有余数的除法(教师)
有余数的除法教案(整理(优秀4篇)

有余数的除法教案(整理(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!有余数的除法教案(整理(优秀4篇)作为一名辛苦耕耘的教育工作者,常常需要准备教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。
(精品教案)有余数的除法讲课稿范文(通用5篇)

(精品教案)有余数的除法讲课稿范文(通用5篇)有余数的除法讲课稿范文(通用5篇)作为一名优秀的教育工作者,常常要依照教学需要编写讲课稿,编写讲课稿助于积存教学经验,别断提高教学质量。
优秀的讲课稿都具备一些啥特点呢?以下是小编精心整理的有余数的除法讲课稿范文(通用5篇),仅供参考,希翼可以帮助到大伙儿。
本节课的教学内容是人教版小学二年级下册第六单元中有余数除法的内容。
这节课是在研究了正好分完的事情后,再研究分后还余的事情。
《有余数的除法》是《表内除法》知识的延伸和扩展。
也是今后接着学习除法的基础,具有承上启下的作用。
在教学本课时,我着重抓住余数的认识及其含义和余数要比除数小这两个大知识点举行教学。
本节课的教学目标是:1、经过创设情境和动手操作,让学生感知有余数除法的意义。
2、能在有余数的除法算式中表示商和余数。
3、经过自主探索明确余数一定要比除数小。
4、会用有余数除法的知识解决日子实际咨询题。
本课的重、难点是:感知有余数除法的意义和明白余数要比除数小的特点。
为突出重点,突破难点,在设计本节课时,我要紧采纳的教学办法是:自主操作、体验感悟,为了让学生在活动中运用多种感官去探究新知,我设计了摆小棒的活动,让学生在摆的过程中体味余数的产生,以及余数的意义。
为了能好地降实教学目标,有效地突破重、难点,我设计了复习旧知,引入新课、实践操作,自主探索、巩固新知,体验开心三个教学环节。
(一)、导入新课在这一环节我要紧经过谈话和让学生动手操作,让学生初步感觉余数。
1、谈话:同学们,你们还记得啥叫平均分吗?把一些物品平均分成几份,每份是多少?我们能够用啥办法来计算?2、让学生来分一分小棒。
6根小棒平均分成3份,7根小棒平均分成3份。
在分好后讲一讲,两次分有啥别同?学生会讲出第一次分分完了,第二次如何分都有一具剩下。
然后告诉学生像这种有剩余的事情,也能够用除法来计算,我们就把这种事情叫做有余数的除法。
继续板书课题:有余数的除法。
数学《有余数的除法》教案

数学《有余数的除法》教案•相关推荐数学《有余数的除法》教案(通用10篇)作为一位不辞辛劳的人民教师,编写教案是必不可少的,教案是备课向课堂教学转化的关节点。
那么你有了解过教案吗?以下是小编整理的数学《有余数的除法》教案,希望对大家有所帮助。
数学《有余数的除法》教案篇1教学目标:1、掌握有余数除法的计算方法,会用自己的方法试商,知道余数应该比除数小。
2、能运用有余数得除法解决一些简单的实际问题,培养应用意识,继续与他人合作,并能与他人交流思考的过程和想法。
3、使学生感受数学与生活的密切联系,体会数学的意义与作用,进一步激发学习数学的兴趣;在独立思考和合作交流的过程中获得成功愉快的体验,锻炼克服困难的意志,建立自信心;培养积极参与学习活动的习惯。
教学重点:掌握有余数除法的计算方法,能用相关的知识解决一些简单的实际问题。
教学难点:学会有余数除法的试商方法,理解余数为何要比除数小。
教学资源:小棒教学过程:一、复习铺垫,温故而知新1、星期天,红红的妈妈买回来了6个桃子,她请红红把这些桃子放在盘子里,要求是这样的:6个桃子,每盘放3个,可以放几盘?有剩余吗?请你用手中的学具代替桃子,帮助红红放一放,然后列出算式,用竖式计算一下。
好了的小朋友可以在小组里和小朋友交流交流。
二、小组合作,自主探究1、如果红红的妈妈买回来的桃子不是6个,而是7个,按上面的要求放在盘子里,可以放几盘?有剩余吗?还剩几个呢?也请你用学具分一分,再用除法算式把这种分法表示出来。
在小组里说说、交流,随学生回答板书:7÷3=2(盘)……1(个)1个是什么数?师小结:7个桃子,每盘放3个,放了2盘,所以商2,剩下1个不够分了,所以余数是1。
你会用竖式把分7个桃子的情况表示出来吗?2、请你和同桌小朋友合作,试一试。
(学生在尝试的时候,教师要注意巡视,及时了解学生的完成情况。
)3、指名板演。
(选择板演的学生最好是将出现错误的各种情况都反映出来。
有余数的除法教案(整理(优秀9篇)

