高中数学必修1综合测试题及答案

合集下载

高一数学必修一综合试卷及答案

高一数学必修一综合试卷及答案

高一数学必修一综合试卷及答案【导语】高一阶段是学习高中数学的关键时期.对于高一新生而言,在高一学好数学,不仅能为高考打好基础,同时也有助于物理、化学等学科的学习,这篇是由无忧考网—高一频道为大家整理的《高一数学必修一综合试卷及答案》希望对你有所帮助!一、选择题:(本大题共10题,每小题5分,共50分)1.设全集U={1,2,3,4,5,6,7},集合A={1,3,5},集合B={3,5},则(C)2.如果函数f(x)=x+2(a?1)x+2在区间(?∞,4]上是减函数,那么实数a的取值范围2A.U=A∪BB.U=(CUA)∪BCU=A∪(CUB)D.U=(CUA)∪(CUB)B、a≥?3C、a≤5是(A)A、a≤?3A.4x+2y=5D、a≥53.已知点A(1,2)、B(3,1),则线段AB的垂直平分线的方程是(B)B.4x?2y=5C.x+2y=5D.x?2y=54。

设f(x)是(?∞,+∞)上的奇函数,且f(x+2)=?f(x),当0≤x≤1时,f(x)=x,则f(7。

5)等于(B)A.0.5yB.?0。

5yC.1。

5D。

?1。

55。

下列图像表示函数图像的是(Cy)yxxxxABCD6.在棱长均为2的正四面体A?BCD中,若以三角形ABC为视角正面的三视图中,其左视图的面积是(C).A.3C.2(B).A.m⊥α,m⊥β,则α//βC.m⊥α,m//β,则α⊥β22ADBC题中不正确的是...B.263D.227.设m、n表示直线,α、β表示平面,则下列命B.m//α,αIβ=n,则m//nD.m//n,m⊥α,则n⊥αD.2?28.圆:x+y?2x?2y?2=0上的点到直线x?y=2的距离最小值是(A).A.0B.1+2C.22?29.如果函数f(x)=ax2+ax+1的定义域为全体实数集R,那么实数a的取值范围是(A).A.[0,4]B.[0,4)C.[4,+∞)D.(0,4)10。

a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a—7平行且不重合的(。

高中数学必修1综合检测(含答案)

高中数学必修1综合检测(含答案)

必修1综合检测第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2013山东)已知集合{0,1,2}A =,则集合{|,}B x y x A y A =-∈∈中元素的个数是A .1B .3C .5D .92.已知集合}2|{≤=x x A ,}|{a x x B <=,若B A ⊆,则a 的取值范围是A .}2|{≤a aB .}2|{≥a aC .}2|{>a aD .}2|{<a a3.函数1-=x y 的定义域为M ,函数)1,0(log ≠>=a a x y a 的定义域为N ,则有A .M N M =B .N N M =C .N N M =D .∅=N M4.已知)0()(2≠++=a c bx ax x f 是偶函数,那么函数cx bx ax x g ++=23)(是A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数5.下列哪组中的两个函数是同一函数A .2)(x y =与x y =B .33x y =与x x y 2= C .2x y =与2)(x y = D .33)(x y =与x y =6.下列函数中,在区间)2,0(上是增函数的是A .542+-=x x yB .x y =C .x y -=2D .x y 5.0log = 7.函数)1,0(1≠>=-a a a y x 的图象恒过点A .)1,1(B .)0,1(C .)1,0(D .)1,2(8.设a =2lg ,b =3lg ,则12log 5等于A .a b a ++12B .a b a ++12C .a b a -+12D .ab a -+12 9.已知函数5)1(22+--=x a x y 在区间),4(+∞上是增函数,则实数a 的取值范围是A .5a ≥B .5a ≤C .6-≤aD .6-≥a10.已知函数3)1(2-=-x x f ,则)2(f 的值为A .2-B .6C .1D .011.已知9.04=a ,48.08.0=b ,5.1)21(-=c ,则c b a ,,的大小关系是A .c b a >>B .a c b >>C .a b c >>D .b c a >>12.函数)0(21)(>++=x xx x f 的值域是 A .),21(+∞ B .),1(+∞ C .)1,21( D .)21,0( 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题每小题5分,共20分.把答案填在题中横线上)13.已知幂函数的图象过点)2,2(,这个函数的表达式为 .14.函数)34(log 5.0-=x y 的定义域是 . 15.=++--221312])21[()278(25.0 . 16.若函数)(x f 唯一的一个零点同时在区间)0,2(),0,4(),0,8(),0,16(----内,下列命题:①)(x f 在区间)0,1(-内有零点;②)(x f 在区间)1,2(--或)0,1(-内有零点;③)(x f 在区间]2,16(--内无零点;④)(x f 在区间)1,16(--内无零点.其中正确命题的序号是 .三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分) 求22)2(lg 20lg 5lg 8lg 325lg +++的值.设全集为R ,}73|{<≤=x x A ,}102|{<<=x x B ,求)(B A C R 及B A C R )(.19.(本小题满分12分)已知集合}0|{2=++=b ax x x A ,}03|{2=-=x x x B ,若A B ∅≠⊆,求实数b a ,的值.20.(本小题满分12分)已知函数)(2)(2R a a ax x x f ∈+-=,求)(x f 在区间]1,1[-上的最小值.设函数)0()(2>++=a c bx ax x f ,且2)1(a f -=. (1)求证:函数)(x f 有两个零点;(2)设21,x x 是函数)(x f 的两个零点,求当c b a ::值为多少时||21x x -有最小值.22.(本小题满分12分) 已知函数xa x x f +=)(,其中a 是大于零的常数. (1)证明:)(x f 在),0()0,(+∞-∞ 上是奇函数;(2)证明:函数)(x f 在],0(a 上是减函数,在),[+∞a 上是增函数;(3)设常数)4,1(∈a ,求函数)(x f 在21≤≤x 时的最大值和最小值.。

高中数学必修一练习题目( 带答案)

高中数学必修一练习题目( 带答案)

