ABCD-A1B1C1D1的底面边长为1,A1B与底面ABCD 所成的角为π4,AA1⊥平面ABCD,∴∠A1BA是A1B与底面ABCD所成的角,∴∠A1BA=π4,∴AA1=AB=1,∴三棱锥A1-BCD的体积:V A1−BCD =13×AA1×S△BCD=13×1×12×1×1=16.解:(2)∵A1D∥B1C,∴∠DA1B是异面直线A1B与B1C所成的角(或所成角的平面角),∵由(1)知AA1=1,∴A1D=BD=A1B,∴∠DA1B=π3,∴异面直线A1B与B1C所成的角的大小为π3.【解析】(1)由AA1⊥平面ABCD,得∠A1BA是A1B与底面ABCD所成的角,从而∠A1BA=,进而AA1=AB=1,由此能求出三棱锥A1-BCD的体积.(2)由A1D∥B1C,得∠DA1B是异面直线A1B与B1C所成的角(或所成角的平面角),由此能求出异面直线A1B与B1C所成的角的大小.本题考查三棱锥的体积的求法,考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 18.【答案】解:(1)∵函数f(x)=cosx(sinx +cosx)−12,若0<α<π2,且sinα=√22,∴cosα=√1−sin 2α=√22,∴f (α)=cosα(sinα+cosα)-12=√22(√22+√22)-12=12.(2))∵函数f(x)=cosx(sinx +cosx)−12=12sin2x +1+cos2x 2-12=√22sin (2x +π4), 故f (x )的最小正周期为2π2=π.令2k π+π2≤2x +π4≤2k π+3π2,求得k π+π8≤x ≤k π≤k π+5π8,可得函数的减区间为[k π+π8,k π+5π8],k ∈Z . 再根据x ∈[0π2],可得函数f (x )在[0,π2]上单调递减区间为[π8,π2]. 【解析】(1)由题意利用同角三角函数的基本关系求得f (α)的值.(2)利用三角恒等变换,化简函数的解析式,再利用正弦函数的周期性、单调性得出结论.本题主要考查同角三角函数的基本关系,三角恒等变换,正弦函数的周期性、单调性,属于中档题.19.【答案】解:(1)H (0)=405=8,H (0)的实际意义为不使用新型隔热材料时,每年的能源消耗费用为8万元. f (x )的解析式为:f(x)=8003x+5+6x (0≤x ≤10). (2)f (x )=8003x+5+6x =8003x+5+2(3x +5)-10≥2√1600-10=70. 当且仅当8003x+5=2(3x +5)即x =5时取等号.∴厚度为5cm 时,总费用最小70万元.若不使用隔热材料,则20年的能源消耗总费用为8×20=160万元, 故业主可节省90万元. 【解析】(1)将建造费用和能源消耗费用相加得出f (x )的解析式;(2)利用基本不等式得出f (x )的最小值及对应的x 的值,与不使用隔热材料的总费用比较得出结论.本题考查了函数解析式的求解,函数最值的计算,属于中档题. 20.【答案】解:(1)由题意可得a =2,则△F 1PQ 的周长=|PF 1|+|QF 1|+|PQ |=|PF 1|+|QF 1|+|PF 2|+|QF 2|=4a =4×2=8, (2)设P (x 0,y 0),0<x 0<2, ∴x 024+y 023=1,∵A (0,√3),F 2(1,0), ∴直线AF 的方程为y =-√3x +√3, 设M 的坐标为(x M ,y M ), ∴y M =-√3x M +√3, ∵F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =23F 1P ⃗⃗⃗⃗⃗⃗⃗ ,∴(x M +1,y M )=23(x 0+1,y 0), ∴x M =23x 0-13,y M =23y 0, ∴23y 0=-√3(23x 0-13)+√3,即y 0=-√3(x 0-2),代入到x 024+y023=1,整理化简可得5x 02-16x 0+12=0,解得x 0=2(舍去)或x 0=65, 故点P 的横坐标为65,(3)设P (x 1,y 1),Q (x 2,y 2),设直线l 的方程为x =my +1, 联立{x =my +1x 24+y 23=1,得(3m 2+4)y 2+6my -9=0.∴y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4, 由题设知,R (x 1,-y 1), ∴直线QR 的方程为y +y 1=y 2+y 1x 2−x 1(x -x 1).