2014年4月自考线性代数试题及答案

合集下载

2014级线代试题及解答

2014级线代试题及解答

线性代数期末试题一、填空题 (每小题3分,共15分)1.设3阶矩阵A 与B 相似,且B 的特征值为1,2,2,则14A E --=2.若四阶行列式的第1行元素依次为1,0,2,,a - 第3行元素的余子式依次为5,6,4,1,-则a =_________3.若向量组1(,1,1,1)T αλ=,2(1,,1,1)T αλ=,3(1,1,,1)T αλ=,4(1,1,1,)T αλ=,其秩为3,则 λ=4.设方阵A 满足方程2(0),A bA cE O c ++=≠ E 为单位矩阵,则=-1A5. 设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B =二、单项选择题(每小题3分,共15分)1.设A 和B 都是n 阶方阵, 下列正确的是( )(A ) 222()2A B A AB B +=++ (B )111()A B A B ---+=+(C )若0AB =, 则0A =或0B = (D )()T T T AB A B =2.设,,A B C 均为n 阶方阵,且AB BC CA E ===. 则222A B C ++=( )(A ) 3E (B ) 2E (C ) E (D ) 03.设βααα,,,321均为n 维向量,又βαα,,21线性相关,βαα,,32线性无关,则下列正确的是( )(A )321,,ααα线性相关 (B )321,,ααα线性无关 (C )1α可由βαα,,32线性表示 (D )β可由21,αα线性表示4.设A 和B 都是n 阶非零方阵, 且0AB =, 则A 的秩必( )(A )等于n (B )小于n (C )大于n (D )不能确定5.设n 阶矩阵A 的伴随阵为12340,,,,A ηηηη*≠是非齐次线性方程组Ax b =的互不相等的解向量, 则0Ax = 的基础解系向量个数为 ( )(A )不确定 (B )3个 (C )2个 (D )1个三、(10分) 已知2AB A B =+, 其中110011101A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,求B 四、(12分)设向量组1(2,1,4,3)T α=,2(1,1,6,6)T α=--,3(1,2,2,9)T α=---,4(1,1,2,7)T α=-,5(2,4,4,9)T α=. 求该向量组的最大无关组向量,并把其余向量用最大无关组向量线性表示.五、(13分)设矩阵433231213A --⎛⎫⎪=- ⎪ ⎪⎝⎭1.求A 的特征值与特征向量;2. 判断A 是否可以对角化,并说明理由.六、(15分)讨论λ取何值时, 线性方程组1231232123244x x x x x x x x x λλλ-+=-⎧⎪++=⎨⎪-++=⎩1.有惟一解;2. 无解;3.有无穷多个解, 并求其通解.七、(10分)设123,,ααα均为三维列向量,矩阵123(,,)A ααα=,且1A =. 若123123123(,23,34)B ααααααααα=++++++ ,计算B .八、(10分)设0ξ是非齐次线性方程组Ax b =的一个解,12,,,n r -ξξξ 是对应的齐次线性方程组的基础解系. 证明: 向量001010,,,n r n r --==+=+ηξηξξηξξ是非齐次线性方程组Ax b =线性无关的解向量.线性代数 解答一、填空题1. 3 ;2. -3 ; 3 -3 ; 4. A bEc+-; 5. 2 二、单项选择题1. C;2. A;3. C;4. B;5. D三、(2)A E B A += ⇒ 1(2)B A E A -=+~100011010101001110⎛-⎫ ⎪ - ⎪⎪ -⎭⎝011101110B ⎛-⎫⎪=- ⎪⎪-⎭⎝四、 ()1234521112101041121401103,,,,,46224000133697900000A ααααα---⎛⎫⎛⎫⎪ ⎪--⎪ ⎪==→ ⎪ ⎪---⎪ ⎪-⎝⎭⎝⎭即124,,ααα为一个极大无关组. 312,ααα=-- 5124433.αααα=+-五、2433231(2)(4)0,213A E λλλλλλ----=--=--=-A 的特征值1234, 2.λλλ===由0331014211011,211000A E ---⎛⎫⎛⎫ ⎪ ⎪-=--→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 基础解系为111,1⎛⎫⎪=- ⎪ ⎪⎝⎭ξ得对应1λ=0的全部特征向量为111111,(0)1k k k ⎛⎫⎪=-≠ ⎪ ⎪⎝⎭ξ由2331002211011,211000A E --⎛⎫⎛⎫ ⎪ ⎪-=-→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭基础解系为201,1⎛⎫⎪=- ⎪ ⎪⎝⎭ξ对应232λλ==的全部特征向量为222,(0)k k ≠ξ;2.不能对角化。