人教A 版·数学单元综合测试单元综合测试一(第一章)时间:120分钟 分值:150分1.集合{1,2,3}的所有真子集的个数为( ) A .3 B .6 C .7 D .82.下列五个写法,其中错误..写法的个数为( ) ①{0}∈{0,2,3};②Ø {0};③{0,1,2}⊆{1,2,0};④0∈Ø;⑤0∩Ø=Ø A .1 B .2 C .3 D .4 C3.使根式x -1与x -2分别有意义的x 的允许值集合依次为M 、F ,则使根式x -1+x -2有意义的x 的允许值集合可表示为( ) A .M ∪F B .M ∩F C .∁M F D .∁F M4.已知M ={x |y =x 2-2},N ={y |y =x 2-2},则M ∩N 等于( ) A .N B .M C .R D .Ø5.函数y =x 2+2x +3(x ≥0)的值域为( ) A .R B .[0,+∞) C .[2,+∞) D .[3,+∞)6.等腰三角形的周长是20,底边长y 是一腰的长x 的函数,则y 等于( ) A .20-2x (0<x ≤10) B .20-2x (0<x <10) C .20-2x (5≤x ≤10) D .20-2x (5<x <10)7.用固定的速度向图1甲形状的瓶子注水,则水面的高度h 和时间t 之间的关系是图1乙中的( )甲乙图18.已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( ) ①y =f (|x |) ②y =f (-x ) ③y =xf (x ) ④y =f (x )+x A .①③ B .②③ C .①④ D .②④9.已知0≤x ≤32,则函数f (x )=x 2+x +1( )A .有最小值-34,无最大值B .有最小值34,最大值1C .有最小值1,最大值194D .无最小值和最大值10.已知函数f (x )的定义域为[a ,b ],函数y =f (x )的图象如图2甲所示,则函数f (|x |)的图象是图2乙中的( )甲乙图211.若偶函数f (x )在区间(-∞,-1]上是增函数,则( )A .f (-32)<f (-1)<f (2)B .f (-1)<f (-32)<f (2)C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)12.(2009·四川高考)已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎣⎡⎦⎤f (52)的值是( ) A .0 B.12 C .1 D.52第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设全集U ={a ,b ,c ,d ,e },A ={a ,c ,d },B ={b ,d ,e },则∁U A ∩∁U B =________. 14.设全集U =R ,A ={x |x ≥1},B ={x |-1≤x <2},则∁U (A ∩B )=________.15.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上为减函数,求实数a 的取值范围为________.16.若f (x )=(m -1)x 2+6mx +2是偶函数,则f (0)、f (1)、f (-2)从小到大的顺序是__________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)设A ={x |-2≤x ≤5},B ={x |m -1≤x ≤2m +1}, (1)当x ∈N *时,求A 的子集的个数;(2)当x ∈R 且A ∩B =Ø时,求m 的取值范围.18.(12分)已知集合A ={-1,1},B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求a ,b 的值.19.(12分)已知函数f (x )=xax +b(a ,b 为常数,且a ≠0),满足f (2)=1,方程f (x )=x 有唯一实数解,求函数f (x )的解析式和f [f (-4)]的值.20.(12分)已知函数f (x )=4x 2-4ax +(a 2-2a +2)在闭区间[0,2]上有最小值3,求实数a 的值.21.(12分)某公司需将一批货物从甲地运到乙地,现有汽车、火车两种运输工具可供选22.(12分)已知f (x )的定义域为(0,+∞),且满足f (2)=1,f (xy )=f (x )+f (y ),又当x 2>x 1>0时,f (x 2)>f (x 1).(1)求f (1)、f (4)、f (8)的值;(2)若有f (x )+f (x -2)≤3成立,求x 的取值范围.单元综合测试二(第二章)时间:120分钟 分值:150分1.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5 D .62.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (2))的值为( ) A .0 B .1 C .2 D .3 C3.如果log 12x >0成立,则x 应满足的条件是( )A .x >12 B.12<x <1C .x <1D .0<x <14.函数f (x )=log 3(2-x )在定义域区间上是( ) A .增函数 B .减函数 C .有时是增函数有时是减函数 D .无法确定其单调5.某种放射性元素,100年后只剩原来的一半,现有这种元素1克,3年后剩下( ) A .0.015克 B .(1-0.5%)3克C .0.925克 D.1000.125克6.函数y =log 2x 与y =log 12x 的图象( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于y =x 对称7.函数y =lg(21-x-1)的图象关于( )A .x 轴对称B .y 轴对称C .原点对称D .y =x 对称8.设a >b >c >1,则下列不等式中不正确的是( ) A .a c >b c B .log a b >log a cC .c a >c bD .log b c <log a c9.已知f (x )=log a (x +1)(a >0且a ≠1),若当x ∈(-1,0)时,f (x )<0,则f (x )是( ) A .增函数 B .减函数 C .常数函数 D .不单调的函数 10.设a =424,b =312,c =6,则a ,b ,c 的大小关系是( ) A .a >b >c B .b <c <a C .b >c >a D .a <b <c11.若方程a x =x +a 有两解,则a 的取值范围为( ) A .(1,+∞) B .(0,1)C .(0,+∞)D .Ø 12.已知f (x )是偶函数,它在(0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( )A .(110,1)B .(0,110)∪(1,+∞)C .(110,10) D .(0,1)∪(0,+∞)第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.若函数f (x )=a x (a >0,且a ≠1)的反函数的图象过点(2,-1),则a =________. 14.方程log 2(x -1)=2-log 2(x +1)的解为________.15.设函数f 1(x )=x 12,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2007)))=________.16.设0≤x ≤2,则函数y =4x -12-3·2x +5的最大值是________,最小值是________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知a =(2+3)-1,b =(2-3)-1,求(a +1)-2+(b +1)-2的值. 18.(12分)已知关于x 的方程4x ·a -(8+2)·2x +42=0有一个根为2,求a 的值和方程其余的根.19.(12分)已知f (x )=2x -12x +1,证明:f (x )在区间(-∞,+∞)上是增函数.20.(12分)已知偶函数f (x )在x ∈[0,+∞)上是增函数,且f (12)=0,求不等式f (log a x )>0(a >0,且a ≠1)的解集.21.(12分)已知函数f (x )对一切实数x ,y 都满足f (x +y )=f (y )+(x +2y +1)x ,且f (1)=0, (1)求f (0)的值; (2)求f (x )的解析式;(3)当x ∈[0,12]时,f (x )+3<2x +a 恒成立,求a 的范围.22.(12分)设函数f (x )=log a (1-ax),其中0<a <1.(1)求证:f (x )是(a ,+∞)上的减函数; (2)解不等式f (x )>1.单元综合测试三(第三章)时间:120分钟 分值:150分1.二次函数f (x )=2x 2+bx -3(b ∈R )的零点个数是( ) A .0 B .1 C .2 D .42.函数y =1+1x的零点是( )A .(-1,0)B .-1C .1D .03.下列给出的四个函数f (x )的图象中能使函数y =f (x )-1没有零点的是( )4.若函数y =f (x )在区间(-2,2)上的图象是连续不断的曲线,且方程f (x )=0在(-2,2)上仅有一个实数根,则f (-1)·f (1)的值( )A .大于0B .小于0C .无法判断D .等于零5.函数f (x )=e x -1x的零点所在的区间是( )A .(0,12)B .(12,1)C .(1,32)D .(32,2)6.方程log 12x =2x -1的实根个数是( )A .0B .1C .2D .无穷多个7.某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =0.1x 2-11x +3000,若每台产品的售价为25万元,则生产者的利润取最大值时,产量x 等于( )A .55台B .120台C .150台D .180台8.已知α是函数f (x )的一个零点,且x 1<α<x 2,则( ) A .f (x 1)f (x 2)>0 B .f (x 1)f (x 2)<0 C .f (x 1)f (x 2)≥0 D .以上答案都不对9.某城市为保护环境,维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月超过8吨,超过部分加倍收费,某职工某月缴费20元,则该职工这个月实际用水( )A .10吨B .13吨C .11吨D .9吨10.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C 与时间t (年)的函数关系图象为( )11.函数f (x )=|x 2-6x +8|-k 只有两个零点,则( ) A .k =0 B .k >1 C .0≤k <1 D .k >1,或k =0A .(0.6,1.0)B .(1.4,1.8)C .(1.8,2.2)D .(2.6,3.0) 第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.用二分法求方程x 3-2x -5=0在区间(2,4)上的实数根时,取中点x 1=3,则下一个有根区间是__________.14.已知函数f (x )=ax 2-bx +1的零点为-12,13,则a =__________,b =__________.15.以墙为一边,用篱笆围成一长方形的场地,如图1.已知篱笆的总长为定值l ,则这块场地面积y 与场地一边长x 的关系为________.图116.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知二次函数f (x )的图象过点(0,3),它的图象的对称轴为x =2,且f (x )的两个零点的平方和为10,求f (x )的解析式.18.(12分)求方程x 2+2x =5(x >0)的近似解(精确度0.1). 19.(12分)要挖一个面积为800 m 2的矩形鱼池,并在四周修出宽分别为1 m,2 m 的小路,试求鱼池与路的占地总面积的最小值.20.(12分)某农工贸集团开发的养殖业和养殖加工生产的年利润分别为P 和Q (万元),这两项利润与投入的资金x (万元)的关系是P =x 3,Q =103x ,该集团今年计划对这两项生产共投入资金60万元,其中投入养殖业为x 万元,获得总利润y (万元),写出y 关于x 的函数关系式及其定义域.21.(12分)已知某种产品的数量x (百件)与其成本y (千元)之间的函数关系可以近似用y =ax 2+bx +c(1)(2)已知每件这种产品的销售价为200元,求利润函数p =p (x );(3)据利润函数p =p (x )确定盈亏转折时的产品数量.(即产品数量等于多少时,能扭亏为盈或由盈转亏)22.(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f (x )(万件)如表所示:x 1 2 3 4 f (x ) 4.00 5.58 7.00 8.44(1)画出2000~(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.(3)2006年(即x =7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?单元综合测试四(必修1综合检测)时间:120分钟 分值:150分题号1 2 3 4 5 6 7 8 9 10 11 12 答案1.集合A ={1,2},B ={1,2,3},C ={2,3,4},则(A ∩B )∪C =( ) A .{1,2,3} B .{1,2,4} C .{2,3,4} D .{1,2,3,4}2.如图1所示,U 表示全集,用A ,B 表示阴影部分正确的是( )图1A .A ∪B B .(∁U A )∪(∁U B )C .A ∩BD .(∁U A )∩(∁U B )3.若f (x )=1-2x ,g (1-2x )=1-x 2x 2(x ≠0),则g ⎝⎛⎭⎫12的值为( ) A .1 B .3 C .15 D .304.设函数f (x )=⎩⎨⎧(x +1)2(x <1),4-x -1(x ≥1),则使得f (-1)+f (m -1)=1成立的m 的值为( )A .10B .0,-2C .0,-2,10D .1,-1,115.若x =6是不等式log a (x 2-2x -15)>log a (x +13)的一个解,则该不等式的解集为( ) A .(-4,7) B .(5,7) C .(-4,-3)∪(5,7) D .(-∞,-4)∪(5,+∞)6.若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( )A .单调递减无最小值B .单调递减有最大值C .单调递增无最大值D .单调递增有最大值7.方程(13)x =|log 3x |的解的个数是( )A .0B .1C .2D .3 8.下列各式中,正确的是( )A .(-43)23<(-54)23B .(-45)13<(-56)13C .(12)12>(13)12D .(-32)3>(-43)39.生物学指出:生态系统在输入一个营养级的能量中,大约10%的能量能够流到下一个营养级,在H 1→H 2→H 3这个食物链中,若能使H 3获得10 kJ 的能量,则需H 1提供的能量为( )A .105 kJB .104 kJC .103 kJD .102 kJ10.如图3(1)所示,阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的图象是如图3(2)所示的( )图311.函数f (x )在(-1,1)上是奇函数,且在(-1,1)上是减函数,若f (1-m )+f (-m )<0,则m 的取值范围是( )A .(0,12) B .(-1,1)C .(-1,12)D .(-1,0)∪(1,12)12.(2009·山东卷)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧ log 2(1-x ),f (x -1)-f (x -2),x ≤0x >0,则f (2009)的值为( )A .-1B .0C .1D .2第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分) 13.log 2716log 34的值是________.14.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值范围为__________.15.已知全集U ={x |x ∈R },集合A ={x |x ≤1或x ≥3},集合B ={x |k <x <k +1,k ∈R },且(∁U A )∩B =Ø,则实数k 的取值范围是________.16.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区成立于1986年,第一年(即1986年)只有麋鹿100头,由于科学的人工培育,这种当初快要灭绝的动物只数y (只)与时间x (年)的关系可近似地由关系式y =a log 2(x +1)给出,则到2016年时,预测麋鹿的只数约为________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)用定义证明:函数g (x )=kx(k <0,k 为常数)在(-∞,0)上为增函数.18.(12分)已知集合P ={x |2≤x ≤5},Q ={x |k +1≤x ≤2k -1},当P ∩Q =Ø时,求实数k 的取值范围.19.(12分)已知f (x )为一次函数,且满足4f (1-x )-2f (x -1)=3x +18,求函数f (x )在[-1,1]上的最大值,并比较f (2007)和f (2008)的大小.20.(12分)已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2.(1)求a,b的值;(2)若b<1,g(x)=f(x)-mx在[2,4]上单调,求m的取值范围.21.(12分)设函数y=f(x),且lg(lg y)=lg3x+lg(3-x).(1)求f(x)的解析式和定义域;(2)求f(x)的值域;(3)讨论f(x)的单调性.22.(12分)已知函数f(x)=lg(4-k·2x)(其中k为实数),(1)求函数f(x)的定义域;(2)若f(x)在(-∞,2]上有意义,试求实数k的取值范围.答案及详细解析单元测试一(第一章)时间:120分钟分值:150分1.集合{1,2,3}的所有真子集的个数为()A.3 B.6C.7 D.8解析:含一个元素的有{1},{2},{3},共3个;含两个元素的有{1,2},{1,3},{2,3},共3个;空集是任何非空集合的真子集,故有7个.答案:C2.下列五个写法,其中错误..写法的个数为()①{0}∈{0,2,3};②Ø {0};③{0,1,2}⊆{1,2,0};④0∈Ø;⑤0∩Ø=ØA.1 B.2C.3 D.4解析:②③正确.答案:C3.使根式x-1与x-2分别有意义的x的允许值集合依次为M、F,则使根式x-1+x-2有意义的x的允许值集合可表示为()A.M∪F B.M∩F C.∁M F D.∁F M解析:根式x-1+x-2有意义,必须x-1与x-2同时有意义才可.答案:B4.已知M={x|y=x2-2},N={y|y=x2-2},则M∩N等于()A.N B.M C.R D.Ø解析:M={x|y=x2-2}=R,N={y|y=x2-2}={y|y≥-2},故M∩N=N.答案:A5.函数y=x2+2x+3(x≥0)的值域为()A.R B.[0,+∞) C.[2,+∞) D.[3,+∞) 解析:y=x2+2x+3=(x+1)2+2,∴函数在区间[0,+∞)上为增函数,故y≥(0+1)2+2=3.答案:D6.等腰三角形的周长是20,底边长y是一腰的长x的函数,则y等于()A.20-2x(0<x≤10) B.20-2x(0<x<10)C.20-2x(5≤x≤10) D.20-2x(5<x<10)解析:C=20=y+2x,由三角形两边之和大于第三边可知2x>y=20-2x,x>5.答案:D7.用固定的速度向图1甲形状的瓶子注水,则水面的高度h和时间t之间的关系是图1乙中的()甲乙图1解析:水面升高的速度由慢逐渐加快. 答案:B8.已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( ) ①y =f (|x |) ②y =f (-x ) ③y =xf (x ) ④y =f (x )+x A .①③ B .②③ C .①④ D .②④解析:因为y =f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ).①y =f (|x |)为偶函数;②y =f (-x )为奇函数;③令F (x )=xf (x ),所以F (-x )=(-x )f (-x )=(-x )·[-f (x )]=xf (x ).所以F (-x )=F (x ).所以y =xf (x )为偶函数;④令F (x )=f (x )+x ,所以F (-x )=f (-x )+(-x )=-f (x )-x =-[f (x )+x ].所以F (-x )=-F (x ).所以y =f (x )+x 为奇函数.答案:D9.已知0≤x ≤32,则函数f (x )=x 2+x +1( )A .有最小值-34,无最大值B .有最小值34,最大值1C .有最小值1,最大值194 D .无最小值和最大值解析:f (x )=x 2+x +1=(x +12)2+34,画出该函数的图象知,f (x )在区间[0,32]上是增函数,所以f (x )min =f (0)=1,f (x )max =f (32)=194.答案:C10.已知函数f (x )的定义域为[a ,b ],函数y =f (x )的图象如图2甲所示,则函数f (|x |)的图象是图2乙中的( )甲乙图2解析:因为y =f (|x |)是偶函数,所以y =f (|x |)的图象是由y =f (x )把x ≥0的图象保留,再关于y 轴对称得到的.答案:B11.若偶函数f (x )在区间(-∞,-1]上是增函数,则( )A .f (-32)<f (-1)<f (2)B .f (-1)<f (-32)<f (2)C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)解析:由f (x )是偶函数,得f (2)=f (-2),又f (x )在区间(-∞,-1]上是增函数,且-2<-32<-1,则f (2)<f (-32)<f (-1). 答案:D12.(2009·四川高考)已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎣⎡⎦⎤f (52)的值是( ) A .0 B.12 C .1 D.52解析:令x =-12,则-12f (12)=12f (-12),又∵f (12)=f (-12),∴f (12)=0;令x =12,12f (32)=32f (12),得f (32)=0;令x =32,32f (52)=52f (32),得f (52)=0;而0·f (1)=f (0)=0,∴f ⎣⎡⎦⎤f (52)=f (0)=0,故选A.答案:A第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设全集U ={a ,b ,c ,d ,e },A ={a ,c ,d },B ={b ,d ,e },则∁U A ∩∁U B =________. 解析:∁U A ∩∁U B =∁U (A ∪B ),而A ∪B ={a ,b ,c ,d ,e }=U . 答案:Ø14.设全集U =R ,A ={x |x ≥1},B ={x |-1≤x <2},则∁U (A ∩B )=________. 解析:A ∩B ={x |1≤x <2},∴∁R (A ∩B )={x |x <1或x ≥2}. 答案:{x |x <1或x ≥2}15.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上为减函数,求实数a 的取值范围为________.解析:函数f (x )的对称轴为x =1-a ,则由题知:1-a ≥3即a ≤-2. 答案:a ≤-216.若f (x )=(m -1)x 2+6mx +2是偶函数,则f (0)、f (1)、f (-2)从小到大的顺序是__________.解析:∵f (x )=(m -1)x 2+6mx +2是偶函数,∴m =0.∴f (x )=-x 2+2.∴f (0)=2,f (1)=1,f (-2)=-2,∴f (-2)<f (1)<f (0). 答案:f (-2)<f (1)<f (0)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)设A ={x |-2≤x ≤5},B ={x |m -1≤x ≤2m +1}, (1)当x ∈N *时,求A 的子集的个数;(2)当x ∈R 且A ∩B =Ø时,求m 的取值范围. 解:(1)∵x ∈N *且A ={x |-2≤x ≤5},∴A ={1,2,3,4,5}.故A 的子集个数为25=32个. (2)∵A ∩B =Ø,∴m -1>2m +1或2m +1<-2或m -1>5, ∴m <-2或m >6.18.(12分)已知集合A ={-1,1},B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求a ,b 的值.解:(1)当B =A ={-1,1}时,易得a =0,b =-1; (2)当B 含有一个元素时,由Δ=0得a 2=b , 当B ={1}时,由1-2a +b =0,得a =1,b =1当B ={-1}时,由1+2a +b =0,得a =-1,b =1.19.(12分)已知函数f (x )=xax +b(a ,b 为常数,且a ≠0),满足f (2)=1,方程f (x )=x 有唯一实数解,求函数f (x )的解析式和f [f (-4)]的值.解:∵f (x )=xax +b且f (2)=1,∴2=2a +b .又∵方程f (x )=x 有唯一实数解.∴ax 2+(b -1)x =0(a ≠0)有唯一实数解.故(b -1)2-4a ×0=0,即b =1,又上式2a +b =2,可得:a =12,从而f (x )=x 12x +1=2xx +2,∴f (-4)=2×(-4)-4+2=4,f (4)=86=43,即f [f (-4)]=43.20.(12分)已知函数f (x )=4x 2-4ax +(a 2-2a +2)在闭区间[0,2]上有最小值3,求实数a 的值.解:f (x )=4⎝⎛⎭⎫x -a22+2-2a . (1)当a2<0即a <0时,f (x )min =f (0)=a 2-2a +2=3,解得:a =1- 2.(2)0≤a 2≤2即0≤a ≤4时,f (x )min =f ⎝⎛⎭⎫a 2=2-2a =3,解得:a =-12(舍去). (3)a2>2即a >4时,f (x )min =f (2)=a 2-10a +18=3,解得:a =5+10, 综上可知:a 的值为1-2或5+10.21.(12分)某公司需将一批货物从甲地运到乙地,现有汽车、火车两种运输工具可供选解:设甲、乙两地距离为x 千米(x >0),选用汽车、火车运输时的总支出分别为y 1和y 2. 于是y 1=8x +1000+(x50+2)×300=14x +1600,y 2=4x +1800+(x100+4)×300=7x +3000.令y 1-y 2<0得x <200.①当0<x <200时,y 1<y 2,此时应选用汽车;②当x =200时,y 1=y 2,此时选用汽车或火车均可; ③当x >200时,y 1>y 2,此时应选用火车.故当距离小于200千米时,选用汽车较好;当距离等于200千米时,选用汽车或火车均可;当距离大于200千米时,选用火车较好.22.(12分)已知f (x )的定义域为(0,+∞),且满足f (2)=1,f (xy )=f (x )+f (y ),又当x 2>x 1>0时,f (x 2)>f (x 1).(1)求f (1)、f (4)、f (8)的值;(2)若有f (x )+f (x -2)≤3成立,求x 的取值范围.