令y =0,得x =x 1+y 1(x 2−x 1)y 2+y 1=my 1+1+y 1(my 2−my 1)y 2+y 1=1+m (y 2y 1+y 12+y 1y 2−y 12y 2+y 1)=1+m •2y 1y 2y1+y 2=1+2m •−93m 2+4−6m 3m 2+4=4,∴点N (4,0). ∴|F 2N |=4-1=3,∴△QF 2N 面积S =12|F 2N |•|y 2|=32|y 2|, ∵0<|y 2|≤√3,当|y 2|=√3时,△QF 2N 面积最大,最大值为3√32.【解析】(1)根据椭圆的性质可得周长为4a ,即可求出答案,(2)设P (x 0,y 0),求出直线AF ,设M 的坐标为(x M ,y M ),根据,可得x M =x 0-,y M =y 0,即可得到y 0=-(x 0-2),代入到+=1,整理即可求出(3)联立直线方程与椭圆方程,化为关于y 的一元二次方程,利用根与系数的关系求得P ,Q 的纵坐标的和与积,再求出N 的坐标,写出三角形面积公式,即可求出.本题考查椭圆方程的性质,考查直线与椭圆位置关系的应用,向量的运算,直线方程,韦达定理,考查计算能力和转化能力,是中档题.21.【答案】(1)b 1=-1,b 2=−32,b 3=−32,b 4=1;(2)λ=4,S n =2n −n 2−3n +2;(3)证明略.解:(1)∵a n =2n -3n ,∴a 1=-1,a 2=-2,a 3=-1,a 4=4, ∴b 1=-1,b 2=-32,b 3=-32,b 4=1;(2)设a n =2n −λn ,可得a 1=2-λ,a 2=4-2λ,a 3=8-3λ, 若b 3=-3,可得λ>0,由6-3λ=-6,可得λ=4; 由10-4λ=-6,可得λ=4;由12-5λ=-6,可得λ=185, 若λ=4,可得a 1=-2,a 2=-4,a 3=-4,满足题意;λ=185时,a 1=-85,a 2=-165,a 3=-145,可得b 3=-125,不符题意,舍去, 综上可得λ=4,即有数列中的项为-2,-4,-4,0,12,40,…, 可得b n =−4+2n −4n2,n ≥5,则前n 项和S n =-10+(24+25+…+2n -1)-2(6+7+…+n +1) =-10+16(1−2n−4)1−2-2•12((n -4)(6+n +1) =2n -n 2-3n +2;(3)证明:充分性:若“数列{a n }是等差数列”,设其公差为d , 则b n =a 1+a n2,b n +1=a 1+a n+12=b n +d2,故“数列{b n }是等差数列”;必要性:若“数列{b n }是等差数列”,设其公差为d ′,则b n+1-b n=M n+1+m n+12-M n+m n2=M n+1−M n2+m n+1−m n2=d′,根据定义,M n+1≥M n,m n+1≤m n,至少有一个取等号,当d′>0时,M n+1>M n,a n+1=M n+1>M n≥a n,即数列{a n}为增数列,则M n=a n,m n=a1,则b n+1-b n=a n+1+a12-a n+a12=a n+1−a n2=d′,即a n+1-a n=2d′,即“数列{a n}是等差数列”,同理可得d′<0时,“数列{a n}是等差数列”;当d′=0时,M n+1=M n,且m n+1=m n,故{a n}为常数列,是等差数列.综上可得:“数列{a n}是等差数列”是“数列{b n}是等差数列”的充要条件.【解析】(1)分别计算出a1,a2,a3,a4结合题意即可得b1,b2,b3,b4的值;(2)由新定义,可得λ>0,考虑三种情况求得λ,检验可得所求λ;进而得到b n,由数列的分组求和,可得所求和;(3)充分性易证,无论d为何值,始终有b n=,即可证得结果,必要性须分类证明.本题考查数列的通项公式的求法,考查实数的取值范围的求法,考查数列性质、不等式等基础知识,考查运算求解能力,考查函数与方程思想,属于难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019上海市二模试卷
C卷答案
上海市初三语文质量测试(C)参考答案及评分标准
一、文言文(40分)
(一)(15分,每小题3分,错一字扣1分,扣完为止)
1.却疑春色在邻家
2. 怀旧空吟闻笛赋
3. 何日遣冯唐
4. 孤村落日残霞
5. 并怡然自乐
(二)(4分)
6.(2分)C
7.(2分)海棠怎样了?(或海棠还好吗)昨夜雨疏风骤
(三)(9分)
8.(4分)(1)更加(2)多
9.(3分) C
10.(2分)洁身自好的高尚品德(不愿与世俗同流合污)
(四)(12分)
11.(4分)D
12.(4分)出生入死的百战,
13.(4分)教育孩子们不忘过去,珍惜安逸生活。