历年2014-2009全国自考线性代数试题及答案

历年2014-2009全国自考线性代数试题及答案

全国2010年7月高等教育自学考试试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R (A )表示矩阵A 的秩;|A |表示A 的行列式;E 表示单位矩阵。

1.设3阶方阵A=[α1,α2,α3],其中αi (i=1,2,3)为A 的列向量, 若|B |=|[α1+2α2,α2,α3]|=6,则|A |=( )A.-12 B.-6 C.6 D.122.计算行列式=----32320200051020203( )A.-180 B.-120C.120 D.1803.设A =⎥⎦⎤⎢⎣⎡4321,则|2A *|=( )A.-8 B.-4C.4 D.8 4.设α1,α2,α3,α4都是3维向量,则必有 A. α1,α2,α3,α4线性无关 B. α1,α2,α3,α4线性相关 C. α1可由α2,α3,α4线性表示D. α1不可由α2,α3,α4线性表示5.若A 为6阶方阵,齐次线性方程组Ax =0的基础解系中解向量的个数为2,则R (A )=( )A .2 B 3C .4 D .56.设A 、B 为同阶矩阵,且R (A )=R (B ),则( )A .A 与B 相似B .|A |=|B |C .A 与B 等价D .A 与B 合同7.设A 为3阶方阵,其特征值分别为2,l ,0则|A +2E |=( )A .0 B .2C .3D .248.若A 、B 相似,则下列说法错误..的是( )A .A 与B 等价 B .A 与 B 合同C .|A |=|B | D .A 与B 有相同特征 9.若向量α=(1,-2,1)与β= (2,3,t )正交,则t =( )A .-2 B .0C .2D .410.设3阶实对称矩阵A 的特征值分别为2,l ,0,则( )A .A 正定 B .A 半正定C .A 负定D .A 半负定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

2014线性代数A卷答案

2014线性代数A卷答案

20142学期《线性代数》考试A 卷答案及评分标准一、选择题(每题2分,共计20分)1-5 D C C A C 6-10 C A A A C二、填空题(每题2分,共计20分)1、-122、1或33、10123321015432176543---⎛⎫⎪-⎪ ⎪⎪⎝⎭4、1815、28a6、11121321111222231331323322()2a a a a a a a a a aa a -⎛⎫⎪--- ⎪ ⎪-⎝⎭7、R (A )=R (A ,b )或线性方程组系数矩阵的秩与线性方程组增广矩阵的秩相等。

8、21,αα3,α 9、无 10、16三、证明题(每题10分,共计20分)1、证明:线性方程组的系数矩阵为A=1100011000111001-⎛⎫⎪-⎪ ⎪-⎪-⎝⎭; (1分) 线性方程组的增广矩阵为12341100011000111001a a A a a -⎛⎫⎪-⎪= ⎪-⎪-⎝⎭; (1分) 又线性方程组有解的充分必要条件为R (A )=R (A ), (2分)12341100011000111001a a a a -⎛⎫⎪- ⎪ ⎪-⎪-⎝⎭~12314110001100011011a a a a a -⎛⎫ ⎪- ⎪ ⎪- ⎪-+⎝⎭~123214110001100011011a a a a a a -⎛⎫ ⎪- ⎪ ⎪- ⎪-++⎝⎭~12332141100011000110a a a a a a a -⎛⎫ ⎪- ⎪ ⎪- ⎪+++⎝⎭(4分)∴3214a a a a +++=0 (2分) 证毕。