解:(1)f (1)=f (1)+f (1),∴f (1)=0,f (4)=f (2)+f (2)=1+1=2,f (8)=f (2)+f (4)=2+1=3.(2)∵f (x )+f (x -2)≤3,∴f [x (x -2)]≤f (8),又∵对于函数f (x )有x 2>x 1>0时f (x 2)>f (x 1),∴f (x )在(0,+∞)上为增函数.∴⎩⎪⎨⎪⎧x >0x -2>0x (x -2)≤8⇒2<x ≤4.∴x 的取值范围为(2,4].单元综合测试二(第二章)时间:120分钟 分值:150分1.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5 D .6解析:原式=lg25lg2·lg22lg3·lg9lg5=2lg5lg2·32lg2lg3·2lg3lg5=6.答案:D2.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (2))的值为( ) A .0 B .1 C .2 D .3解析:f (2)=log 3(22-1)=1,f (f (2))=2e 1-1=2e 0=2. 答案:C3.如果log 12x >0成立,则x 应满足的条件是( )A .x >12 B.12<x <1C .x <1D .0<x <1 解析:由对数函数的图象可得. 答案:D4.函数f (x )=log 3(2-x )在定义域区间上是( ) A .增函数 B .减函数 C .有时是增函数有时是减函数 D .无法确定其单调解析:由复合函数的单调性可以判断,内外两层单调性相同则为增函数,内外两层的单调性相反则为减函数.答案:B5.某种放射性元素,100年后只剩原来的一半,现有这种元素1克,3年后剩下( ) A .0.015克 B .(1-0.5%)3克C .0.925克 D.1000.125克解析:设该放射性元素满足y =a x (a >0且a ≠1),则有12=a 100得a =(12)1100.可得放射性元素满足y =[(12)1100]x =(12)x 100.当x =3时,y =(12)3100=100(12)3=1000.125.答案:D6.函数y =log 2x 与y =log 12x 的图象( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于y =x 对称 解析:据图象和代入式判定都可以做出判断,故选B. 答案:B7.函数y =lg(21-x-1)的图象关于( )A .x 轴对称B .y 轴对称C .原点对称D .y =x 对称 解析:f (x )=lg(21-x -1)=lg 1+x 1-x ,f (-x )=lg 1-x 1+x =-f (x ),所以y =lg(21-x-1)关于原点对称,故选C.答案:C8.设a >b >c >1,则下列不等式中不正确的是( ) A .a c >b c B .log a b >log a c C .c a >c b D .log b c <log a c解析:y =x c在(0,+∞)上递增,因为a >b ,则a c >b c ;y =log a x 在(0,+∞)上递增,因为b >c ,则log a b >log a c ;y =c x 在(-∞,+∞)上递增,因为a >b ,则c a >c b .故选D.答案:D9.已知f (x )=log a (x +1)(a >0且a ≠1),若当x ∈(-1,0)时,f (x )<0,则f (x )是( ) A .增函数 B .减函数 C .常数函数 D .不单调的函数解析:由于x ∈(-1,0),则x +1∈(0,1),所以a >1.因而f (x )在(-1,+∞)上是增函数. 答案:A10.设a =424,b =312,c =6,则a ,b ,c 的大小关系是( ) A .a >b >c B .b <c <a C .b >c >a D .a <b <c 解析:a =424=12243,b =12124,c =6=1266.∵243<124<66, ∴12243<12124<1266,即a <b <c . 答案:D11.若方程a x =x +a 有两解,则a 的取值范围为( ) A .(1,+∞) B .(0,1) C .(0,+∞) D .Ø解析:分别作出当a >1与0<a <1时的图象. (1)当a >1时,图象如下图1,满足题意.图1 图2(2)当0<a <1时,图象如上图2,不满足题意. 答案:A 12.已知f (x )是偶函数,它在(0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( )A .(110,1)B .(0,110)∪(1,+∞)C .(110,10) D .(0,1)∪(0,+∞)解析:由于f (x )是偶函数且在(0,+∞)上是减函数,所以f (-1)=f (1),且f (x )在(-∞,0)上是增函数,应有⎩⎪⎨⎪⎧x >0,-1<lg x <1,解得110<x <10.答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.若函数f (x )=a x (a >0,且a ≠1)的反函数的图象过点(2,-1),则a =________.解析:由互为反函数关系知,f (x )过点(-1,2),代入得a -1=2⇒a =12.答案:1214.方程log 2(x -1)=2-log 2(x +1)的解为________.解析:log 2(x -1)=2-log 2(x +1)⇔log 2(x -1)=log 24x +1,即x -1=4x +1,解得x =±5(负值舍去),∴x = 5.答案: 515.设函数f 1(x )=x 12,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2007)))=________.解析:f 1(f 2(f 3(2007)))=f 1(f 2(20072))=f 1((20072)-1)=[(20072)-1]12=2007-1.答案:1200716.设0≤x ≤2,则函数y =4x -12-3·2x +5的最大值是________,最小值是________.解析:设2x =t (1≤t ≤4),则y =12·4x -3·2x +5=12t 2-3t +5=12(t -3)2+12.当t =3时,y min =12;当t =1时,y max =12×4+12=52.答案:52 12三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知a =(2+3)-1,b =(2-3)-1,求(a +1)-2+(b +1)-2的值.解:(a +1)-2+(b +1)-2=(12+3+1)-2+(12-3+1)-2=(3+32+3)-2+(3-32-3)-2=16(7+432+3+7-432-3)=16[(7+43)(2-3)+(7-43)(2+3)]=16×4=23.18.(12分)已知关于x 的方程4x ·a -(8+2)·2x +42=0有一个根为2,求a 的值和方程其余的根.解:将x =2代入方程中, 得42·a -(8+2)·22+42=0,解得a =2. 当a =2时,原方程为 4x ·2-(8+2)2x +42=0, 将此方程变形化为2·(2x )2-(8+2)·2x +42=0. 令2x =y ,得2y 2-(8+2)y +42=0.解得y =4或y =22.当y =4时,即2x=4,解得x =2;当y =22时,2x =22,解得x =-12.综上,a =2,方程其余的根为-12.19.(12分)已知f (x )=2x -12x +1,证明:f (x )在区间(-∞,+∞)上是增函数.证明:设任意x 1,x 2∈(-∞,+∞)且x 1<x 2,则f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=(2x 1-1)(2x 2+1)-(2x 2-1)(2x 1+1)(2x 1+1)(2x 2+1)=2x 1-2x 2-(2x 2-2x 1)(2x 1+1)(2x 2+1)=2(2x 1-2x 2)(2x 1+1)(2x 2+1).∵x 1<x 2,∴2x 1<2x 2,即2x 1-2x 2<0.∴f (x 1)<f (x 2).∴f (x )在区间(-∞,+∞)上是增函数.20.(12分)已知偶函数f (x )在x ∈[0,+∞)上是增函数,且f (12)=0,求不等式f (log a x )>0(a >0,且a ≠1)的解集.解:f (x )是偶函数,且f (x )在[0,+∞)上递增,f (12)=0,∴f (x )在(-∞,0)上递减,f (-12)=0,则有log a x >12,或log a x <-12.(1)当a >1时,log a x >12,或log a x <-12,可得x >a ,或0<x <aa ;(2)当0<a <1时,log a x >12,或log a x <-12,可得0<x <a ,或x >aa.综上可知,当a >1时,f (log a x )>0的解集为(0,aa )∪(a ,+∞);当0<a <1时,f (log a x )>0的解集为(0,a )∪(aa,+∞).21.(12分)已知函数f (x )对一切实数x ,y 都满足f (x +y )=f (y )+(x +2y +1)x ,且f (1)=0, (1)求f (0)的值; (2)求f (x )的解析式;(3)当x ∈[0,12]时,f (x )+3<2x +a 恒成立,求a 的范围.解:(1)令x =1,y =0,则f (1)=f (0)+(1+1)×1,∴f (0)=f (1)-2=-2. (2)令y =0,则f (x )=f (0)+(x +1)x ,∴f (x )=x 2+x -2.(3)由f (x )+3<2x +a ,得a >x 2-x +1.设y =x 2-x +1,则y =x 2-x +1在(-∞,12]上是减函数,所以y =x 2-x +1在[0,12]上的范围为34≤y ≤1,从而可得a >1.22.(12分)设函数f (x )=log a (1-ax),其中0<a <1.(1)求证:f (x )是(a ,+∞)上的减函数; (2)解不等式f (x )>1.解:(1)证明:设任意x 1,x 2∈(a ,+∞)且x 1<x 2,则f (x 1)-f (x 2)=log a (1-a x 1)-log a (1-ax 2)=log a 1-a x 11-a x 2=log a 1-a x 2+a x 2-ax 11-a x 2=log a ⎣⎢⎡⎦⎥⎤1+a x 2-a x 11-a x 2=log a (1+ax 1-ax 2x 1x 2-ax 1)=log a [1+a (x 1-x 2)x 1(x 2-a )].∵x 1,x 2∈(a ,+∞)且x 1<x 2,∴x 1-x 2<0,0<a <x 1<x 2,x 2-a >0.∴a (x 1-x 2)x 1(x 2-a )<0,∴1+a (x 1-x 2)x 1(x 2-a )<1,又∵0<a <1,∴log a [1+a (x 1-x 2)x 1(x 2-a )]>0,∴f (x 1)>f (x 2),所以f (x )=log a (1-a x )在(a ,+∞)上为减函数.(2)因为0<a <1,所以f (x )>1⇔log a (1-ax )>log a a ⇔⎩⎨⎧1-ax >0,①1-ax<a .②解不等式①,得x >a 或x <0.解不等式②,得0<x <a 1-a .因为0<a <1,故x <a 1-a ,所以原不等式的解集为{x |a <x <a1-a}.单元综合测试三(第三章)时间:120分钟 分值:150分1.二次函数f (x )=2x 2+bx -3(b ∈R )的零点个数是( ) A .0 B .1 C .2 D .4解析:∵Δ=b 2+4×2×3=b 2+24>0,∴函数图象与x 轴有两个不同的交点,从而函数有2个零点. 答案:C2.函数y =1+1x的零点是( )A .(-1,0)B .-1C .1D .0解析:令1+1x=0,得x =-1,即为函数零点.答案:B3.下列给出的四个函数f (x )的图象中能使函数y =f (x )-1没有零点的是( )解析:把y =f (x )的图象向下平移1个单位后,只有C 图中图象与x 轴无交点. 答案:C4.若函数y =f (x )在区间(-2,2)上的图象是连续不断的曲线,且方程f (x )=0在(-2,2)上仅有一个实数根,则f (-1)·f (1)的值( )A .大于0B .小于0C .无法判断D .等于零解析:由题意不能断定零点在区间(-1,1)内部还是外部. 答案:C5.函数f (x )=e x -1x的零点所在的区间是( )A .(0,12)B .(12,1)C .(1,32)D .(32,2)解析:f (12)=e -2<0, f (1)=e -1>0,∵f (12)·f (1)<0,∴f (x )的零点在区间(12,1)内.答案:B6.方程log 12x =2x -1的实根个数是( )A .0B .1C .2D .无穷多个解析:方程log 12x =2x -1的实根个数只有一个,可以画出f (x )=log 12x 及g (x )=2x -1的图象,两曲线仅一个交点,故应选B.答案:B7.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=0.1x2-11x+3000,若每台产品的售价为25万元,则生产者的利润取最大值时,产量x等于() A.55台B.120台C.150台D.180台解析:设产量为x台,利润为S万元,则S=25x-y=25x-(0.1x2-11x+3000)=-0.1x2+36x-3000=-0.1(x-180)2+240,则当x=180时,生产者的利润取得最大值.答案:D8.已知α是函数f(x)的一个零点,且x1<α<x2,则()A.f(x1)f(x2)>0 B.f(x1)f(x2)<0C.f(x1)f(x2)≥0 D.以上答案都不对解析:定理的逆定理不成立,故f(x1)f(x2)的值不确定.答案:D9.某城市为保护环境,维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月超过8吨,超过部分加倍收费,某职工某月缴费20元,则该职工这个月实际用水()A.10吨B.13吨C.11吨D.9吨解析:设该职工该月实际用水为x吨,易知x>8.则水费y=16+2×2(x-8)=4x-16=20,∴x=9.答案:D10.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C与时间t(年)的函数关系图象为()答案:A11.函数f(x)=|x2-6x+8|-k只有两个零点,则()A.k=0 B.k>1C.0≤k<1 D.k>1,或k=0解析:令y1=|x2-6x+8|,y2=k,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象可得选D.答案:DA.(0.6,1.0) B.(1.4,1.8)C.(1.8,2.2) D.(2.6,3.0)解析:设f(x)=2x-x2,由表格观察出x=1.8时,2x>x2,即f(1.8)>0;在x=2.2时,2x<x2,即f(2.2)<0.综上知f(1.8)·f(2.2)<0,所以方程2x=x2的一个根位于区间(1.8,2.2)内.答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.用二分法求方程x3-2x-5=0在区间(2,4)上的实数根时,取中点x1=3,则下一个有根区间是__________.解析:设f (x )=x 3-2x -5,则f (2)<0,f (3)>0,f (4)>0,有f (2)f (3)<0,则下一个有根区间是(2,3).答案:(2,3)14.已知函数f (x )=ax 2-bx +1的零点为-12,13,则a =__________,b =__________.解析:由韦达定理得-12+13=b a ,且-12×13=1a.解得a =-6,b =1.答案:-6 115.以墙为一边,用篱笆围成一长方形的场地,如图1.已知篱笆的总长为定值l ,则这块场地面积y 与场地一边长x 的关系为________.图1解析:由题意知场地的另一边长为l -2x ,则y =x (l -2x ),且l -2x >0,即0<x <l2.答案:y =x (l -2x )(0<x <l2)16.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)解析:设过滤n 次才能达到市场要求,则2%(1-13)n ≤0.1%即(23)n ≤0.12,∴n lg 23≤-1-lg2, ∴n ≥7.39,∴n =8. 答案:8三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知二次函数f (x )的图象过点(0,3),它的图象的对称轴为x =2,且f (x )的两个零点的平方和为10,求f (x )的解析式.解:设二次函数f (x )=ax 2+bx +c (a ≠0).由题意知:c =3,-b2a=2.设x 1,x 2是方程ax 2+bx +c =0的两根,则x 21+x 22=10,∴(x 1+x 2)2-2x 1x 2=10,∴(-b a )2-2c a =10,∴16-6a=10,∴a =1.代入-b2a=2中,得b =-4.∴f (x )=x 2-4x +3.18.(12分)求方程x 2+2x =5(x >0)的近似解(精确度0.1). 解:令f (x )=x 2+2x -5(x >0). ∵f (1)=-2,f (2)=3,∴函数f (x )的正零点在区间(1,2)内.取(1,2)中点x 1=1.5,f (1.5)>0.取(1,1.5)中点x 2=1.25,f (1.25)<0. 取(1.25,1.5)中点x 3=1.375,f (1.375)<0.取(1.375,1.5)中点x 4=1.4375,f (1.4375)<0.取(1.4375,1.5). ∵|1.5-1.4375|=0.0625<0.1,∴方程x 2+2x =5(x >0)的近似解为x =1.5(或1.4375). 19.(12分)要挖一个面积为800 m 2的矩形鱼池,并在四周修出宽分别为1 m,2 m 的小路,试求鱼池与路的占地总面积的最小值.解:设所建矩形鱼池的长为x m ,则宽为800xm ,于是鱼池与路的占地面积为y =(x +2)(800x +4)=808+4x +1600x =808+4(x +400x )=808+4[(x -20x )2+40].当x =20x,即x =20时,y 取最小值为968 m 2.答:鱼池与路的占地最小面积是968 m 2.20.(12分)某农工贸集团开发的养殖业和养殖加工生产的年利润分别为P 和Q (万元),这两项利润与投入的资金x (万元)的关系是P =x 3,Q =103x ,该集团今年计划对这两项生产共投入资金60万元,其中投入养殖业为x 万元,获得总利润y (万元),写出y 关于x 的函数关系式及其定义域.解:投入养殖加工生产业为60-x 万元.由题意可得,y =P +Q =x 3+10360-x ,由60-x ≥0得x ≤60,∴0≤x ≤60,即函数的定义域是[0,60].21.(12分)已知某种产品的数量x (百件)与其成本y (千元)之间的函数关系可以近似用y =ax 2+bx +c(1)(2)已知每件这种产品的销售价为200元,求利润函数p =p (x );(3)据利润函数p =p (x )确定盈亏转折时的产品数量.(即产品数量等于多少时,能扭亏为盈或由盈转亏)解:(1)将表格中相关数据代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧36a +6b +c =104100a +10b +c =160,400a +20b +c =370解得a =12,b =6,c =50.所以y =f (x )=12x 2+6x +50(x ≥0).(2)p =p (x )=-12x 2+14x -50(x ≥0).(3)令p (x )=0,即-12x 2+14x -50=0,解得x =14±46,即x 1=4.2,x 2=23.8,故4.2<x <23.8时,p (x )>0;x <4.2或x >23.8时,p (x )<0, 所以当产品数量为420件时,能扭亏为盈; 当产品数量为2380件时由盈变亏.22.(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f (x )(万件)如表所示:(1)画出2000~(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.(3)2006年(即x =7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?解:图2(1)散点图如图2:(2)设f (x )=ax +b .由已知得⎩⎪⎨⎪⎧a +b =43a +b =7,解得a =32,b =52,∴f (x )=32x +52.检验:f (2)=5.5,|5.58-5.5|=0.08<0.1; f (4)=8.5,|8.44-8.5|=0.06<0.1.∴模型f (x )=32x +52能基本反映产量变化.(3)f (7)=32×7+52=13,由题意知,2006年的年产量约为13×70%=9.1(万件),即2006年的年产量应约为9.1万件.单元综合测试四(必修1综合检测)时间:120分钟 分值:150分题号1 2 3 4 5 6 7 8 9 10 11 12 答案1.集合A ={1,2},B ={1,2,3},C ={2,3,4},则(A ∩B )∪C =( ) A .{1,2,3} B .{1,2,4} C .{2,3,4} D .{1,2,3,4}解析:∵A ∩B ={1,2},∴(A ∩B )∪C ={1,2,3,4}. 答案:D2.如图1所示,U 表示全集,用A ,B 表示阴影部分正确的是( )图1A .A ∪B B .(∁U A )∪(∁U B )C .A ∩BD .(∁U A )∩(∁U B )解析:由集合之间的包含关系及补集的定义易得阴影部分为(∁U A )∩(∁U B ). 答案:D3.若f (x )=1-2x ,g (1-2x )=1-x 2x 2(x ≠0),则g ⎝⎛⎭⎫12的值为( ) A .1 B .3 C .15 D .30解析:g (1-2x )=1-x 2x 2,令12=1-2x ,则x =14,∴g ⎝⎛⎭⎫12=1-116116=15,故选C. 答案:C4.设函数f (x )=⎩⎨⎧(x +1)2(x <1),4-x -1(x ≥1),则使得f (-1)+f (m -1)=1成立的m 的值为( )A .10B .0,-2C .0,-2,10D .1,-1,11解析:因为x <1时,f (x )=(x +1)2,所以f (-1)=0.当m -1<1,即m <2时,f (m -1)=m 2=1,m =±1.当m -1≥1,即m ≥2时,f (m -1)=4-m -2=1,所以m =11.答案:D5.若x =6是不等式log a (x 2-2x -15)>log a (x +13)的一个解,则该不等式的解集为( ) A .(-4,7) B .(5,7) C .(-4,-3)∪(5,7) D .(-∞,-4)∪(5,+∞)解析:将x =6代入不等式,得log a 9>log a 19,所以a ∈(0,1).则⎩⎪⎨⎪⎧x 2-2x -15>0,x +13>0,x 2-2x -15<x +13.解得x ∈(-4,-3)∪(5,7).答案:C6.若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( )A .单调递减无最小值B .单调递减有最大值C .单调递增无最大值D .单调递增有最大值解析:2x+1在(-∞,+∞)上递增,且2x +1>0,∴12x +1在(-∞,+∞)上递减且无最小值. 答案:A7.方程(13)x =|log 3x |的解的个数是( )A .0B .1C .2D .3 解析:图2在平面坐标系中,画出函数y 1=(13)x 和y 2=|log 3x |的图象,如图2所示,可知方程有两个解.答案:C8.下列各式中,正确的是( )A .(-43)23<(-54)23B .(-45)13<(-56)13C .(12)12>(13)12D .(-32)3>(-43)3解析:函数y =x 23在(-∞,0)上是减函数,而-43<-54,∴(-43)23>(-54)23,故A 错;函数y =x 13在(-∞,+∞)上是增函数,而-45>-56,∴(-45)13>(-56)13,故B 错,同理D错.答案:C9.生物学指出:生态系统在输入一个营养级的能量中,大约10%的能量能够流到下一个营养级,在H 1→H 2→H 3这个食物链中,若能使H 3获得10 kJ 的能量,则需H 1提供的能量为( )A .105 kJB .104 kJC .103 kJD .102 kJ解析:H 1⎝⎛⎭⎫1102=10,∴H 1=103. 答案:C10.如图3(1)所示,阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的图象是如图3(2)所示的( )图3解析:当h =H2时,对应阴影部分的面积小于整个图形面积的一半,且随着h 的增大,S随之减小,故排除A ,B ,D.答案:C11.函数f (x )在(-1,1)上是奇函数,且在(-1,1)上是减函数,若f (1-m )+f (-m )<0,则m的取值范围是( )A .(0,12) B .(-1,1)C .(-1,12)D .(-1,0)∪(1,12)解析:f (1-m )<-f (-m ),∵f (x )在(-1,1)上是奇函数,∴f (1-m )<f (m ),∴1>1-m >m >-1,解得0<m <12,即m ∈(0,12).答案:A12.(2009·山东卷)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧ log 2(1-x ),f (x -1)-f (x -2),x ≤0x >0,则f (2009)的值为( )A .-1B .0C .1D .2解析:由题意可得:x >0时,f (x )=f (x -1)-f (x -2),从而f (x -1)=f (x -2)-f (x -3). 两式相加得f (x )=-f (x -3),f (x -6)=f [(x -3)-3]=-f (x -3)=f (x ), ∴f (2009)=f (2003)=f (1997)=…=f (5)=f (-1)=log 22=1. 答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分) 13.log 2716log 34的值是________.解析:log 2716log 34=23log 34log 34=23.答案:2314.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值范围为__________.解析:kx 2+4kx +3恒不为零.若k =0,符合题意,k ≠0,Δ<0,也符合题意.所以0≤k <34.答案:⎩⎨⎧⎭⎬⎫k ⎪⎪0≤k <34 15.已知全集U ={x |x ∈R },集合A ={x |x ≤1或x ≥3},集合B ={x |k <x <k +1,k ∈R },且(∁U A )∩B =Ø,则实数k 的取值范围是________.解析:∁U A ={x |1<x <3},又(∁U A )∩B =Ø, ∴k +1≤1或k ≥3, ∴k ≤0或k ≥3.答案:(-∞,0]∪[3,+∞)16.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区成立于1986年,第一年(即1986年)只有麋鹿100头,由于科学的人工培育,这种当初快要灭绝的动物只数y (只)与时间x (年)的关系可近似地由关系式y =a log 2(x +1)给出,则到2016年时,预测麋鹿的只数约为________.解析:当x =1时,y =a log 22=a =100,∴y =100log 2(x +1), ∵2016-1986+1=31,即2016年为第31年, ∴y =100log 2(31+1)=500, ∴2016年麋鹿的只数约为500. 答案:500三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)。

