让我们来做数学1--华师大版

合集下载

华东师大版七年级上册数学教案全册

华东师大版七年级上册数学教案全册

第一章:走进数学世界与数学交朋友(第 1 课时)教学目标:1、知识与技能:结合具体例子,体会数学与我们的成长密切相关,人类离不开数学;2、过程与方法:经历回顾与观察,体会数学的重要作用;3、情感态度与价值观:激发学习兴趣,增强数学应用意识。

教学过程:一、导入让学生看课本图片,教师诵读文字部分:宇宙之大,粒子之微,⋯⋯,大千世界,天上人间,无处不有数学的贡献。

让我们走进数学世界,去领略一下数学的风采。

(板书课题)二、数学伴我们成长出生——学前——小学,我们每天都在接触数学并不断学习它,相信吗?大家不妨举出一些我们身边用到数学的例子,看谁说的例子多。

在回忆、交流、讨论的基础上,归纳数学内容:数与代数,空间与图形,统计与概率。

三、人类离不开数学展示蜂房图、股市走势图、上海东方明珠电视塔等图片,解说(解说语参见课本,从第 2 页倒数第二行至第 3 页文字部分)。

四、数学应用举例例1.一个数减去 4,再除以 2,然后加上 3 ,再乘以 2,最后得 8,问这个数是多少?(可用算术法或代数法解,答案是6。

)例2.这是一道数学填空题,是由美国哈佛大学入学试卷中选出的。

请在下面这一组图形符号中找出它们所蕴含的内在规律,然后再那根横线上空白处填上恰当的图。

(分别是由正反数字1— 7 拼成的对称图。

这个趣例说明学习中需要细致观察,需要对数字、图形有一种敏感,也需要想象。

)例 3.关于课本第 4 页的“密铺问题”。

思考:①那些基本图形可以密铺?②为什么正五边形不可以密铺?③讨论课本第 4 页左下角的“想一想”。

五、课堂小结(略)。

六、布置作业:《数学作业本》第1—2 页。

与数学交朋友(第二课时)教学目标:1、知识与技能:体会从古至今数学始终伴随着人类的进步与发展;2、过程与方法:通过具体实例体会数学的存在及数学的美、尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题;3、情感态度与价值观:激发学生学习数学的兴趣和积极性,发展应用意识。

华东师大版数学七年级上册第1章《让我们来做数学》典型思考题

华东师大版数学七年级上册第1章《让我们来做数学》典型思考题

《让我们来做数学》典型思考题【例1】猜谜:事÷2=功×2,(打一成语);事×2=功÷2,(打一成语)(妙趣横生) 解:事半功倍;事倍功半.【例2】表1、表2是按同一规律排列的两个方格数表,那么表2的空白方格中应填的数是多少?分析:从表1的行与列两个方面寻找填数的规律,可按此规律填表2的空白格中的数.解:表1中,从24=4×6可得:第一行最左边的数等于其余两个数的乘积,第一列最上面的数等于其余两数的乘积;从4=2+2,6=2+4可得:第二行最左边的数等于其余两个数的和,第二列最上面的数等于其余两个数的和;从6=4+2,4=2+2可得到第三行、第三列的规律同第二行、第二列相同.根据这一规律,可以求出表2中空白部分的数即5-2=3.【例3】找规律,在( )内填数. (1)2、3、5、8、13、21、( ); (2)81、64、49、36、( ); (3)30、24、18、12、6、( ); (4)0、3、8、15、24、( );(5)2、7、12、17、22、( )、( ); (6)3、8、15、24、( )、( ).分析:认真观察分析各列数列,再寻找其内在和、差、倍、平方等规律. 解:(1)每相邻三个数,后一个数等于前两个数的和,应填34. (2)前四个数分别为92、82、72、62,所以应填25. (3)后项都比前项小6,所以应填0.(4)前五项分别为12-1,22-1,32-1,42-1,52-1,所以应填35. (5)后项比前项大5,所以应填27,32.表1 表2(6)前四个数中,后项比前项分别大5,7,9,所以应填35、48.【例4】1+2+1=1+2+3+2+1=1+2+3+4+3+2+1=1+2+3+4+5+4+3+2+1=根据上面四式的计算规律求:1+2+3+…+2001+2002+2003+2002+2001+…+3+2+1=分析:这道题可以采用配对法进行分析,利用配对原理计算上面4个算式的结果,从中找出计算规律.解:1+2+1配成2+(1+1),结果是2×2=4,1+2+3+2+1配成(1+2)+3+(2+1),结果是3×3=9,1+2+3+4+3+2+1配成(1+3)+(2+2)+4+(1+3),结果是4×4=16,1+2+3+4+5+4+3+2+1配成(1+4)+(2+3)+5+(2+3)+(1+4),结果是5×5=25,从上面4个例子可以发现:它们的和等于一个加数(最大的加数)的平方.1+2+3+…+2001+2002+2003+2002+2001+…+2+1=2003×2003=4012009.【例5】上表中,将每列上下两个字组成一组,例如,第一组为(共,社),第二组为(产,会)……那么,第128组是________.分析:这道题上、下两行的变化规律不统一,也就是周期里字的个数不同,第一行周期为4(共,产,党,好),第二行的周期为5(社,会,主,义,好).因此,我们要分别找出两行中第128个字.解:128÷4=32(正好有32个周期,第128个字是“好”.)128÷5=25……3(包含25个周期,还多3个字,第128个字是“主”.)所以,第128组是“好,主”.。