2、证明:假设存在一组数12,r k k k ,使得02211=+++r r k k k βββ 成立, (2分)即++++++++++p r p r r k k k k k k ααα)()()(2211 0=+r r a k 因向量组r a a a ,,,21 线性无关,所以⎪⎪⎩⎪⎪⎨⎧==++=+++000221r r r k k k k k k ⇔⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛00010011011121 r k k k ,因为01100110111≠= ,(6分) 故方程组只有零解,即当且仅当021====r k k k ,故r βββ,,,21 线性无关. (2分)四、计算题(共计40分)1、解:将第2,3…n 列都加到第一列得:(3分)()()()()1111a n bb b b a n b a bb a n b b a b a n b bba+-+-+-+-D =[]11(1)1b b b a b b a n b b a b =+-(4分)(1分)2、解:由 B AX X +=2,得 B X A E =-)2(. 因为032110111|2|≠=--=-A E ,所以矩阵A E -2可逆, (2分) B A E A E B A E X |2|*)2()2(1--=-=- 求出1(2)E A --得(4分)或者(2)E A E -=110100101010102001-⎛⎫ ⎪- ⎪ ⎪⎝⎭~1((2))E E A --=10002/31/301012/31/300101/31/3⎛⎫ ⎪- ⎪⎪-⎝⎭,即1(2)E A --=02/31/312/31/301/31/3⎛⎫⎪- ⎪ ⎪-⎝⎭ X = 02112211321303330110311--⎛⎫⎛⎫⎛⎫⎪⎪ ⎪--=-⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭(2分) 3、解:非齐次线性方程组的增广矩阵为()⎪⎪⎪⎭⎫ ⎝⎛-----==b a A B 1223131121β⎪⎪⎪⎭⎫ ⎝⎛-+---225050501121~b a []10011101201j c bc a b a (n )b a b j ,,nab--======+--=-[]1(1)().n a n b a b -=+--⎪⎪⎪⎭⎫ ⎝⎛++---320010101121~b a (2分) 所以(1)当3,2-≠-=b a 时,()()B R A R ≠,非齐次线性方程组无解; (2分)(2)当2-≠a 时,()()3==B R A R ,非齐次线性方程组有唯一解; (2分)(3)当3,2-=-=b a 时,()()3<=B R A R ,非齐次线性方程组有无穷多解,(2分)当3,2-=-=b a 时,⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛---000010101101~000010101121~B =R (4分) 矩阵R 对应的线性方程组为1321,1.x x x -=⎧⎪=-⎨⎪⎩把3x 看成自由未知数,取3x =k,k 为任意实数得1231,1.x k x x k=+⎧⎪=-⎨⎪=⎩所以,其通解为123111*********x k k x x k x k k +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪--- ⎪⎪ ⎪ ⎪ ⎪ ⎪===+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(其中k 为任意实数.) 4、解 (1) A 的特征多项式为|A -λE|=λλλ---111011002=(1-λ)2(2-λ)所以A 的特征值为λ1=2, λ2=λ3=1. (4分)当λ1=2时,解线性方程组(A-2E)x =0.由A-2E=⎪⎪⎪⎭⎫ ⎝⎛--111011000∽⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--00021102101得基础解系x 1=(1/2,1/2,1)T所以对应于λ1=2的所有特征向量为k 1 x 1 (k 1≠0)当λ2=λ 3 =1时,解线性方程组(A-E)x =0.由 (4分)A- E=⎪⎪⎪⎭⎫ ⎝⎛011001001∽⎪⎪⎪⎭⎫ ⎝⎛000010001得基础解系x 2=(0,0,1)T所以对应于λ2=λ 3 =1的所有特征向量为k 2 x 2 (k 2≠0) (4分)。