(或“教育孩子富贵来之不易,需知创业艰难”;“在安逸的生活中不可丧失斗志,应多多历练,有所作为”)
二、现代文(40分)
(一)(18分)
14.(2分)肠道微生物群落
15.(4分)列数字准确具体地说明拟杆菌和厚壁菌类群是人体的众多菌类中是最主要的菌类
16.(4分)人的体重是由肠道微生物群落决定的(或:肠道微生物群落能够改变人的体重)
17.(4分)B(A是“作用之一”;C是“体重增加”;D是“研究结果目前尚不能肯定”)
18.(4分)在平常的饮食中长期食用低脂低糖的食物,不吃高糖高脂的食物,使体内拟杆菌增多,厚壁菌类群减少(因为通过调整饮食结构可以改变肠道内细菌群的种类和数量,更好地消化新食物从而改变体重)。

(二)(22分)
19.(4分)A
20.(4分)(选句得1分,效果3分)
选A(1分)效果:疑问句引发“小树”从不同角度思考,引导他与同学们成为朋友,表现了“我”关爱学生、循循善诱的师者形象。

(3分)选B(1分)效果:反问句,加强语气,引导“小树”忽略差异关注共性,努力成为同学们的朋友,表现了“我”关爱学生、循循善诱的师者形象。

(3分)选C(1分)效果:疑问句激发“小树”对自身兴趣点的关注,也为帮“小树”定计划提供思路,表现了“我”关爱学生、循循善诱的师者形象。

(3分)选D(1分)效果:疑问句激发“小树”的兴趣点,引导他发挥自身优势主动帮助他人,表现了“我”关爱学生、循循善诱的师者形象。

(3分)
21.(6分)沉默隐忍冷漠憎恨获得赞赏
22.(4分)联系上下文看,放在第⑨段是最为恰当的。

(1分)理由:此处
小树和同学们都敞开了心扉,为曾经有过的想法和行为而惭愧歉意。

同时从第⑩段的“我打断他们”这一句中可以推知同学们都在抢着表态。

23.(4分)题目的浅层是草长高了,可以扎草玩意儿;深层的意思是学生的心灵会走过寒冬,走向火热的夏天,会懂得“爱”,会日趋成熟。

三、综合运用(10分)
24.(4分)腔调主要大师艺术手法行当分类
25.(4分)示例:这种说法是不对的,戏曲文化是中国的传统文化,它是我国民间艺人和戏曲表演家传给我们的宝贵财富,散发着迷人的芳香,作为现代人,我们有责任和义务欣赏戏曲,传承戏曲文化,让戏曲文化进一步发扬光大。

26.(2分)李逵
四、写作(60分)
27.(60分)按中考作文评分标准评分。

相关文档
最新文档