人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前

人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前

第一章综合测试答案解析一、 1.【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误. 2.【答案】D【解析】{}=0469B ,,,,B ∴的子集的个数为42=16. 3.【答案】D【解析】对于①,当=4a 为正整数;对于②,当=1x 时,为正整数;对于③,当=1y 时,为正整数,故选D .4.【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A .5.【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对. 6.【答案】B【解析】{=|=0A B x x 或}1x ≥,A 错误;{}=12A B ,,B 正确;{}{}R =|1=0A B x x B ()< ,C 错误;{}R =|0A B x x ()≠ ,D 错误.7.【答案】B【解析】方法一:11a a ⇒⇒>,1011a a ⇒-⇒)>>,∴甲是乙的充要条件,故选B .方法二:20a a a a ⎧⇔⎨⎩>,>,,1a ∴>,故选B .8.【答案】C【解析】由题意得N M ⊆,由Venn 图(图略)可知选C . 9.【答案】C【解析】由题意知,0=2bx a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C .10.【答案】D【解析】{}=|1U B x x - > ,{}=|0U A B x x ∴ > .{}=|0U A x x ≤ ,{}=|1U B A x x ∴- ≤ .{=|0U U A B B A x x ∴ ()()> 或}1x -≤.11.【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立.故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件.12.【答案】C【解析】A C A B ⊇ ()(),U U A C A B∴⊆ ()() ,∴①为真命题.A C A B ⊆ ()(),U U A C A B∴⊇ ()() ,即U U U U A C A B ⊇ ()() ,∴②为真命题.由Venn 图(图略)可知,③为假命题.故选C . 二、13.【答案】x ∀∈R ,210x +≥【解析】存在量词命题的否定是全称量词命题. 14.【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m .当=1m 时,违反集合中元素的互异性(舍去). 15.【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件. 16.【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设所求人数为x ,则108=30x ++,解得=12x . 三、17.【答案】(1)命题的否定:有的正方形不是矩形,假命题(2.5分) (2)命题的否定:不存在实数x ,使31=0x +,假命题.(5分) (3)命题的否定:x ∀∈R ,2220x x ++>,真命题.(7.5分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题.(10分)18.【答案】(1){=|1U A x x - < 或1x ≥,{=|12U A B x x ∴()≤≤ .(6分) (2){}=|01A B x x <<,{=|0U A Bx x ∴ ()≤ 或}1x ≥.(12分) 19.【答案】①若=A ∅,则2=240p ∆+-()<,解得40p -<<.(4分)②若方程的两个根均为非正实数,则12120=200.10.=x x p p x x ∆⎧⎪+-+⎨⎪⎩≥,()≤,解得≥>(10分) 综上所述,p 的取值范围是{}|4p p ->.(12分) 20.【答案】证明:①充分性:若存在0x ∈R ,使00ay <,则2220004=4b ab b a y ax bx ----() 222000=444b abx a x ay ++-200=240b ax ay +-()>,∴方程=0y 有两个不等实数根.(6分)②必要性:若方程=0y 有两个不等实数根. 则240b ab ->,设0=2bx a-, 则20=22b b ay a a b c a a ⎡⎤-+-+⎢⎥⎣⎦()() 2224==0424b b ac b ac --+<(10分) 由①②知,“方程=0y 有两个不等实根”的充要条件是“存在0x ∈R ,使00ay <”.(12分) 21.【答案】(1)当=2a 时,{}=|17A x x ≤≤,{}=|27AUB x x -≤≤,(3分){R =|1A x x < 或}7x >,{}R =|21A B x x - ()≤< .(6分)(2)=A B A ,A B ∴⊆.①若=A ∅,则123a a -+>,解得4a -<;(8分)②若A ∅≠,则12311212234.a a a a a -+⎧⎪⎪---⎨⎪+⎪⎩≤,≥,解得≤≤≤,(10分)综上可知,a 的取值范围是1|412a a a ⎧⎫--⎨⎬⎩⎭<或≤≤.(12分)22.【答案】设选修甲、乙、丙三门课的同学分别组成集合A ,B ,C ,全班同学组成的集合为U ,则由已知可画出Venn 图如图所示.(2分)选甲、乙而不选丙的有2924=5-(人), 选甲、丙而不选乙的有2824=4-(人), 选乙、丙而不选甲的有2624=2-(人),(6分) 仅选甲的有382454=5---(人), 仅选乙的有352452=4---(人), 仅选丙的有312442=1---(人),(8分)所以至少选一门的人数为24542541=45++++++,(10分) 所以三门均未选的人数为5045=5-.(12分)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}=|23M x x -<<,则下列结论正确的是( ) A .2.5M ∈ B .0M ⊆C .M ∅∈D .集合M 是有限集2.已知集合{}=023A ,,,{}=|=B x x ab a b A ∈,,,则集合B 的子集的个数是( ) A .4B .8C .15D .163.下列存在量词命题中,真命题的个数是( )①存在一个实数a 为正整数;②存在一个实数x ,使为正整数;③存在一个实数y 为正整数. A .0B .1C .2D .34.已知1231p x --:<<,30q x x -:()<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设集合{}2=|=+M x y y x x (,),{}N=|=+16x y y x (,),则M N 等于( ) A .416(,)或412-(,)B .{420,,}412-, C .{412(,),}420-(,)D .{420(,),}412-(,)6.若集合{}=|1A x x ≥,{}=012B ,,,则下列结论正确的是( ) A .{}=|0A B x x ≥B .{}=12A B ,C .{}R =01A B (),D .{}R =|1A B x x()≥7.甲:“1a >”是乙:“a ”的( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件8.已知全集*=U N ,集合{}*=|=2M x x n n ∈N ,,{}*=|=4N x x n n ∈N ,,则( )A .=U M NB .=U U M N ()C .=U U M N ()D .=U U M N ()9.已知0a >,函数2=++y ax bx c .若0x 满足关于x 的方程2+b=0ax ,则下列选项中的命题为假命题的是( )A .存在x ∈R ,y y 0≤B .存在x ∈R ,0y y ≥C .对任意x ∈R ,y y 0≤D .对任意x ∈R ,0y y ≥10.已知=U R ,{}=|0A x x >,{}=|1B x x -≤,则U U A B B A ()() 等于( )A .∅B .{}|0x x ≤C .{}|1x x ->D .{|0x x >或}1x -≤11.“14m <”是“一元二次方程2++=0x x m 有实数解”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件12.已知U 为全集,A ,B ,C 是U 的子集,A C A B ⊆ ()(),A C A B ⊇ ()(),则下列命题中,正确的个数是( )①U U A C A B ⊆ ()() ; ②U U U U A C A B ⊇ ()() ;③C B ⊆. A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题:“0x ∃∈R ,2+10x <”的否定是________.14.设集合{}2=33A m ,,{}=33B m ,,且=A B ,则实数m 的值是________. 15.若a ∈R ,则“=2a ”是“(1)(2)=0a a --”的________条件.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)至少有一个实数0x 使3+1=0x ;(3)0x ∃∈R ,2+2+20x x ≤;(4)任意x ,y ∈R ,+1+10x y -≥.18.(本小题满分12分)设全集=U R ,集合{}=|11A x x -≤<,{}=|02B x x <≤.(1)求U A B () ;(2)求U A B() .19.(本小题满分12分)已知{}2=|+2++1=0A x x p x x ∈Z (),,若{}|0=A x x ∅ >,求p 的取值范围.20.(本小题满分12分)已知2=0y ax bx c a b c a ++∈R (,,,且≠).证明:“方程=0y 有两个不相等的实数根”的充要条件是“存在0x ∈R ,使00ay <”.21.(本小题满分12分)已知集合{}=|12+3A x a x a -≤≤,{}=|24B x x -≤≤,全集=.U R(1)当=2a 时,求A B 和R A B () ;(2)若=A B A ,求实数a 的取值范围.22.(本小题满分12分)某班有学生50人,学校开设了甲、乙、丙三门选修课,选修甲的有38人,选修乙的有35人,选修丙的有31人,兼选甲、乙两门的有29人,兼选甲、丙两门的有28人,兼选乙、丙两门的有26人,甲、乙、丙三门均选的有24人,那么这三门均未选的有多少人?。

人教版A版高中数学必修第一册 第三章综合测试01试题试卷含答案 答案在前

人教版A版高中数学必修第一册 第三章综合测试01试题试卷含答案 答案在前

第三章综合测试答案解析一、 1.【答案】D【解析】当y 取一个正值时,有两个x 与它对应,故D 错. 2.【答案】A【解析】21=2f x x - ),21=222f ⨯∴+-),即3=0f (). 3.【答案】D【解析】f x ()在122⎡⎤--⎢⎥⎣⎦,上为减函数,min111==2=11222f x f ∴---⨯--(()()). 4.【答案】B【解析】所以当3=2a -最大值为92.故选B .5.【答案】D【解析】=1y x +是非奇非偶函数,3=y x -是奇函数和减函数,1=y x在整个定义域上不是增函数,故选D .6.【答案】C【解析】33===f x a x b x ax bx f x --+--+- ()()()()(),x ∈R ,f x ∴()为奇函数,3=3=3f f ∴---()().7.【答案】C【解析】0=10=1f -(),((0))=(1)=11=2f f f +. 8.【答案】B【解析】f x ()为偶函数,=0m ∴,2=3f x x ∴-+(),其图象开口向下,对称轴为y 轴,f x ∴()在25(,)上是减函数. 9.【答案】D【解析】设0x ∈-∞(,),则0x -∈+∞(,),=28F x f x g x ∴--+-+()()()≤且存在00x ∈+∞(,)使0=8F x ().又f x (),g x ()都是奇函数,[]=6f x g x f x g x ∴-+--+()()()()≤,即6f x g x +-()()≥, =24F x f x g x ∴++-()()()≥,且存在00x ∈-∞,(),使0=4F x -().F x ∴()在0-∞(,)上有最小值4-. 10.【答案】B【解析】因为偶函数的定义域关于原点对称,所以22=0a a -+-,解得=2a .又偶函数不含奇次项,所以2=0a b -,即=1b ,所以2=21f x x +().于是22=1=35a b f f +()().11.【答案】C【解析】当=0c 时,=f x x x bx +(),此时=f x f x --()(),故f x ()为奇函数,故①正确.当=0b ,0c >时,=f x x x c +(),若0x ≥,则2=f x x c +(),此时=0f x ()无解,若0x <,则2=f x x c -+(),此时=0f x ()有一解=x ,故②正确.作出=y f x ()的图象,如图.结合图象知③正确,④不正确.12.【答案】A【解析】当x 为整数时,=1f x (),当12x ∈(,)时,112f x ∈()(,);当23x ∈(,)时,213f x ∈()(,),…, 当1x k k ∈+(,)时,11k f x k ∈+()(,),且112k k +≥,所以函数[]=1x f x x x ()(≥)的值域为112⎤⎥⎦(.故选A . 二、13.【答案】1|3x x ⎧⎫⎨⎬⎩⎭>【解析】设=a f x x (),则==2af ,=3a ∴.3=f x x ∴(),在R 上为增函数.3210321321f x f x f x -+⇔--⇔--()>()>()>,解得13x >,∴原不等式的解集为1|3x x ⎧⎫⎨⎬⎩⎭>.14.【答案】2a ≤【解析】若2a ∈-∞(,),则2=2f (),不合题意,[]2a ∴∈+∞,,2a ∴≤. 15.【答案】95162⎡-⎢⎣,)【解析】方程23=2x x k -可以看作是k 关于x 的二次函数23=2k x x -,配方得239=416k x --(),其图象的对称轴方程为3=4x ,则函数k 在区间314⎤-⎥⎦(,上是单调递减的,在区间314⎡-⎢⎣,)上是单调递增的(如图).由函数的单调性得函数k 在区间11-(,)上的值域为314f f ⎡-⎢⎣(),()). 233339==442416f -⨯- ()(),2351=11=22f ---⨯-()()(),∴实数k 在的取值范围是95162⎡-⎢⎣,). 16.【答案】1a -≤【解析】因为=y f x ()是定义在R 上的奇函数, 所以当=0x 时,=0f x ().当0x >时,0x -<,所以2=97a f x x x---+().因为=y f x ()是定义在R 上的奇函数, 所以当0x >时,2=97a f x x x+-().因为1f x a +()≥对一切0x ≥成立, 所以当=0x 时,01a +≥成立, 所以1a -≤.当0x >时,2971a x a x +-+≥成立,只需要297a x x+-的最小值大于或等于1a +,因为2977=67a x a x +--≥,所以671a a -+≥,解得85a ≥或87a -≤.综上,1a -≤. 三、17.【答案】证明:设12a x x b <<<. g x ()在a b (,)上是增函数, 12g x g x ∴()<(),且12a g x g x b <()<()<,(5分) 又f x ()在a b (,)上是增函数, 12(())(())f g x f g x ∴<,(())f g x ∴在a b (,)上也是增函数.(10分) 18.【答案】(1)当10x -≤≤时,设解析式为=0y kx b k +(≠),代入10-(,),01(,)的坐标, 得=0=1k b b -+⎧⎨⎩,,解得=1=.1k b ⎧⎨⎩,=1y x ∴+.(2分)当0x >时,设解析式为2=21y a x --(),图象过点40(,),20=421a ∴--(),解得1=4a . 21=214f x x ∴--()().(4分)2110=12104.x x f x x x +-⎧⎪∴⎨--⎪⎩,≤≤,()(),>(6分) (2)当10x -≤≤时,[]01y ∈,. 当0x >时,[1y ∈-+∞,). f x ∴()的值域为[][[011=1-+∞-+∞ ,,),).(12分) 19.【答案】(1) 函数21=x f x ax b++()是奇函数,且1=2f (), 22211==111==2x x f x ax b ax b f a b ⎧++--⎪⎪-+-∴⎨+⎪⎪+⎩()(),(2分)解得=1=0a b ⎧⎨⎩,,21=x f x x+∴().(5分) (2)=0xF x x f x ()(>)(), 222==11x x F x x x x∴++(),0x >,2222222111===111111x x x F x F x x x x x ∴+++++++()(),11114035=122018=2017=2320181112S F F F F F F ∴++++++++⨯+()()()……()()().(12分) 20.【答案】因为f x ()满足4=f x f x --()(), 所以8=4=f x f x f x ---()()(), 则25=1f f --()(),80=0f f ()(),11=3f f ()().(3分) 因为f x ()在R 上是奇函数,所以0=0f (),25=1=1f f f ---()()(), 则80=0=0f f ()(),由4=f x f x --()(),得11=3=3=14=1f f f f f ----()()()()(),又因为f x ()在区间[]02,上是增函数, 所以10=0f f ()>(),所以10f -()<, 所以258011f f f -()<()<().(12分) 21.【答案】(1)设投资x 万元,A 产品的利润为f x ()万元,B 产品的利润为g x ()万元,依题意可设1=f x k x (),=g x k ()由题图①得1=0.2f (),即11=0.2=5k .(3分)由题图②得4=1.6g (),即2.6k ,解得24=5k .故1=05f x x x ()(≥),0g x x ()≥).(6分) (2)设B 产品投入x 万元,则A 产品投入10x -()万元,设企业利润为y 万元.由(1)得1=10=20105y f x g x x x -+-+()()(≤≤).(8分)21114=2=2555y x -+--+ (),0,∴,即=4x 时,max 14==2.85y .因此当A 产品投入6万元,B 产品投入4万元时,该公司获得最大利润,为2.8万元.(12分)22.【答案】(1)241234===2822x x y f x x x x --++-++()111.设=2u x +1,[]0,1x ∈,13u ≤≤, 则4=8y u u+-,[]1,3u ∈.(3分) 由已知性质得,当12u ≤≤,即102x ≤≤时,f x ()单调递减,所以f x ()的单调递减区间为10,2⎡⎤⎢⎥⎣⎦; 当23u ≤≤,即112x ≤≤时,f x ()单调递增,所以f x ()的单调递增区间为1,12⎡⎤⎢⎥⎣⎦. 由0=3f -(),1=42f -(),111=3f -(),得f x ()的值域为[]4,3--.(7分) (2)=2g x x a --()为减函数,故当[]0,1x ∈时,[]12,2g x a a ∈---().(9分) 由题意得f x ()的值域是g x ()的值域的子集, 所以124,23,a a ---⎧⎨--⎩≤≥解得3=2a .(12分)第三章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知变量x ,y 满足=y x ,则下列说法错误的是( ) A .x ,y 之间有依赖关系 B .x ,y 之间有函数关系 C .y 是x 的函数D .x 是y 的函数2.若函数21=2f x x +-)则3f ()等于( ) A .0B .1C .2D .33.函数1=2f x x x -()在区间122⎡⎤--⎢⎥⎣⎦,上的最小值为( ) A .1B .72C .72-D .1-4.函数63y a -≤≤)的最大值为( )A .9B .92C .3 D5.下列函数中,既是奇函数又是增函数的为( ) A .=1y x +B .3=y x -C .1=y xD .=y x x6.已知函数3=0f x ax bx a +()(≠)满足3=3f -(),则3f ()等于( )A .2B .2-C .3-D .37.设10=1=010x x f x x x x +⎧⎪-⎨⎪-⎩,>,(),,,<,则0f f (())等于( )A .1B .0C .2D .1-8.已知函数2=123f x m x mx -++()()为偶函数,则f x ()在区间25(,)上是( ) A .增函数B .减函数C .有增有减D .增减性不确定9.若f x ()和g x ()都是奇函数,且=2F x f x g x ++()()()在0+∞(,)上有最大值8,则F x ()在0-∞(,)上有( ) A .最小值8- B .最小值2- C .最小值6-D .最小值4-10.若函数2=21f x ax a b x a +-+-()()是定义在0022a a --(,)(,) 上的偶函数,则225a b f +()等于( ) A .1B .3C .52D .7211.设函数=f x x x bx c ++(),给出下列四个命题: ①当=0c 时,=y f x ()是奇函数;②当=0b ,0c >时,方程=0f x ()只有一个实根; ③=y f x ()的图象关于点0c (,)对称; ④方程=0f x ()至多有两个实根. 其中正确的命题是( ) A .①④B .①③C .①②③D .①②④12.定义:[]x 表示不超过x 的最大整数.如:[]1.3=2--.则函数[]=1x f x x x()(≥)的值域为( )A .1,12⎤⎥⎦(B .2,13⎤⎥⎦(C .3,14⎤⎥⎦(D .4,15⎤⎥⎦( 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知幂函数f x ()的图象过点),则不等式3210f x -+()>的解集是________. 14.设2=.x x a f x x x a ∈-∞⎧⎨∈+∞⎩,(,),(),(,)若2=4f (),则实数a 的取值范围为________. 15.若方程23=2x x k -在11-(,)上有实根,则实数k 的取值范围为________. 16.设a 为实常数,=()y f x 是定义在R 上的奇函数,当0x <时,2()=97af x x x++.若()1f x a +≥对一切0x ≥成立,则实数a 的取值范围为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知f x (),g x ()在a b (,)上是增函数,且a g x b <()<,求证:(())f g x 在a b (,)上也是增函数.18.(本小题满分12分)如图,定义在[1-+∞,)上的函数f x ()的图象由一条线段及抛物线的一部分组成.(1)求f x ()的解析式;(2)写出f x ()的值域.19.(本小题满分12分)已知函数21=x f x ax b++()是奇函数,且1=2f (). (1)求f x ()的表达式;(2)设=0x Fx x f x ()(>)(),记111=122018232018S F F F F F F +++++++()()()(()(……),求S 的值.20.(本小题满分12分)已知定义在R 上的奇函数f x ()满足4=f x f x --()(),且在区间[]02,上是增函数,试比较80f (),11f (),25f -()的大小.21.(本小题满分12分)某公司计划投资A 、B 两种金融产品,根据市场调查与预测,A 产品的利润与投资量成正比例,其关系如图①,B 产品的利润与投资量的算术平方根成正比例,其关系如图②(利润与投资量的单位:万元).① ②(1)分别将A 、B 两产品的利润表示为投资量的函数关系式.(2)该公司已有10万元资金,并全部投入A 、B 两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?22.(本小题满分12分)已知函数=ty x x+有如下性质:如果常数0t >,那么该函数在(上是减函数,在+∞)上是增函数. (1)已知24123=2x x f x x --+()1,[]01x ∈,,利用上述性质,求函数f x ()的单调区间和值域;(2)对于(1)中的函数f x ()和函数=2g x x a --(),若对任意[]101x ∈,,总存在[]201x ∈,,使得21=gx f x ()()成立,求实数a 的值.。