华师大版七年级数学上册教案带教学反思(全册)

华师大版七年级数学上册教案带教学反思(全册)

1.1数学伴我们成长教学目标1.让学生通过生活实例感受数学与现实世界的密切联系、数学价值和应用意识;2.让学生通过对比初步体验到数学是一门充满着观察、实验、归纳、类比和猜测、探索过程的学科;3.在学习的过程中养成独立思考与合作交流的习惯.教学重难点【教学重点】让学生感受数学与现实世界是密不可分的.【教学难点】培养学生独立思考与合作交流的习惯.课前准备无教学过程一、课时导入在我们的周围,宇宙之大,粒子之微,火箭之速,化工之巧,生物之谜,日用之繁……,大千世界,天上人间,无处不有数学的贡献,让我们一起走进数学世界,去领略一下数学的风采.二、感悟新知知识点:数学伴我们成长1. 感知数学:从你呱呱落地降临人世的第一天起就离不开数学,如医生检测身体各项指标是否正常,称你的体重、测量你的身高.随着年龄的增长,你开始在父母的指导下学习数学,如最初的数数、拼图案、折纸飞机等等.通过参与这些活动你将逐步体会到我们的生活中处处渗透着数学.2. 学校中学习数学:进入学校,正式开始学习数学这门学科,逐步学会简单的数学语言,知道什么是整数、分数;学会了加、减、乘、除运算;认识了各种各样的几何图形.3. 将来步入社会,你还会用你所学的知识去创造科技与财富.使整个人类在不断进步与发展.【例1】某人的身份证(第二代)号码为422129************,此人今年(2015年)的周岁是( )A.35 B.36 C.37 D.38答案:D分析:身份证号码的第7位至第14位是指这个人的出生年、月、日,此人1977年5月20日出生,所以他今年38岁.【总结】身份证(第二代)号码位数的含义:(1)第1、2位数字表示所在的省份代码;(2)第3、4位数字表示所在城市的代码;(3)第5、6位数字表示所在区县的代码;(4)第7至14位数字表示出生的年月日;(5)第15、16位数字表示所在地派出所的代码;(6)第17位数字表示性别,奇数表示男性,偶数表示女性;(7)第18位数字是校检码,也可以说是个人信息码,用来验证身份证的正确性.校检码可以是0至9的数字,有时也用x表示,一般由计算机随机产生.三、巩固练习1.身份证号码告诉我们很多信息,某人的身份证号码是130503************,其中13、05、03是此人所属的省(市、自治区)、市、县(市、区)的编码,1967、04、01是此人出生的年、月、日,001是顺序码,2为校验码.那么身份证号码是321084************的人的生日是( )A.8月10日 B.10月12日C.1月20日 D.12月8日答案:C2.小明是七年级的一名学生,他的身高可能是( )A.165 mm B.165 cmC.165 dm D.165 m答案:B3.在下列数据中,你的步长可能为( )A.50毫米 B.50厘米C.50分米 D.50米答案:B4.