有余数的除法教案(整理(优秀9篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!有余数的除法教案(整理(优秀9篇)作为一名教职工,很有必要精心设计一份教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
《有余数的除法》教学设计【优秀5篇】

《有余数的除法》教学设计【优秀5篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!《有余数的除法》教学设计【优秀5篇】作为一名教职工,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
有余数的除法 关于《有余数的除法》说课稿(优秀6篇)

有余数的除法关于《有余数的除法》说课稿(优秀6篇)作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。
优秀的教案都具备一些什么特点呢?又该怎么写呢?书痴者文必工,艺痴者技必良,下面是作者爱岗的小编帮家人们找到的6篇关于《有余数的除法》说课稿,欢迎借鉴,希望大家能够喜欢。
有余数的除法教案详案有余数的除法数学教案篇一您现在正在阅读的三年级上册《有余数除法》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!三年级上册《有余数除法》教学设计教学目标(一)使学生初步理解有余数除法的意义,掌握有余数除法的计算方法。
(二)使学生掌握试商的方法,懂得余数要比除数小的道理。
(三)培养学生初步的观察、概括能力。
教学重点和难点重点:初步建立余数概念及掌握有余数除法的计算方法。
难点:有余数除法的试商。
教具:实物图及投影片。
学具:11根小棒。
教学过程设计(一)复习准备1.用竖式计算(两人板演)84=369=订正时,由学生说一说计算过程。
2.卡片口算(与板演同时进行)()里较大能填几?3()<22 4()<37()2<11()5<38(二)学习新课教师谈话:大家学会了除法竖式的写法,今天我们继续学习笔算除法。
同学们看一看,今天学的笔算除法与以前有什么不同。
1.教学例1出示例1的一幅图提问:这幅图是什么意思?(把6个梨平均放在3个盘里,每盘放几个?)学生动手操作。
(用6个圆片代替梨,平均分成3份,每份是多少?)再把横式和竖式写在练习本上,并指名板演。
63=2订正时,提问:(1)在被除数下面写6,表示什么?(表示分掉6个梨)(2)在横线下面为什么写0?(表示分完了,没有剩余)出示第二幅图。
提问:如果有7个梨,平均放在3个盘里,怎样分?分分看。
学生动手操作,用圆片代替梨。
(教师行间指导)提问:(1)出现了什么情况?(每盘放2个,还剩1个)(2)剩下的1个梨,还能再继续分吗?(剩下的1个梨,不能再分)教师说明:7个梨,平均放在3个盘里,分的结果是每盘2个,还剩1个。
《有余数的除法》教学设计

《有余数的除法》教学设计《有余数的除法》教学设计(通用14篇)作为一名教学工作者,时常需要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。
一份好的教学设计是什么样子的呢?下面是本店铺整理的《有余数的除法》教学设计,希望对大家有所帮助。
《有余数的除法》教学设计 1教学内容二年级(下册)第1~2页。
教学目标1.使学生经历把平均分后有剩余的现象抽象为有余数除法的过程,初步理解有余数除法及余数的含义;能根据平均分后有剩余的现象写出相应的算式,能正确读、写有余数除法的算式。
2.使学生在认识有余数除法的活动中,理解“余数要比除数小”的道理。
3.让学生通过独立思考,大胆尝试,小组交流,全班讨论等形式经历知识产生过程,体验思维过程。
教学过程一、突破思维定势,引出有余数除法1.基于经验,动手操作。
谈话:这儿有10枝铅笔,如果要把这些铅笔分给几个小朋友,每人分得同样多,可以怎么分?请先用小棒摆一摆,再和同学交流。
学生动手操作,教师巡视。
学生中可能出现以下几种摆法:(1)每份2根,分成5根;每份5枝,分成2份;每份1根,分成10份……组织反馈,并根据学生的回答课件出示相应的直观图:[说明:前面学习中学生对于平均分的认识都局限于把物体正好分完。
这是学生已有的学习经验,也是本课学习的起点。
本环节教师精准地调用了学生原有的认知经验展开教学,为有剩余现象的学习孕造了学习氛围。
]2.突破定势,感受新知。
谈话:把10枝铅笔平均分,可以每人分2枝,分给5个小朋友,也可以每人分5枝,分给2个小朋友……可为什么不每人分3枝呢?(因为每人分3枝,还有剩余的,分不完。
)谈话:10枝铅笔,每人分3枝,结果会怎样呢?请大家动手分一分,看会出现怎样的现象。
完成操作后,让学生展示自己的分法。
对于学生中出现的不同分法,分别进行如下引导:第一种:提问:说一说你是怎么样分的?(10枝铅笔,每人分3枝,可以分给3个人,还剩下1枝。
)第二种:提问:你是这样分的?再问:其他小朋友对这种分法有什么想法?(剩下的4枝还可以再分)根据学生的回答,再分出3根的1份。
6.有余数的除法教案(教案)2023-2024学年数学二年级上册