人教版A版(2019)高中数学必修第一册:第三章 函数的概念与性质 综合测试(附答案与解析)

人教版A版(2019)高中数学必修第一册:第三章 函数的概念与性质 综合测试(附答案与解析)

第三章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数20()(31)f x x =+-的定义域是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .1,13⎛⎫⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭D .11,,133⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭2.已知函数1(2),()(3)(2),x f x f x x =+⎪⎩≥<则(1)(9)f f +等于( )A .2-B .7-C .27D .73.函数111y x -=+-的图像是下列图像中的( )ABCD4.若函数y ax =与by x=-在(0,)+∞上都是减函数,则2()f x ax bx =+在(0,)+∞上是( ) A .增函数B .减函数C .先增后减D .先减后增5.函数2()(2)1f x ax a x =+++是偶函数,则函数的单调递增区间为( ) A .[0,)+∞B .(,0]-∞C .(,)-∞+∞D .[1,)+∞6.函数2()(1)1f x mx m x =+-+在区间(,1]-∞上为减函数,则m 的取值范围是( )A .10,3⎛⎤ ⎥⎝⎦B .10,3⎡⎫⎪⎢⎣⎭C .10,3⎡⎤⎢⎥⎣⎦D .10,3⎛⎫ ⎪⎝⎭7.定义在R 上的偶函数()f x ,对任意()1212,[0,)x x x x ∈+∞≠,有()()21210f x f x x x --<,则( )A .(3)(2)(1)f f f -<<B .(1)(2)(3)f f f -<<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f -<<8.若函数,1,()(23)1,1ax f x x a x x ⎧⎪=⎨⎪-+⎩>≤是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤ ⎥⎝⎦D .2,3⎛⎫+∞ ⎪⎝⎭9.设函数()f x 满足对任意的,m n (,m n 为正数)都有()()()f m n f m f n +=⋅且(1)2f =,则(2)(3)(2020)(1)(2)(2019)f f f f f f +++等于( )A .2 020B .2 019C .4 038D .4 04010.在函数([1,1])y x x =∈-的图像上有一点(,)P t t ,此函数图象与x 轴、直线1x =-及x t =围成图形的面积为S (如图的阴影部分所示),则S 与t 的函数关系的图象可表示为( )ABCD11.设奇函数()f x 在(0,)+∞上是增函数,且(2)0f =,则不等式()()0f x f x x --<的解集为( )A .(2,0)(2,)-+∞B .(2,0)(0,2)-C .(,2)(2,)-∞-+∞D .(,2)(0,2)-∞-12.已知定义在R 上的函数()f x ,若函数(1)y f x =+为偶函数,且()f x 对任意()1212,[1,)x x x x ∈+∞≠都有()()21210f x f x x x -->,若(1)(2)f a f a -≥,则实数a 的取值范围是( )A .[1,1]-B .(,1]-∞-C .[1,)+∞D .(,1][1,)-∞-+∞二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.设函数0()1,02x x f x x =⎨⎛⎫⎪ ⎪⎝⎭⎩≥<则((4))f f -=________.14.若函数2(1)2()1a x a f x x a -+-=+-为奇函数,则实数a =________. 15.设函数2()24f x x x =-+在区间[,]m n 上的值域是[6,2]-,则m n +的取值范围是________.16.已知函数29,3,()6,3,x f x x x x ⎧⎪=⎨-+⎪⎩≥<则不等式()22(34)f x x f x --<的解集是________. 三、解答题(本大题共6小题,共70分.解答时写出必要的文字说明,证明过程或演算步骤)17.[10分]已知函数22(),[1,)x x af x x x++=∈+∞. (1)当12a =时,求函数()f x 的最小值; (2)若对任意[1,),()0x f x ∈+∞>恒成立,试求实数a 的取值范围; (3)讨论函数的单调性.(只写出结论即可)18.[12分]设函数2()23,f x x x a x =--+∈R .(1)小鹏同学认为,无论a 取何值,()f x 都不可能是奇函数,你同意他的观点吗?请说明你的理由. (2)若()f x 是偶函数,求a 的值.(3)在(2)的情况下,画出()y f x =的图象并指出其单调递增区间。