2014年4月自考线性代数真题及答案

2014年4月自考线性代数真题及答案

三、计算题(本大题共7小题,每小题9分,其63分)
1 4 16.计算行列式D= 2 3
3 1 4 2
2 3 1 4
4 2 的值. 3 1
a 21 a 22 a 23 a11 a12 a13 17.设矩阵A= a 21 a 22 a 23 ,B= a11 3a 31 a12 3a 32 a13 3a 33 ,求可逆矩阵P,使得PA=B. a a 31 a 32 a 33 31 a 32 a 33 1 1 2 1 0 0 18.设矩阵A= 2 2 3 ,B= 2 1 1 ,矩阵X满足XA=B,求X. 4 3 3 1 2 2
1 +2 2 + 3 , 1 + 2 +2 3 也是该方程组的基础解系.
全国2014年4月高等教育自学考试线性代数(经管类)答案课程代码:04184
一、单项选择题 1-5 CABDC 二、填空题(本大题共10小题,每小题2分,共20分)
1 0 1 1 4 3 6.0 7.4 8. 9. 10.-2 11. , 12.1 13. 1 k (1 2 ) 14. 15.2 3 2 5 5 0 1
导出组同解方程组为
基础解系 1 (1, 1,1, 0)T , 2 (2,3, 0,1)T ,通解为 * k11 k2 2 , k1 , k2 R.
2
21.解:特征方程 | E A |
0 0
0 0 2 1 ( 2)( 2 a 2 2a 1) 0 1 a
二、填空题(本大题共10小题,每小题2分,共20分)
2 3 4 6.3阶行列式 1 5 2 第2行元素的代数余子式之和A21+A22+A23=________. 1 1 1

全国自考04184线性代数(经管类)试题及参考答案解析【大题附解析过程】

全国自考04184线性代数(经管类)试题及参考答案解析【大题附解析过程】

全国 2014 年 10 月自学考试 04184 线性代数(经管类)试题及答案解析【大题附解析过程】 第 3 页 共 -7- 页
全国 2014 年 10 月自学考试 04184 线性代数(经管类)试题及答案解析【大题附解析过程】 第 4 页 共 -7- 页
全国 2014 年 10 月自学考试 04184 线性代数(经管类)试题及答案解析【大题附解析过程】 第 5 页 共 -7- 页
全国 2014 年 10 月自学考试 04184 线性代数(经管类)试题及答案解析【大题附解析过程】
全国 2014 年 10 月高等教育自学考试统一命题考试 线性代数(经管类)试题答案及评分参考 课程代码:04184 【大题答案附详细解析过程】
第 1 页 共 -7- 页源自全国 2014 年 10 月自学考试 04184 线性代数(经管类)试题及答案解析【大题附解析过程】 第 2 页 共 -7- 页
全国 2014 年 10 月自学考试 04184 线性代数(经管类)试题及答案解析【大题附解析过程】 第 6 页 共 -7- 页
全国 2014 年 10 月自学考试 04184 线性代数(经管类)试题及答案解析【大题附解析过程】 第 7 页 共 -7- 页

041841410全国高等教育自学考试 线性代数(经管类)试题

041841410全国高等教育自学考试 线性代数(经管类)试题

2014年10月高等教育自学考试《线性代数(经管类)》试题课程代码:04184一、单项选择题1.设3阶行列式2111232221131211=a a a a a a ,若元素ij a 的代数余子式为ij A (3,2,1,=j i ),则=++333231A A A ( D )A .-1B .0C .1D .22.设A 为3阶矩阵,将A 的第3行乘以21-得到单位矩阵E ,则=A ( A ) A .-2 B .21- C .21 D .2 3.设向量组321,,ααα的秩为2,则321,,ααα中( C )A .必有一个零向量B .任意两个向量都线性无关C .存在一个向量可由其余向量线性表出D. 每个向量可由其余向量线性表出4.设⎪⎪⎪⎭⎫ ⎝⎛---=466353331A ,则下列向量中是A 的属于特征值-2的特征向量为( B ) A .⎪⎪⎪⎭⎫ ⎝⎛-011 B .⎪⎪⎪⎭⎫ ⎝⎛-101 C .⎪⎪⎪⎭⎫ ⎝⎛201 D .⎪⎪⎪⎭⎫ ⎝⎛2115.二次型212322213214),,(x x x x x x x x f +++=的正惯性指数为( C )A .0B .1C .2D .3二、填空题6.设1312)(--=x x f ,则方程0)(=x f 的根是 5 。