6.有余数的除法教案(教案)20232024学年数学二年级上册今天,我要为大家分享的是人教版二年级上册数学教案中的第六课时《有余数的除法》。
下面,我将详细介绍本节课的教学内容、目标、难点与重点、教具与学具准备、教学过程、板书设计、作业设计以及课后反思和拓展延伸。
一、教学内容本节课的教学内容主要包括教材第17~19页的例题和练习题。
通过这些题目,学生将学习在有余数的除法中,如何求商和余数,并能够运用这一方法解决实际问题。
二、教学目标1. 知识与技能:学生能够理解有余数的除法的概念,掌握求商和余数的方法,并能够运用这一方法解决实际问题。
2. 过程与方法:通过自主探究、合作交流,培养学生解决问题的能力。
3. 情感态度价值观:激发学生对数学的兴趣,培养学生勇于探究、积极思考的良好学习习惯。
三、教学难点与重点1. 难点:理解在有余数的除法中,余数总是比除数小的规律。
2. 重点:掌握求商和余数的方法,并能够灵活运用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔2. 学具:练习本、笔五、教学过程1. 情景引入:以一个有趣的故事引入,讲述小猴子分香蕉的故事,引导学生思考如何分配才能使每个猴子都满意。
从而引出本节课的主题——有余数的除法。
2. 自主探究:让学生自主尝试解决分配香蕉的问题,引导学生发现有余数的除法的规律。
4. 讲解演示:教师通过多媒体课件或黑板演示,讲解有余数的除法的计算方法,引导学生理解和掌握。
5. 练习巩固:让学生通过练习题,运用所学知识解决问题,巩固对有余数的除法的理解和掌握。
六、板书设计板书设计如下:有余数的除法被除数÷ 除数 = 商余数其中,被除数、除数、商、余数分别用不同的颜色标注,突出重点。
七、作业设计1. 完成练习册第17~19页的练习题。
2. 家长辅导孩子完成一道实际问题题目,如:妈妈买了5斤苹果,每斤可以分成3份,请问一共可以分成多少份?八、课后反思及拓展延伸本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
有余数的除法内容分析知识结构1.272除以23的商为 ,余数为 。
【难度】★ 【答案】11,19【解析】解:272=23×11+192.已知某数被5除后的小数部分为0.4,则5除这个数的余数为 。
【难度】★ 【答案】2【解析】解:0.4×5=23. 7104×519的积被11除,得商为 ,余数为 。
【难度】★★ 【答案】335179 , 7 【解析】解:7104×519=(11×645+9)(11×47+2)=11×11×645×47+11×645×2+9×11×47+9×2 =11×11×645×47+11×645×2+9×11×47+11×1+7 =11×335179+7一般地,如果a 是整数,b 是整数(b ≠0),若有r b ⋅⋅⋅⋅⋅⋅=÷q a ,也就是r bq a += 其中q 是商,r 是余数,0≤r <b ;我们称上面的除法算式为一个带余除法算式。
这里: (1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商 (2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商知识精讲模块一:带余除法的定义与性质课前热身即 被除数=除数×商+余数, 或 被除数-余数=除数×商一个完美的带余除法讲解模型:如图,这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。
这个图能够清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
【例1】用某自然数a 去除1992,得到商是46,余数是r ,求a 和r . 【难度】★【答案】 a =43,r =14【解析】解:因为1992是a 的46倍还多r ,得到19924643......14÷=,得1992464314=⨯+,所以43a =,14r =.【总结】分清“除”与“除以”的区别,易出错。
【检测1】甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数. 【难度】★★【答案】甲=1000,乙=88 【解析】解:(法1)因为 甲=乙1132⨯+,所以 甲+乙=乙1132⨯++乙=乙12321088⨯+=;则乙(108832)1288 =-÷=,甲1088=-乙1000=.(法2)将余数先去掉变成整除性问题,利用倍数关系来做:从1088中减掉32以后,1056就应当是乙数的(111)+倍,所以得到乙数10561288=÷=,甲数1088881000=-=【总结】带余除法算式的应用。
【检测2】一个两位数除310,余数是37,求这样的两位数。
【难度】★★例题解析【答案】39 或91【解析】解:方法为用被除数减去余数,即得到一个除数的倍数;或者是用被除数加上一个“除数与余数的差”,也可以得到一个除数的倍数。
本题中310-37=273,说明273是所求两位数的倍数,而273=3×7×13,所求的两位数约数还要满足比37大,符合条件的有39,91.【总结】本题为余数问题的基础题型,需要学生明白一个重要知识点,就是把余数问题---即“不整除问题”转化为整除问题。
【例2】有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【难度】★【答案】1968【解析】解:被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.【总结】带余除法算式的应用。