高中数学必修1综合测试题之三

高中数学必修1综合测试题之三

高中数学必修1综合测试题之三一、选择题【共15道小题】(有答案)1、集合P={x||x|<2},Q={x+x<2}则()A.P∩Q=(0,2)B.P∩Q=[0,2]C.P QD.P Q2、设集合M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是“a∈N”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3、已知集合A={x|x2-5x+6≤0},集合B={x||2x-1|>3},则集合A∩B=()A.{x|2≤x≤3}B.{x|2≤x<3}C.{x|2<x≤3}D.{x|-1<x<3}4、设f是从集合A到集合B的映射,下列四个说法,其中正确的是()①集合A中的每一个元素在集合B中都有元素与之对应②集合B中的每一个元素在集合A中也都有元素与之对应③集合A中不同的元素在集合B中的对应元素也不同④集合B中不同的元素在集合A中的对应元素也不同A.①和②B.②和③C.③和④D.①和④5、下列各图中,可表示函数y=f(x)的图象的只可能是()6、下列各等式中,正确的是()A.=|a|B.C.a0=1D.7、已知二次函数图象的对称轴是x=2,又经过点(2,3),且与一次函数y=3x+b的图象交于点(0,-1),则过一次函数与二次函数的图象的另一个交点的坐标是()A.(1,2)B.(2,1)C.(-1,2)D.(1,-2)8、某一种商品降价10%后,欲恢复原价,则应提价()A.10%B.9%C.11%D.1119%9、函数y=的值域是()A.{x|0<x<1}B.{x|0<x≤1}C.{x|x>0}D.{x|x≥0}10、以下命题正确的是()①幂函数的图象都经过(1,1)②幂函数的图象不可能出现在第四象限③当n=0时,函数y=x n 的图象是一条直线④若y=x n(n<0)是奇函数,则y=x n在定义域内为减函数A.②③B.①②C.②④D.①③11、甲乙二人同时从A地赶往B地,甲先骑自行车到中点改为跑步,而乙则是先跑步到中点改为骑自行车,最后两人同时到达B地,又知甲骑自行车比乙骑自行车的速度快,并且二人骑车速度均比跑步速度快.若某人离开A地的距离s与所用时间t的函数关系可用图象表示,则下列给出的四个函数图象中,甲、乙各人的图象只能是()A.甲是图①,乙是图②B.甲是图①,乙是图④C.甲是图③,乙是图②D.甲是图③,乙是图④12、已知集合A={m1,m2},B={n1,n2,n3},则从A到B的不同映射共有…()A.3个B.6个C.9个D.12个13、设函数f(x)=的定义域为{x|x≥-2},则实数a的值为()A. B.0 C. D.不存在14、已知对不同的a值,函数f(x)=2+a x-1(a>0,且a≠1)的图象恒过定点P,则P点的坐标是()A.(0,3)B.(0,2)C.(1,3)D.(1,2)15、已知f(x)=是(-∞,+∞)上的减函数,那么a的取值范围是()A.(0,1)B.(0,)C.[,)D.[,1)二、填空题【共4道小题】1、已知函数f(x)=的定义域是F,函数g(x)= log12(2+x-6x2)的定义域是G,全集U=R,那么F∩G=____________________.2、①已知函数y=(x2-2x+a)定义域为R,则a的取值范围是_____________,②已知函数y=(x2-2x+a)值域为R,则a的取值范围是________________.3、已知气压p(百帕)与海拔高度h(m)满足关系式 p=1 000,则海拔9 000 m高处的气压为________________百帕.4、设函数f(x)=+lnx在[1,+∞)上是增函数,则正实数a的取值范围是____________.三、解答题【共6道小题】1、(1)某西瓜摊卖西瓜,6斤以下每斤4角,6斤以上每斤6角.请表示出西瓜重量x与售价y的函数关系.并画出图象.(2)一班有45名同学,每名同学都有一个确定的身高,把每个同学的学号当自变量,每个同学的身高当函数值,如下列表,画出它的图象来.2、已知y=,a>0,a≠1,试把y+用含x的式子表示出来,并化简.3、已知f(x)是定义在R上的偶函数,且在[0,+∞)上为减函数,若f()>f(2a-1),求实数a的取值范围.4、已知二次函数f(x)的二次项系数为a,且不等式f(x)<-2x的解集为(1,3).(1)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;(2)若f(x)的最小值为负数,求a的取值范围.5、已知xy<0,并且4x2-9y2=36.由此能否确定一个函数关系y=f(x)?如果能,求出其解析式、定义域和值域;如果不能,请说明理由.6、有一个人在他死后,只留下一千英镑的遗产,可令人惊讶的是,他竟留下一份分配几百万英镑的遗嘱,遗嘱的内容是这样的:“……一千英镑赠给波士顿的居民,他们得把这钱按每年5%的利率借给一些年轻的手工业者去生息,这款子过了100年后,用100 000英镑建立一所公共建筑物,剩下的继续生息100年,在第二个100年末,其中1 061 000英镑还是由波士顿的居民支配,而其余的3 000 000英镑让马萨诸州的公众来管理……”请你分析一下,这个人的遗嘱能实现吗?一、答案:1B2B3C4D5D6D7A8D9A10B11B12C13C14C15A二、填空题【共4道小题】1、已知函数f(x)=的定义域是F,函数g(x)= log12(2+x-6x2)的定义域是G,全集U=R,那么F∩G=____________________.参考答案与解析:解析:本题考查求一个函数的定义域以及在全集基础上的集合间的求“补”运算和集合间的求“交”运算,所以要分别求出集合F和G以及G的补集,最后求F∩G.解:∵1-x2>0,∴-1<x<1,∴F=(-1,1).∵2+x-6x2>0,∴-<x<,∴G=(-,),∴ G=(-∞,-)∪[,+∞],∴F∩G=(-1,-)∩[,1].主要考察知识点:集合,函数2、①已知函数y=(x2-2x+a)定义域为R,则a的取值范围是_____________,②已知函数y=(x2-2x+a)值域为R,则a的取值范围是________________.参考答案与解析:解析:两题乍一看似乎一样,但若仔细分析,其设问角度不同,解题方法也有区别.①对x∈R,x2-2x+a>0恒成立,②由于当t∈(0,+∞)时,t∈R故要求x2-2x+a取遍每一个正实数,换言之,若x2-2x+a的取值范围为D,则(0,+∞)∈D.①x2-2x+a=(x-1)2+a-1≥a-1,故只要a-1>0则x∈R时,x2-2x+a>0恒成立.因此,填a>1;②x2-2x+a=(x-1)2+a-1≥a-1,故x2-2x+a的取值范围为[a-1, +∞),要求(0,+∞)[a-1, +∞)只要a-1≤0.因此,填a≤1.答案:a>1 a≤1主要考察知识点:对数与对数函数3、已知气压p(百帕)与海拔高度h(m)满足关系式 p=1 000,则海拔9 000 m高处的气压为________________百帕.参考答案与解析:解析:本题是与物理学有关系的一道给定函数关系式的题目,关键是理解所给公式中的各个量的含义,尤其是是“9000”对应的字母要准确.根据题意,得P=1 000=0.343.因此,填0.343.答案:0.343主要考察知识点:函数的应用4、设函数f(x)=+lnx在[1,+∞)上是增函数,则正实数a的取值范围是____________.参考答案与解析:解析:本题是函数单调性知识的逆向应用,即已知函数单调性,确定函数解析式或解析式中的待定系数.此题用到函数的导数的性质,即增区间内函数的导数非负,减区间内的函数导数非正.∴对函数进行求导后便可建立关于a的不等式.解:f′(x)=≥0对x∈[1,+∞)恒成立,∴a≥对x∈[1,+∞)恒成立,又≤1,∴a≥1为所求.答案:a≥1主要考察知识点:函数三、解答题【共6道小题】1、(1)某西瓜摊卖西瓜,6斤以下每斤4角,6斤以上每斤6角.请表示出西瓜重量x与售价y的函数关系.并画出图象.(2)一班有45名同学,每名同学都有一个确定的身高,把每个同学的学号当自变量,每个同学的参考答案与解析:解析:(1)要分情况表示.分成6斤以下,以上两种情况,这种函数叫分段函数.(2)这个问题中的自变量(学号)与变量(身高)有明确的对应关系,但这个对应关系无法用一个等式表示出来,我们采用列表法或图象法就比较简单.解:(1)这个函数的解析表示应分两种情况:y=如图:(2)图象法:主要考察知识点:函数的应用2、已知y=,a>0,a≠1,试把y+用含x的式子表示出来,并化简.参考答案与解析:解析:此题把y+用含x的式子表示出来并不难,复杂的地方在于化简,由于在化简时涉及指数式的变换和分类讨论的使用.因此分类要细致,讨论要全面.解:由y=,可知y2=(a2x+a-2x+2),y2-1=(a2x+a-2x-2)=(ax-a-x)2,∴y+=+|ax-a-x|.当x>0时,若a>1,则ax>a-x,此时y+=ax,若0<a<1,则ax<a-x,此时y+=a-x.当x=0时,y+=1.当x<0时,若a>1,则ax<a-x,此时y+=a-x,若0<a<1,则ax>a-x,此时y+=ax.主要考察知识点:指数与指数函数3、已知f(x)是定义在R上的偶函数,且在[0,+∞)上为减函数,若f()>f(2a-1),求实数a的取值范围.参考答案与解析:解析:本题的解题关键是如何使用已知条件f()>f(2a-1),即如何把这个已知条件转化成关于a的不等式,也就是把自变量“部分”要化到一个单调区间内,才能根据函数的单调性达到转化的目的.这时我们想到了“若f(x)是偶函数,那么f(x)=f(-x)=f(|x|).”于是f(2a-1)=f(|2a-1|).解:由f(x)是偶函数,且f()>f(2a-1)等价于f()>f(|2a-1|),又f(x)在[0,+∞)上是减函数,∴解得a≤-1或a≥2.主要考察知识点:函数4、已知二次函数f(x)的二次项系数为a,且不等式f(x)<-2x的解集为(1,3).(1)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;(2)若f(x)的最小值为负数,求a的取值范围.参考答案与解析:解析:本题综合考查一元二次方程、一元二次不等式和二次函数的关系及其性质,重点是互相之间的转化.在(1)中,通过不等式f(x)<-2x的解集为(1,3),用二次函数的标根式把不等式转化成函数,再根据韦达定理将问题转化成关于a的方程.在(2)中,既可以根据二次函数的最值公式将题意转化成不等式,也可以用配方法求最值.解:(1)Qf(x)+2x<0的解集为(1,3).∴设f(x)+2x=a(x-1)(x-3),则a>0.因而f(x)=a(x-1)(x-3)-2x=ax2-(2+4a)x+3a ①由方程f(x)|+6a=0得ax2-(2+4a)x+9a=0 ②∵方程②有两个相等的根,∴Δ=[-(2+4a)]2-4a·9a=0,即5a2-4a-1=0.解得a=1或a=-.由于a>0,舍去a=-.将a=1代入①得f(x)的解析式f(x)=x2-6x+3.(2)由f(x)=ax2-2(1+2a)x+3a=a(x-)2-及a>0,可得f(x)的最小值为-.由题意可得,解得a>0.故当f(x)的最小值为负数时,实数a的取值范围是a>0.主要考察知识点:函数5、已知xy<0,并且4x2-9y2=36.由此能否确定一个函数关系y=f(x)?如果能,求出其解析式、定义域和值域;如果不能,请说明理由.参考答案与解析:解析:4x2-9y2=36在解析几何中表示双曲线的方程,仅此当然不能确定一个函数关系y=f(x),但加上条件xy<0呢?看看y的值是否是唯一确定的.解:xy<0或因为4x2-9y2=36,故y2=x2-4.又x>3;或x<-3.∴y=f(x)=因此能确定一个函数关系y=f(x).其解析式为y=f(x)=其定义域为(-∞,-3)∪(3,+∞).且不难得到其值域为(-∞,0)∪(0,+∞).主要考察知识点:函数6、有一个人在他死后,只留下一千英镑的遗产,可令人惊讶的是,他竟留下一份分配几百万英镑的遗嘱,遗嘱的内容是这样的:“……一千英镑赠给波士顿的居民,他们得把这钱按每年5%的利率借给一些年轻的手工业者去生息,这款子过了100年后,用100 000英镑建立一所公共建筑物,剩下的继续生息100年,在第二个100年末,其中1 061 000英镑还是由波士顿的居民支配,而其余的3 000 000英镑让马萨诸州的公众来管理……”请你分析一下,这个人的遗嘱能实现吗?参考答案与解析:解析:以上的这个遗嘱就是美国著名的科学家,一生为科学和民主革命而工作的富兰克林所写的.很显然作为一个科学家是不会在遗嘱中开玩笑的.从富兰克林的遗嘱中我们可以深刻地感受到“指数爆炸”的效应,微薄的资金,低廉的利率,在神秘的“指数爆炸”效应下,可以变得令人瞠目结舌,这就是富兰克林的故事给人的启示.增加到131 000英镑,这笔款增加到4 061 000英镑,解:让我们按富兰克林非凡的设想实际计算一下,故事中实际上是指数函数y=1 000(1+5%)x值的变化,不难算得,当x=1时,y=1 050,当x=3时y=1 158,当x=100时,y=1 000(1+5%)100≈131 501,这意味着上面的故事中在头一个100年末富兰克林的财产应当增加到131 501英镑,用100 000英镑建立一所公共建筑物后,还剩31 501英镑,在第二个100年末,他拥有的财产为y=31 501(1+5%)100≈4 142 421,其中1 061 000英镑还是由波士顿的居民支配,而其余的3 000 000英镑让马萨诸州的公众来管理,还剩81 421英镑.可见富兰克林的遗嘱在科学上是站得住脚的.遗嘱是能够实现的.主要考察知识点:函数的应用。

(人教版A版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)

(人教版A版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)