7.设矩阵⎪⎪⎭⎫ ⎝⎛=0210A ,则=A ⎪⎪⎭⎫ ⎝⎛--0210。

8.设A 为3阶矩阵,21-=A ,则行列式=-1)2(A 41-。

9.设矩阵⎪⎪⎭⎫ ⎝⎛=4321B ,⎪⎪⎭⎫ ⎝⎛=2001P ,若矩阵A 满足B PA =,则=A ⎪⎪⎭⎫ ⎝⎛22/321。

10.设向量T )4,1(1-=α,T )2,1(2=α,T )2,4(3=α,则3α由1α,2α线性表出的表示式为2133ααα+-=。

11.设向量组T )1,1,3(1=α,T )0,1,4(2=α,T k ),0,1(3=α线性相关,则数=k -1 。

成人自学考试线性代数题目及答案

成人自学考试线性代数题目及答案

2004年10月自学考试线性代数答案1做试题,没答案?上自考365,网校名师为你详细解答!2004年10月自学考试线性代数答案第一部分 选择题(共20分)一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设行列式等于 ( )A .-81B .-9C .9D .8l2.设A 是m×n 矩阵,B 是S×n 矩阵,C 是m×s 矩阵,则下列运算有意义的是 ( ) A .AB B .BC3.设A ,B 均为n 阶可逆矩阵,则下列各式中不正确的是( )4.已知,则下列向量中可以由线性表出的是( )A .(1,2,3)B .(1,-2,0)C .(0,2,3)D .(3,0,5) 5.设A 为n(n>2)阶矩阵,秩(A)<n-l ,( )A .0B .1C . n-1D .n2004年10月自学考试线性代数答案26.矩阵的秩为( )A .1 8.2 C .3 D .4 7.设是任意实数,则必有( )8.线性方程组的基础解系中所含向量的个数为( ) A.1 B .2 C .3 D .49.n 阶方阵A 可对角化的充分必要条件是 ( ) A .A 有n 个不同的特征值 B .A 为实对称矩阵C .A 有n 个不同的特征向量D .A 有n 个线性无关的特征向量 10.设A 是n 阶正定矩阵,则二次型( )A .是不定的B .是负定的C .当n 为偶数时是正定的D .当n 为奇数时是正定的第二部分 非选择题(共80分)二、填空题(本大题共l0小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

错填或不填均无分。

11.行列式2004年10月自学考试线性代数答案3的值为_________.12.设A 为2阶方阵,且13.设向量α=(6,-2,0,4),β=(一3,l ,5,7),则由2α+γ=3β所确定的向量y=_________. 14.已知向量组线性相关,则k=___.有解的充分必要条件是t=____.16.设A 是3阶矩阵,秩(A)=2,则分块矩阵的秩为——.17.设A 为3阶方阵,其特征值为3,一l ,2,则|A|=____. 18.设n 阶矩阵A 的 n 个列向量两两正交且均为单位向量,则_______19.设A=2是可逆矩阵A 的一个特征值,则矩阵必有一个特征值等于__________. 20.实二次型的规范形为____三、计算题(本大题共6小题。

(完整版)线性代数习题集带答案

(完整版)线性代数习题集带答案

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x xxx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a db a dc a dc bd c b a d c ba d cb a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x ;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a a a a aa a D ---------=110001100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b adc b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档