【检测】用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?【难度】★【答案】856,21【解析】解:本题为带余除法定义式的基本题型。
根据题意设两个自然数分别为x,y,可以得到40164016933x yx y=+⎧⎨+++=⎩,解方程组得85621xy=⎧⎨=⎩,即这两个自然数分别是856,21.【总结】直接根据题意列方程解即可。
【例3】三个不同的自然数的和为2001,它们分别除以19,23,31所得的商相同,所得的余数也相同,这三个数是_______,_______,_______。
【难度】★★【答案】523,631,847【解析】解:设所得的商为a,除数为b.(19)(23)(31)2001a b a b a b+++++=,7332001a b +=,由19b <,3027732001⋅⋅⋅⋅⋅⋅=÷,可求得27a =,10b =.所以,这三个数分别是19523a b +=,23631a b +=,31847a b +=。
【总结】根据题意结合带余除法算式列方程;注意余数是要比商小的。
【检测】一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3倍,这个自然数是_________. 【难度】★★ 【答案】84【解析】解:设这个自然数除以11余a (011)a ≤<,除以9余b (09)b ≤<,则有1193a a b b +=⨯+,即37a b =,只有7a =,3b =,所以这个自然数为84712=⨯。
【例4】有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问:第二组有多少人? 【难度】★★ 【答案】15人【解析】解:由48412÷=,4859.6÷=知,一组是10或11人.同理可知48316÷=,48412÷=知,二组是13、14或15人,因为二组比一组多5人,所以二组只能是15人,一组10人. 【总结】本题关键在于理解题意,应用余数的性质讨论人数,再结合条件解题即可。
【检测】一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数. 【难度】★★ 【答案】83【解析】解:因为一个两位数除以13的商是6,所以这个两位数一定大于13678⨯=,并且小于13(61)91⨯+=;又因为这个两位数除以11余6,而78除以11余1,这个两位数为78583+=.【总结】本题关键在于应用余数的性质讨论,再结合条件解题即可。
模块二:三大余数定理1.余数的加法定理a 与b 的和除以c 的余数,等于a,b 分别除以c 的余数之和,或这个和除以c 的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等 于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a 与b 的乘积除以c 的余数,等于a,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理1.定义1. 设m 是正整数,若用m 去除整数b a ,,所得的余数相同,则称a 与b 关于模m 同余,记作)(mod m b a ≡,否则称a 与b 关于模m 不同余,记作a)(mod m b .例如:)15(mod 434≡,)7(mod 61000≡,98(mod 2) 等等。
当m b <≤0时,)(mod m b a ≡,则称b 是a 对模m 的最小非负剩余。
对于固定的模m ,通常有下面的性质:性质1. 如果)(mod m b a ≡,那么)(|b a m -;如果整数a 和b 对于模m 是同余的,那么a 与b 的差能被m 整除; 性质2.同余关系满足以下规律: (1)(反身性))(mod m a a ≡;(2)(对称性)若)(mod m b a ≡,则)(mod m a b ≡;知识精讲(3)(传递性)若)(mod m b a ≡,)(mod m c b ≡,则)(mod m c a ≡;(4)(同余式相加)若)(mod m b a ≡,)(mod m d c ≡,则)(mod m d b c a ±≡±; (5)(同余式相乘)若)(mod m b a ≡,)(mod m d c ≡,则)(mod m bd ac ≡;【例5】有一个大于1的整数,除45,59,101所得的余数相同,求这个数. 【难度】★★ 【答案】2,7,14【解析】解:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.1014556-=,594514-=,(56,14)14=,14的约数有1,2,7,14,所以这个数可能为2,7,14。
【总结】同余定理性质1的应用,注意“除”和“除以”的区别。
【检测1】若有一个大于1的正整数除314、257、447所得余数相同,则2002除以这个数余数为 。
【难度】★★ 【答案】7【解析】解:根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.设该正整数为x ,则19)257314,257447,314447(=---=x ,2002除以19的余数为7 【总结】同余定理性质1的应用,注意“除”和“除以”的区别。
【检测2】在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0) 【难度】★★ 【答案】99个【解析】解:我们知道18,33的最小公倍数为[18,33]=198,所以每198个数一次.例题解析1~198之间只有1,2,3,…,17,198(余O)这18个数除以18及33所得的余数相同,而999÷198=5……9,所以共有5×18+9=99个这样的数.【总结】本题的关键在于求18与33的最小公倍数的含义。