(人教版A 版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)第一章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,则下列关系正确的是( )A .AB =B .A B ⊆C .B A ⊆D .A B =∅∩2.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值集合是( )A .98⎧⎫⎨⎬⎩⎭B .908⎧⎫⎨⎬⎩⎭,C .{}0D .203⎧⎫⎨⎬⎩⎭, 3.已知函数()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩,>,,≤,则()2f 的值等于( )A .4B .3C .2D .无意义4.已知函数()f x 的定义域为R ,则实数k 的取值范围是( )A .()()00-∞+∞,∪,B .[]04,C .[)04,D .()04,5.已知两个函数()f x 和()g x 的定义域和值域都是集合{}123,,,其定义如表所示,则()()f g x 对应的三个值依次为( )A .2,1,3B .1,2,3C .3,2,1D .1,3,26.已知函数()221x f x x =+,则()()()()1111234234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .3B .4C .72D .927.设全集为R ,函数()01x f x +=定义域为M ,则M =R ð( )A .{}|2x x ≥B .{}|21x x x -<且≠C .{}|21x x x -≥或=D .{}|21x x x ->或=8.若函数()()221341x x x f x a x a x ⎧-+⎪=⎨-+⎪⎩,<,,≥满足对任意实数12x x ≠,都有()()12120f x f x x x -->成立,则实数a 的取值范围是( )A .()1+∞,B .[)13,C .233⎡⎫-⎪⎢⎣⎭, D .()3-∞,9.已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于( ) A .4B .3C .2D .110.已知()22f x x ax =-+与()ag x x=在区间[]12,上都是减函数,则a 的取值范围为( )A .()01,B .(]01,C .()()1001-,∪, D .[)(]1001-,∪, 11.已知(){}2min 26f x x x x x =--,,,则()f x 的值域是( )A .(]2-∞,B .(]3-∞,C .[]02,D .[)2+∞,12.已知定义域为R 的函数()f x 在区间()4+∞,上为减函数,且函数()4y f x =+为偶函数,则( ) A .()()23f f >B .()()25f f >C .()()35f f >D .()()36f f >二、填空题:本大题共4小题,每小题5分,共20分.13.设集合{}24A t =-,,集合{}591B t t =--,,,若9A B ∈∩,则实数t =________.14.)13fx =+,则()f x =________.15.若函数y =的定义域为R ,则a 的取值范围为________. 16.已知函数()y f x =在()()00-∞+∞,∪,上为奇函数,且在()0+∞,上为增函数,()20f -=,则不等式()x f x ⋅<0的解集为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数()mf x x x=+,且()13f =. (1)求m ;(2)判断函数()f x 的奇偶性.18.(本小题满分12分)设全集U =R ,{}|13A x x =≤≤,{}|23B x a x a =+<<. (1)当1a =时,求()U A B ∩ð;(2)若()U A B B =∩ð,求实数a 的取值范围.19.(本小题满分12分)设函数()()21f x ax bx a b =++,为实数,()()()00.f x x F x f x x ⎧⎪=⎨-⎪⎩,>,,<(1)若()10f -=,且对任意实数x 均有()0f x ≥成立,求()F x 的表达式;(2)在(1)的条件下,当[]22x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围.20.(本小题满分12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2千克/年;当420x <≤时,v 是x 的一次函数;当20x >时,因缺氧等原因,v 的值为0千克/年. (1)当020x <≤时,求v 关于x 的函数表达式.(2)当养殖密度x 为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.21.(本小题满分12分)定义在()11-,上的函数()f x 满足()()f x f x -=-,且()()1120f a f a -+-<.若()f x 是()11-,上的减函数,求实数a 的取值范围.22.(本小题满分12分)已知()f x 是二次函数,()()050f f ==,且()112f -=. (1)求()f x 的解析式;(2)求()f x 在[]0m ,上的最小值()g m ;(3)对(2)中的()g m ,求不等式()()21g t g t -<的解集.第一章综合测试答案解析一、 1.【答案】C【解析】由集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,得{}101B =-,,.又因为集合{}21,0,1,2A =--,,所以B A ⊆,故选C .2.【答案】B【解析】Q 集合{}2|320A x ax x =-+=中有且只有一个元素,0a ∴=或0980a a ⎧⎨∆=-=⎩≠,,解得0a =或98a =,∴实数a 的取值集合是908⎧⎫⎨⎬⎩⎭,. 3.【答案】C【解析】()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩Q ,>,,≤,()()5125252f f +∴===-.故选C .4.【答案】B【解析】()f x Q 的定义域为R ,∴不等式210kx kx ++≥的解集为R .①当0k =时,10≥恒成立,满足题意;②当0k ≠时,2040k k k ⎧⎨∆=-⎩>,≤,解得04k <≤.综上,04k ≤≤.故选B . 5.【答案】A【解析】当1x =时,()11g =,()()()112f g f ==;当2x =时,()23g =,()()()231f g f ==;当3x =时,()32g =,()()()323f g f ==,故选A . 6.【答案】C【解析】因为()221x f x x =+,所以222111111x f x x x ⎛⎫⎪⎛⎫⎝⎭== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,所以()11f x f x ⎛⎫+= ⎪⎝⎭, 故()()()()1111712343234112f f f f f f f ⎛⎫⎛⎫⎛⎫++++++=+= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭.故选C . 7.【答案】C【解析】要使函数有意义,则120x x +⎧⎨-⎩≠0,>,得2x <且1x -≠,所以{}|21M x x x =<且≠-,所以{}|2M x x x ==R ≥或-1ð.故选C . 8.【答案】C【解析】Q 对任意实数12x x ≠,都有()()12120f x f x x x -->成立,()f x ∴在R 上是增函数,()230314121a a a -⎧⎪∴⎨-⨯+-+⨯⎪⎩>,≥,解得233a -≤<.故选C . 9.【答案】B【解析】()f x Q 是奇函数,()()11f f -=-. 又()g x Q 是偶函数,()()11g g ∴-=.()()()()112112f g g f -+=∴-=Q ,.① ()()()()114114f g f g +-=∴+=Q ,.②由①②,得()13g =. 10.【答案】B【解析】()()2222f x x ax x a a =-+=--+,其单调递减区间为()a ∞,+,()f x 在区间[]12,上是减函数,则1a ≤.又()ag x x=在区间[]12,上是减函数,则0a >.01a ∴<≤.11.【答案】B【解析】(){}2min 26f x x x x x =--Q ,,,的同一平面直角坐标系中分别作出22y x x =-,6y x =-,y x =的图像,并取其函数值较小的部分,如图所示.则由图像可知函数(){}2min 26f x x x x x =--,,的值域为(]3-∞,,故选B . 12.【答案】D【解析】()4y f x =+Q 为偶函数,()()44f x f x ∴-+=+.令2x =,得()()()()224246f f f f =-+=+=,同理,()()35f f =.又知()f x 在()4+∞,上为减函数,56Q <,()()56f f ∴>.()()23f f ∴<,()()()265f f f =<,()()()356f f f =>.故选D . 二、13.【答案】3-【解析】{}24A t =-Q ,,{}591B t t =--,,,且9A B ∈∩,29t ∴=,解得3t =或3t =-,当3t =时,根据集合元素互异性知不符合题意,舍去;当3t =-时,符合题意.14.【答案】()()2131x x -+≥【解析】由题设1t =,()21x t ∴=-,1t ≥,()()213f t t ∴=-+,()()()2131f x x x ∴=-+≥. 15.【答案】[]19,【解析】Q函数y =的定义域为R ,()()2221101a x a x a ∴-+-++≥恒成立. 当210a -=时,1a =±,当1a =时,不等式恒成立,当1a =-时,无意义;当210a -≠时,()()22210214101a a a a ⎧-⎪⎨∆=---⋅⎪+⎩>,≤,解得19a <≤.综上所述,a 的取值范围为[]19,. 16.【答案】()()2002-,∪, 【解析】根据题意画出()f x 的大致图像,如图所示.由图像可知当20x -<<或02x <<时,()0x f x ⋅<. 三、17.【答案】解(1)()13f =Q ,13m ∴+=,2m ∴=. (2)由(1)知,()2f x x x=+,其定义域是{}|0x x x ∈R ≠,,关于原点对称. 又()()22f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭Q ,∴函数()f x 是奇函数. 18.【答案】解(1)当1a =时,{}|24B x x =<<.{}|13A x x =Q ≤≤,{}|13U A xx x ∴=<或>ð,(){}|34U A B x x ∴=∩<<ð.(2)若()U A B B =∩ð,则U B A ⊆ð. ①B =∅时,23a a +≥,则3a ≥;②B ∅≠时,2331a a a +⎧⎨+⎩<,≤或2323a a a +⎧⎨⎩<,≥,则2a -≤或332a ≤<.综上,实数a 的取值范围是(]322⎡⎫-∞-+∞⎪⎢⎣⎭,∪,. 19.【答案】解(1)()10f -=Q ,1b a ∴=+,由()0f x ≥恒成立,知0a >且()()22241410b a a a a ∆=-=+-=-≤,1a ∴=,从而()221f x x x =++,()()()221010.x x F x x x ⎧+⎪∴=⎨-+⎪⎩,>,,< (2)由(1)可知()221f x x x =++,()()()221g x f x kx x k x ∴=-=+-+. ()g x Q 在[]22-,上是单调函数, 222k -∴--≤或222k--≥,解得2k -≤或6k ≥. 即实数k 的取值范围是(][)26-∞-+∞,∪,. 20.【答案】解(1)由题意得当04x <≤时,2v =. 设当420x <≤时,v ax b =+,由已知得20042a b a b +=⎧⎨+=⎩,,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩,,所以1582v x =-+.故函数20415420.82x v x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤ (2)设鱼的年生长量为()f x 千克/立方米,依题意,由(1)可得()220415420.82x x f x x x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤当04x <≤时,()f x 为增函数,故()()max 4428f x f ==⨯=;当420x <≤时,()()2215125108282f x x x x =-+=--+,()()max 1012.5f x f ==.所以当020x <≤时,()f x 的最大值为12.5,即当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米. 21.【答案】解:由()()1120f a f a -+-<, 得()()112f a f a ---<.()()f x f x -=-Q ,()11x ∈-,, ()()121f a f a ∴--<. 又()f x Q 是()11-,上的减函数, 1111211121,a a a a --⎧⎪∴--⎨⎪--⎩<<,<<,>解得203a <<. 故实数a 的取值范围是203⎛⎫⎪⎝⎭,.22.【答案】解(1)因为()f x 是二次函数,且()()050f f ==, 所以设()()()50f x ax x a =-≠. 又因为()1612f a -==,所以2a =,所以()()225210f x x x x x =-=-.(2)由(1)知()f x 的对称轴为52x =, 当502m <≤时,()f x 在区间[]0m ,上单调递减,所以()f x 的最小值为()2210f m m m =-;当52m >时,()f x 在区间502⎡⎤⎢⎥⎣⎦,上单调递减,在区间52m ⎡⎤⎢⎥⎣⎦,上单调递增,所以()f x 的最小值为52522f ⎛⎫=- ⎪⎝⎭.综上所述,()()2min521002255.22m m m f x g m m ⎧-⎪⎪==⎨⎪-⎪⎩,<≤,,>(3)因为()()21g t g t -<,所以210215212t t t t ⎧⎪-⎪-⎨⎪⎪-⎩>,<,<,解得112t <<,即不等式()()21g t g t -<的解集为1|12t t ⎧⎫⎨⎬⎩⎭<<.第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( ) A .()lg lg lg xy x y =+B .222m n m n ++=C .222m n m n +⋅=D .2ln 2ln x x =2.若函数()12122m y m m x -=+-是幂函数,则m =( )A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( ) A .y x x =B .x y e =C .1y x=-D .2log y x =4.函数()ln 3y x =- )A .[)23,B .[)2+∞,C .()3-∞,D .()23,5.下列各函数中,值域为()0∞,+的是( ) A .22xy -= B.y C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是( )ABCD7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( ) A .c b a <<B .c a b <<C .a b c <<D .a c b <<8.已知()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-∞,B .138⎛⎤-∞ ⎥⎝⎦,C .()02,D .1328⎡⎫⎪⎢⎣⎭, 9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( ) A .12ln 22- B .12ln 22+ C .22ln2-D .22ln2+10.已知函数()()()x xf x x e ae x -=+∈R ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( ) A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( ) A .0a b << B .0a b << C .0b a <<D .a b =12.已知函数()221222log x mx m x m f x x x m ⎧-++⎪=⎨⎪⎩,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( )A .104⎛⎫ ⎪⎝⎭,B .102⎛⎫ ⎪⎝⎭,C .114⎛⎫ ⎪⎝⎭,D .112⎛⎫ ⎪⎝⎭, 二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -⎛⎫⎪⎝⎭>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+∞,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算⊗:当m n ≥时,m n m ⊗=;当m n <时,m n n ⊗=.设函数()()()2221log 2xx f x x ⎡⎤⊗-⊗⋅⎣⎦,则函数()f x 在()02,上的值域为________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)计算下列各式的值: (1)7015log 243210.06470.250.58--⎛⎫--++⨯ ⎪⎝⎭;(2)()2235lg5lg2lg5lg20log 25log 4log 9+⨯++⨯⨯.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-. (1)求()f x 的解析式;(2)若对任意的t ∈R ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -⋅+≤,函数()2log 2xf x =⋅. (1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x ∈-,时,()y f x =的最大值与最小值之和为52. (1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x ∈,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ∈R ,()10.x D x x ⎧=⎨⎩,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212xx D x x f x D x x ⎧-⎪=⎨⎪⎩+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x ⎛⎫=⋅- ⎪-⎝⎭>,且≠. (1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x ∈-∞,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、 1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C . 2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-. 3.【答案】A【解析】2200x x y x x x x ⎧⎪==⎨-⎪⎩,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R上的增函数,无奇偶性;1y x=-为奇函数且在()0-∞,和()0+∞,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+∞,上为增函数,无奇偶性.故选A . 4.【答案】A【解析】函数()ln 3y x =-x 满足条件30240x x -⎧⎨-⎩>,≥,解得32x x ⎧⎨⎩<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A . 5.【答案】A【解析】对于A,222xxy -⎛== ⎝⎭的值域为()0+∞,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y (]0-∞,,所以021x <≤,所以0121x -≤<,所以y 的值域是[)01,;对于C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是34⎡⎫+∞⎪⎢⎣⎭,;对于D ,因为()()1001x ∈-∞+∞+,∪,,所以113x y +=的值域是()()011+∞,∪,. 6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+∞,上的单调性相同,可排除B ,D .再由关系式()()330f g ⋅<可排除A ,故选C . 7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======∴Q <,<<,><<.故选C . 8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则()2201122,2a a -⎧⎪⎨⎛⎫--⨯⎪⎪⎝⎭⎩<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e ∴-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-⋅+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x xx e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ⎧-++⎪=≤⎨⎪⎩,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,∴要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-∞,【解析】由题可得,321144x --⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ⎧-⎪⎨⎪-⎩≤,>,即68.a a -⎧⎨-⎩≤,>故(]86a ∈--,. 15.【答案】1124⎛⎫ ⎪⎝⎭,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,2122A x ⎛== ⎝⎭.点()2B B x ,在函数12y x =的图像上,所以122B x =,4B x =.点()4,C C y在函数2x y ⎛= ⎝⎭的图像上,所以4124C y ==⎝⎭.又因为12D A x x ==,14D C y y ==,所以点D 的坐标为1124⎛⎫ ⎪⎝⎭,. 16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x ⊗=;当22x <,即1x <时,222x ⊗=.当2log 1x ≤,即02x <≤时,21log 1x ⊗=;当21log x <,即2x >时,221log log x x ⊗=. ()()2220122122log 2 2.x x x x xx f x x x x ⎧⎪⎪∴=-⎨⎪-⋅⎪⎩,<<,,≤≤,,> ∴①当01x <<时,()2x f x =是增函数,()12f x ∴<<; ②当12x ≤<,()221122224xxx f x ⎛⎫=-=-- ⎪⎝⎭,1222 4.x x ∴Q ≤<,≤<()221111242424f x ⎛⎫⎛⎫∴---- ⎪ ⎪⎝⎭⎝⎭≤<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,. 三、17.【答案】解(1)70515log 244321510.06470.250.51224822--⎛⎫⎛⎫--++⨯=-++⨯= ⎪ ⎪⎝⎭⎝⎭.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+⨯++⨯⨯=++++⨯⨯11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f ∴=.Q 当0x <时,0x ->,()23x xf x --∴-=-. 又Q 函数()f x 是奇函数,()()f x f x ∴-=-,()23x xf x -∴=+. 综上所述,()2030020.3xx x x f x x xx -⎧-⎪⎪==⎨⎪⎪+⎩,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x ∴在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<. ()f x Q 是奇函数,()()2222f t t f k t ∴--<.又()f x Q 是减函数,2222t t k t ∴-->, 即2320t t k -->对任意t ∈R 恒成立,4120k ∴∆=+<,解得13k -<,即实数k 的取值范围为13⎛⎫-∞- ⎪⎝⎭,. 19.【答案】解(1)由9123270x x -⋅+≤,得()23123270xx -⋅+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x>0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224x f x x x x x x ⎛⎫=⋅=--=-+=-- ⎪⎝⎭.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =; 当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x ∴的最大值与最小值之和为152a a -+=,2a ∴=或12a =. (2)1a Q >,2a ∴=.()2222x x h x m m =+-⋅,即()()2222xx h x m m =-⋅+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =. []01x ∈Q ,,[]12t ∴∈,,∴当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+; 当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+⎧⎪=-+⎨⎪-+⎩,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==; 当x 为无理数时,则为x -为无理数,则()()0D x D x -==. 故当x ∈R 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22xx x f x x ⎧⎪=⎨⎪⎩,为有理数,,为无理数.即当x ∈R 时,()2x f x =.故()f x 的值域为()0+∞,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t af t a a a -∴=--. ()()()21x x af x a a x a -∴=-∈-R .()()()()2211x x x x a af x a a a a f x a a ---=-=--=---Q ,()f x ∴为奇函数.当1a >时,xy a =为增函数,xy a -=-为增函数,且2201a a ->,()f x ∴为增函数.当01a <<时,x y a =为减函数,xy a -=-为减函数,且2201a a -<,()f x ∴为增函数.()f x ∴在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x ∴=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-∞,上恒为负数,只需()240f -≤,即()22241a a a a ---≤. 422141a a a a-∴⋅-≤,214a a ∴+≤,2410a a ∴-+≤,22a ∴≤.又1a Q ≠,a ∴的取值范围为)(21,2⎡⎣.第三章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某同学用二分法求方程338=0x x +-在()12x ∈,内近似解的过程中,设()=338x f x x +-,且计算()10f <,()20f >,()1.50f >,则该同学在第二次应计算的函数值为( ) A .()0.5fB .()1.125fC .()1.25fD .()1.75f2.函数()22=log f x x x +的零点所在的区间为( )A .1142⎛⎫ ⎪⎝⎭,B .112⎛⎫ ⎪⎝⎭,C .(D .)3.有一组实验数据如表所示:下列所给函数模型较适合的是( ) A .()=log 1a y x a >B .()=1y ax b a +>C .()2=0y ax b a +>D .()=log 1a y x b a +>4.根据表中的数据,可以判定方程x 的一个根所在的区间为( )A .()10-,B .()01,C .()12,D .()23,5.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( ) A .108元B .105元C .106元D .118元6.有一个盛水的容器,由悬在它上空的一根水管匀速向容器内注水,直至把容器注满.在注水过程中,时刻t 与水面高度y 的函数关系如图所示,图中PQ 为一线段,则与之对应的容器的形状是图中的( )AB CD7.已知()()()=2f x x a x b ---,并且α,β是函数()f x 的两个零点,则实数a ,b ,α,β的大小关系可能是( )A .a b αβ<<<B .a b αβ<<<C .a b αβ<<<D .a b αβ<<<8.函数()2230=2ln 0x x x f x x x ⎧+-⎨-+⎩,≤,,>的零点个数为( )A .0B .1C .2D .39.已知函数()231=24log f x x x x-+++,若()113x ∈,,()23x ∈+∞,,则( ) A.()10f x >,()20f x < B.()10f x <,()20f x > C.()10f x <,()20f x <D.()10f x >,()20f x >10.如图所示,ABC △为等腰直角三角形,直线l 与AB 相交且l AB ⊥,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则()=y f x 的图像大致为四个选项中的( )AB CD11.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流()0100x x <<人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15 B .16 C .17 D .18 12.已知函数()2=e x xf x --(e 为自然对数的底数),则方程()21=0f x -的实数根的个数为( ) A .1B .2C .3D .4二、填空题:本大题共4小题,每小题5分,共20分.13.用二分法求图像连续不断的函数()f x 在区间[]15,上的近似解,验证()()150f f ⋅<,给定精确度=0.01ε,取区间()15,的中点115==32x +,计算得()()110f f x ⋅<,()()150f x f ⋅>,则此时零点0x ∈________.(填区间)14.已知函数()2=log 2x f x x m +-有唯一的零点,若它的零点在区间()12,内,则实数m 的取值范围是________.15.已知关于x 的方程210=x a -有两个不同的实根1x ,2x ,且21=2x x ,则实数=a ________. 16.某市出租车收费标准如下:起步价为8元,起步里程为3km (不超过3km 按起步价付费);超过3km 但不超过8km 时,超过部分按每千米2.15元收费;超过8km 时,超过部分按每千米2.85元收费.另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶的路程为________km .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的16%进行奖励;当销售利润超过10万元时,若超出A 万元,则超出部分按()52log 1A +万元进行奖励.记奖金为y (单位:万元),销售利润为x (单位:万元).(1)写出该公司激励销售人员的奖励方案的函数模型.(2)如果业务员老张获得5.6万元的奖金,那么他的销售利润是多少万元?18.(本小题满分12分)已知函数()=211f x x x --+. (1)请在所给的平面直角坐标系中画出函数()f x 的图像.(2)根据函数()f x 的图像回答下列问题:(回答下述3个小题都只需直接写出结果,不需给出演算步骤)①求函数()f x 的单调区间;②求函数()f x 的值域;③求关于x 的方程()=2f x 在区间[]02,上解的个数.19.(本小题满分12分)已知函数()=e 1x f x -,()3=1exg x +.(1)求函数()g x 的值域;(2)求满足方程()()=0f x g x -的x 的值.20.(本小题满分12分)《污水综合排放标准》规定:污水排放企业进排污口的污水pH 值正常范围为[)69,.某化工企业对本单位污水出水口的pH 值进行全天24小时检测,根据统计资料发现pH 值的大小y 与检测时间点x 之间的函数图像如图所示,AB ,CD 为两条直线段,曲线BC 为函数y b 图像的一部分,其中()08A ,,()46B ,,()2010C ,,()248D ,.(1)请写出pH 值的大小y 与检测时间点x 之间的函数解析式;(2)试求该化工企业在一天内排放pH 值超标污水的时长.21.(本小题满分12分)已知函数()2=283f x x x m -++为R 上的连续函数.(1)若=4m -,试判断()=0f x 在()11-,上是否有根存在.若没有,请说明理由;若有,请在精确度为0.2(即根所在区间长度小于0.2)的条件下,用二分法求出使这个根0x 存在的区间.(2)若函数()f x 在区间[]11-,上存在零点,求实数m 的取值范围.22.(本小题满分12分)已知函数()()2=log 421x x f x a a +⋅++,x ∈R . (1)若=1a ,求方程()=3f x 的解集;(2)若方程()=f x x 有两个不同的实数根,求实数a 的取值范围.第三章综合测试答案解析一、 1.【答案】C【解析】()10f Q <,()20f >,()1.50f >,∴在区间()11.5,内函数()=338x f x x +-存在一个零点,因此在第二次应计算的函数值所对应的x 值为1 1.5=1.252+,故选C . 2.【答案】B【解析】Q 函数()22=log f x x x +在0x >时是连续单调递增函数,且()21=1log 1=10f +>,21113=log =02424f ⎛⎫+- ⎪⎝⎭<,()1102ff ⎛⎫∴⋅ ⎪⎝⎭<.∴函数()22=log f x x x +的零点所的在区间是112⎛⎫ ⎪⎝⎭,. 3.【答案】C【解析】由所给数据可知y 随x 的增大而增大,且增长速度越来越快,而A ,D 中的函数增长速度越来越慢,B 中的函数增长速度保持不变,故选C . 4.【答案】C【解析】设()()=2xf x e x -+,则由题设知()1=0.280f -<,()2=3.390f >,故方程2=0x e x --的一个根在区间()12,内.故选C . 5.【答案】A【解析】由题意,132元打9折,售价为()1320.9=118.8⨯元.因为这个价格相对进货价,获利10%,也就是说它是进货价的110%,所以进货价为()110118.8=108÷%元,故选A . 6.【答案】B【解析】由题中函数图像知,水面高度y 上升的速度先是由慢到快,后来速度保持不变,结合容器形状知选B . 7.【答案】C【解析】αQ ,β是函数()f x 的两个零点,()()==0f f αβ∴.又()()==20f a f b -Q <,结合二次函数的图像(如图所示)可知a ,b 必在α,β之间.故选C .8.【答案】C【解析】当0x ≤时,令223=0x x +-,得=3x -;当0x >时,令2ln =0x -+,得2=e x .所以函数有2个零点.故选C . 9.【答案】A【解析】()()23=15log f x x x --+-Q 在()1+∞,上单调递减,且()3=0f ,()10f x ∴>,()20f x <,故选A .10.【答案】C【解析】设=AB a ,则22221111==2222y a x x a --+,其图像为抛物线的一段,开口向下,顶点在y 轴上方.故选C . 11.【答案】B【解析】由题意,分流前产品A 的年产值为100t 万元,分流x 人后,产品A 的年产值为()()1001 1.2x x t -+%万元.由题意,得()()01001001 1.2100x x x x t t ∈⎧⎪⎨-+⎪⎩N <<,≥,,%解得5003x <≤,x ∈N ,所以x 的最大值为16.故选B . 12.【答案】B【解析】由函数()2=ex xf x --,可知方程()21=0f x -,即()1=2f x ,即21e =2x x --,整理可得2=ln2x x ---,即2ln 2=0x x -+或2ln 2=0x x --.在方程2ln 2=0x x -+中,1=14ln 20∆-<,方程无实数解;在方程2ln 2=0x x --中,2=14ln 20∆+>,方程有2个不等的实数解.综上可得,方程()21=0f x -的实数根的个数为2.故选B .二、13.【答案】()13,【解析】由()()150f f ⋅<,()()110f f x ⋅<及()()150f x f ⋅>可知()1f 与()1f x 异号,()1f x 与()5f 同号,则()011x x ∈,即()013x ∈,. 14.【答案】()25,【解析】由题意得()f x 在()0+∞,上单调递增,且()()120f f ⋅<,即()()250m m --<,解得25m <<. 15.【答案】6【解析】由210=x a -得2=10x a ±,由题设知12=10x a -,22=10x a +.因为21=2x x ,所以()211222=2=2x x x ,所以()210=10a a -+,解得=15a 或=6a .因为100a ->,所以=15a 不合题意,舍去,所以=6a . 16.【答案】9【解析】设乘客每次乘坐出租车需付费用为()f x 元,则由题意得()(]()(]()()8103=93 2.153895 2.158 2.858.x f x x x x x ⎧+∈⎪+-∈⎨⎪++-∈+∞⎩⨯⨯⨯,,,,,,,,令()=22.6f x ,显然()()95 2.158 2.85=22.68x x ⨯⨯++->,解得=9x . 三、17.【答案】(1)由题意得()50.16010=1.62log 910.x x y x x ⎧⎪⎨+-⎪⎩,<≤,,>(2)由(]010x ∈,,0.16 1.6x ≤,而=5.6y 可知,10x >. ()51.62log 9=5.6x ∴+-,解得=34x .∴老张的销售利润是34万元.18.【答案】(1)当10x -≥,即1x ≥时,()()=211=1f x x x x --+-; 当10x -<,即1x <时,()()=211=33f x x x x --+-.()f x 的图像如图所示.(2)①函数()f x 的单调递增区间为[)1+∞,; 函数()f x 的单调递减区间为(]1-∞,. ②函数()f x 的值域为[)0+∞,. ③方程()=2f x 在区间[]02,上解的个数为1. 19.【答案】(1)()31=1=31e e x x g x ⎛⎫++ ⎪⎝⎭,因为0x ≥,e 1x≥,所以101e x⎛⎫ ⎪⎝⎭<≤,1033e x⎛⎫⎪⎝⎭<≤,即()14g x <≤,故()g x 的值域是(]14,. (2)由()()=0f x g x -,得3e 2=0ex x--.当0x ≤时,方程无解; 当0x >时,3e 2=0ex x--,整理得()2e 2e 3=0x x --, 即()()e 1e 3=0x x+-.因为e 0x >,所以e =3x ,即=ln3x . 故满足方程()()=0f x g x -的x 的值为ln3.20.【答案】(1)()08A Q ,,()46B ,,∴线段AB 的方程是()1=8042y x x -+≤≤.将()46B ,,()2010C ,的坐标代入y b ,得b b ⎧⎪⎨⎪⎩,,解得=4=6.a b -⎧⎨⎩,故()6420y x +≤≤.()2010C Q ,,()248D ,,∴线段CD 的方程是()1=2020242y x x -+≤≤.综上,y 与x之间的函数解析式为18042=642012020242.x x y x x x ⎧-+⎪⎪-+⎪⎩,≤≤,,≤≤,,≤≤(2)由()08A ,,()46B ,知在AB 段排放污水的pH 值不超标; 在BC6=9,解得=13x ,故[)1320x ∈,时排放污水的pH 值超标, 时长是()2013=7-小时;在CD 段,令120=92x -+,解得=22x ,故[]2022x ∈,时排放污水的pH 值超标,时长是()2220=2-小时.因此该化工企业在一天内排放pH 值超标污水9小时.21.【答案】(1)当=4m -时,()=0f x ,即()2=281=0f x x x --. 可以求出()1=9f -,()1=7f -,则()()110f f -⋅<.又()f x 为R 上的连续函数,()=0f x ∴在()11-,上必有根存在.取中点0,计算得()0=10f -<,()()100f f -⋅<,∴根()010x ∈-,,取其中点12-,计算得17=022f ⎛⎫- ⎪⎝⎭>,∴根0102x ⎛⎫∈- ⎪⎝⎭,,取其中点14-,计算得19=048f ⎛⎫- ⎪⎝⎭>, ∴根0104x ⎛⎫∈- ⎪⎝⎭,,取其中点18-,计算得11=0832f ⎛⎫- ⎪⎝⎭>, ∴根0108x ⎛⎫∈- ⎪⎝⎭,,区间长度11=0.285<,符合要求.故符合要求的根0x 存在的区间为108⎛⎫- ⎪⎝⎭,.(2)()2=283f x x x m -++为开口向上的抛物线,对称轴为8==222x ⨯--, ∴在区间[]11-,上,函数()f x 单调递减.又()f x 在区间[]11-,上存在零点,只可能()()1010f f ⎧-⎪⎨⎪⎩≥,≤,即 28302830m m +++⎧⎨-++⎩≥,≤,解得133m -≤≤. 故所求实数m 的取值范围是133m -≤≤.22.【答案】(1)当=1a 时,()()2=log 422x xf x ++.由()=3f x ,得3422=2x x ++,所以426=0x x +-,因此()()2322=0x x +-,解得=1x .所以方程()=3f x 的解集为{}1.(2)方程()2log 421=x xa a x +⋅++有两个不同的实数根,即421=2x x x a a +⋅++有两个不同的实数根.设=2x t ,则()211=0t a t a +-++在()0+∞,上有两个不同的解.令()()2=11g t t a t a +-++,由已知可得()()()200102=1410g a a a ⎧⎪-⎪-⎨⎪⎪∆--+⎩>,>,>,解得13a --<<故实数a 的取值范围为(13--,.第四章综合测试一、单项选择题1.式子 )ABC .D .2.函数()lg 3f x x x =+-的零点所在区间为( ) A .(2,3)B .(3,4)C .(1,2)D .(0,1)3.设lg 2a =,lg3b =,则12log 5=( ) A .12aa b -+ B .12aa b-+ C .12aa b++ D .12aa b++ 4. 已知2log 0.1a =,0.12b =,110.2c =,则a ,b ,c 的大小关系是( ) A .a b c <<B .b c a <<C .c a b <<D .a cb <<5.函数1()(0,1)x f x a a a a=-≠>的图象可能是( )A .B .C .D .6.已知函数2,0()21,0x a x f x x x ⎧-≤=⎨->⎩,a R ∈,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞-B .(,1]-∞-C .[1,0)-D .(0,1]7.若()2()lg 21f x x ax a =-++在区间(,1]-∞上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,)+∞D .[2,)+∞8.已知函数()|lg |f x x =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修1综合检测(时间:120分钟 满分:150分)一、选择题(每小题5分,共50分)1.函数y =xln(1-x)的定义域为( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1]2.已知U ={y|y =log 2x ,x>1},P =⎩⎨⎧⎭⎬⎫y|y =1x ,x>2,则∁U P =( ) A.⎣⎢⎡⎭⎪⎫12,+∞ B.⎝ ⎛⎭⎪⎫0,12 C .(0,+∞) D .(-∞,0)∪⎣⎢⎡⎭⎪⎫12,+∞ 3.设a>1,函数f(x)=log a x 在区间[a,2a]上的最大值与最小值之差为12,则a =( ) A. 2 B .2 C .2 2 D .44.设f(x)=g(x)+5,g(x)为奇函数,且f(-7)=-17,则f(7)的值等于( )A .17B .22C .27D .125.已知函数f(x)=x 2-ax -b 的两个零点是2和3,则函数g(x)=bx 2-ax -1的零点是( )A .-1和-2B .1和2 C.12和13 D .-12和-136.下列函数中,既是偶函数又是幂函数的是( )A .f(x)=xB .f(x)=x 2C .f(x)=x -3D .f(x)=x -17.直角梯形ABCD 如图Z-1(1),动点P 从点B 出发,由B →C →D →A 沿边运动,设点P 运动的路程为x ,△ABP 的面积为f(x).如果函数y =f(x)的图象如图Z-1(2),那么△ABC 的面积为( )A .10B .32C .18D .168.设函数f(x)=⎩⎨⎧x 2+bx +c ,x ≤0,2, x>0,若f(-4)=f(0),f(-2)=-2,则关于x 的方程f(x)=x 的解的个数为( )A .1个B .2个C .3个D .4个9.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x +y)=f(x)f(y)”的是( )A .幂函数B .对数函数C .指数函数D .一次函数10.甲用1000元人民币购买了一支股票,随即他将这支股票卖给乙,获利10%,而后乙又将这支股票返卖给甲,但乙损失了10%,最后甲按乙卖给甲的价格九折将这支股票卖给了乙,在上述股票交易中( )A .甲刚好盈亏平衡B .甲盈利1元C .甲盈利9元D .甲亏本1.1元二、填空题(每小题5分,共20分)11.计算:⎝ ⎛⎭⎪⎫lg 14-lg25÷10012-=__________. 12.已知f(x)=(m -2)x 2+(m -1)x +3是偶函数,则f(x)的最大值是__________.13.y =f(x)为奇函数,当x<0时,f(x)=x 2+ax ,且f(2)=6;则当x ≥0时,f(x)的解析式为_______.14.函数y =2x -1x +1,x ∈[3,5]的最小值为________;最大值为________. 三、解答题(共80分)15.(12分)已知全集U =R ,集合A ={x|log 2(11-x 2)>1},B ={x|x 2-x -6>0},M ={x|x 2+bx +c ≥0}。

(1)求A ∩B ;(2)若∁U M =A ∩B ,求b ,c 的值。

16.(12分)已知函数f(x)=bx ax 2+1(b ≠0,a>0)。

(1)判断f(x)的奇偶性;(2)若f(1)=12,log 3(4a -b)=12log 24,求a ,b 的值。

17.(14分)方程3x 2-5x +a =0的一根在(-2,0)内,另一根在(1,3)内,求参数a 的取值范围.18.(14分)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出;当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600时,能租出多少辆车?(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大收益为多少元?19.(14分)已知函数f(x)=2x +2ax +b ,且f(1)=52,f(2)=174。

(1)求a ,b 的值;(2)判断f(x)的奇偶性;(3)试判断f(x)在(-∞,0]上的单调性,并证明;(4)求f(x)的最小值.20.(14分)已知函数f(x)=lnx +2x -6。

(1)证明:函数f(x)在其定义域上是增函数;(2)证明:函数f(x)有且只有一个零点;(3)求这个零点所在的一个区间,使这个区间的长度不超过14。

参考答案:1.B2.A 解析:由已知U =(0,+∞).P =⎝ ⎛⎭⎪⎫0,12,所以∁U P =⎣⎢⎡⎭⎪⎫12,+∞.故选A. 3.D 4.C 5.D 6.B 7.D8.C 解析:由f(-4)=f(0),f(-2)=-2,可得b =4,c =2,所以f(x)=⎩⎨⎧ x 2+4x +2,x ≤0,2, x>0,所以方程f(x)=x 等价于⎩⎨⎧ x>0,x =2或⎩⎨⎧ x ≤0,x 2+4x +2=x. 所以x =2或x =-1或x =-2.故选C. 9.C10.B 解析:由题意知,甲盈利为1000×10%-1000×(1+10%)×(1-10%)×(1-0.9)=1(元). 11.-2012.3 解析:∵f(x)是偶函数,∴f(-x)=f(x),即(m -2)·(-x)2-(m -1)x +3=(m -2)x 2+(m -1)x +3, ∴m =1.∴f(x)=-x 2+3.f(x)max =3. 13.-x 2+5x14.54 32 解析:y =2x -1x +1=2x +2-3x +1=2-3x +1,显然在(-1,+∞)单调递增, 故当x ∈[3,5]时,f(x)min =f(3)=54,f(x)max =f(5)=32.15.解:(1)∵⎩⎨⎧ 11-x 2>0,11-x 2>2⇒-3<x<3,∴A ={x|-3<x<3}. ∵x 2-x -6>0,∴B ={x|x<-2或x>3}. ∴A ∩B ={x|-3<x<-2}.(2)∁U M =A ∩B ={x|-3<x<-2}={x|x 2+bx +c<0},∴-3,-2是方程x 2+bx +c =0的两根,则⎩⎨⎧ -b =(-3)+(-2),c =(-3)·(-2)⇒⎩⎨⎧b =5,c =6. 16.解:(1)函数f(x)的定义域为R ,f(-x)=-bx ax 2+1=-f(x),故f(x)是奇函数. (2)由f(1)=b a +1=12,则a -2b +1=0. 又log 3(4a -b)=1,即4a -b =3. 由⎩⎨⎧ a -2b +1=0,4a -b =3,得⎩⎨⎧a =1,b =1.17.解:令f(x)=3x 2-5x +a ,则其图象是开口向上的抛物线.因为方程f(x)=0的两根分别在(-2,0)和(1,3)内, 故⎩⎨⎧ f (-2)>0,f (0)<0,f (1)<0,f (3)>0,即⎩⎨⎧ 3×(-2)2-5×(-2)+a >0,a <0,3-5+a <0,3×9-5×3+a >0,解得-12<a <0. 故参数a 的取值范围是(-12,0).18.解:(1)当每辆车的月租金为3600元时,未租出的车辆数为3600-300050=12(辆). 所以这时租出的车辆数为100-12=88(辆).(2)设每辆车的月租金定为x 元,则租赁公司的月收益为f(x)=⎝ ⎛⎭⎪⎫100-x -300050(x -150)-⎝ ⎛⎭⎪⎫x -300050×50 所以f(x)=-150x 2+162x -21 000=-150(x -4050)2+307 050.所以当x =4050时,f(x)最大,最大值为307 050,即当每辆车的月租金为4050元时,租赁公司的月收益最大,最大收益为307 050元.19.解:(1)由已知,得⎩⎪⎨⎪⎧2+2a +b =52,4+22a +b =174,解得⎩⎨⎧ a =-1,b =0. (2)由(1),知f(x)=2x +2-x ,任取x ∈R , 有f(-x)=2-x +2-(-x)=2-x +2x =f(x),∴f(x)为偶函数. (3)任取x 1,x 2∈(-∞,0],且x 1<x 2,则f(x 1)-f(x 2)=(12x +12x -)-(22x +22x -) =(12x -22x )+121122x x ⎛⎫- ⎪⎝⎭=(12x -22x )121122x x ⎛⎫- ⎪⎝⎭=(12x -22x )121222122x x x x -. ∵x 1,x 2∈(-∞,0]且x 1<x 2,∴0<12x <22x ≤1.从而12x -22x <0,12x ·22x -1<0,12x ·22x >0,故f(x 1)-f(x 2)>0. ∴f(x)在(-∞,0]上单调递减. (4)∵f(x)在(-∞,0]上单调递减,且f(x)为偶函数,可以证明f(x)在[0,+∞)上单调递增(证明略).∴当x ≥0时,f(x)≥f(0);当x ≤0时,f(x)≥f(0).从而对任意的x ∈R ,都有f(x)≥f(0)=20+20=2, ∴f(x)min =2.20.(1)证明:函数f(x)的定义域为(0,+∞),设0<x 1<x 2,则lnx 1<lnx 2,2x 1<2x 2.∴lnx 1+2x 1-6<lnx 2+2x 2-6. ∴f(x 1)<f(x 2). ∴f(x)在(0,+∞)上是增函数.(2)证明:∵f(2)=ln2-2<0,f(3)=ln3>0,∴f(2)·f(3)<0. ∴f(x)在(2,3)上至少有一个零点, 又由(1),知f(x)在(0,+∞)上是增函数,因此函数至多有一个根,从而函数f(x)在(0,+∞)上有且只有一个零点.(3)解:f(2)<0,f(3)>0, ∴f(x)的零点x 0在(2,3)上,取x 1=52,∵f ⎝ ⎛⎭⎪⎫52=ln 52-1<0, ∴f ⎝ ⎛⎭⎪⎫52·f(3)<0.∴x 0∈⎝ ⎛⎭⎪⎫52,3. 取x 1=114,∵f ⎝ ⎛⎭⎪⎫114=ln 114-12>0,∴f ⎝ ⎛⎭⎪⎫52·⎝ ⎛⎭⎪⎫114<0.∴x 0∈⎝ ⎛⎭⎪⎫52,114. 而⎪⎪⎪⎪⎪⎪114-52=14≤14, ∴⎝ ⎛⎭⎪⎫52,114即为符合条件的区间.。

相关文档
最新文档