把长方形的木桌面锯掉一个角,剩余角的个数是( )A.3 B.4C.5 D.3或4或5答案:B四、课堂小结学习数学的意义:数学是当今世界上一门重要的学科,它伴随着我们成长,并对我们的生活产生了极为重要的影响,生活中无一能离开数学,它的应用无处不在,可以毫不夸张地说:“数学是书写宇宙的文学”,对数学的重要性的理解要注意以下两点:(1)注意数学和现实世界的密切联系,关注身边的数学问题.(2)思考数学问题中各种量之间的关系,体会数学的价值.数学思想的形成过程:生活中感知数学→学校中学习数学→实践中应用数学.五、知识拓展范例:计算并观察下面的几组算式:(1)1+3=__4__=(__2__)2;(2)1+3+5=__9__=(__3__)2;(3)1+3+5+7=__16__=(__4__)2;……(4)你能举一个类似的例子吗?1+3+5+7+9+11+13+15+17+19=__100__=(__10__)2;(5)一般地:1+3+5+7+……+(2n-1)=(__n__)2.六、课后作业课后写一篇关于“数学伴我们成长”的短文.1.2 人类离不开数学教学目标【知识与能力】了解数学家背后的故事,通过数学家的故事,对学生自身今后的数学学习有所启迪.【过程与方法】学生提前收集数学家的相关的数学小故事,并做简单的记录.【情感态度价值观】体验老一辈数学家学习数学的思想精神,感受这种精神的同时,激发学生今后学习数学的热情.教学重难点【教学重点】结合数学家学习数学的精神,通过对各个小故事的总结,感受数学家给予后辈的精神指导.【教学难点】收集古今中外各个数学家的故事,以及数学家著名的解决问题,体会其中的精神,并且和同学分享.课前准备无教学过程一、课时导入从古代结绳记事,到今天发达的信息社会,伴随着数学一系列的变化,而这些的变化离不开数学家的功劳,那么,在小学的时候,我们或多或少的听说过一些数学家的故事,但是也只是做一些浅表的了解,例如你只是知道我国古代数学家祖冲之,研究圆周率的,以及华罗庚等一些人物,下面老师将带领同学们一起来了解更多数学家背后的小故事,以及他们背后的一些数学典型习题.二、提出问题昨天老师留了课后作业,让同学们搜集历史上的数学家的故事,现在开始同桌之间互相讨论,然后一会找同学一起尽可能多的分享一下大家知道哪位数学家背后的故事,看哪位同学能知道的多?三、新知学习同学们昨天搜集的都很好,说了很多历史上的杰出的数学家,那么老师也来和大家和分享几个老师比较欣赏的数学家.阿基米德,公元前287年-公元前212年,希腊的数学家、天文学家,研究最著名的领域是几何问题,他的墓碑上上就刻着这样一个圆柱形的图案,来纪念他的伟大的贡献,他最著名的故事是阿基米德的死,当时罗马士兵闯入他的住宅,看见他画几何图形,士兵命令他离开,他不肯,结果被杀死.阿基米德最著名的话:给我一个杠杆我能撬动地球.华罗庚:中国科学院院士,数学家,中国复变函数的创始人和开拓者,“华氏定理”就是以其名字命名的,1925年初中毕业后,因拿不出学费而辍学在家帮助父亲料理杂货铺,因此只有初中学历,但是其酷爱数学用五年的时间自学高中课程,后因疾病腿部残疾,1929年,自学之后,开始在《科学》等杂志上发表论文,后因论文《苏家驹之代数的五次方程式解法不能成立之理由》轰动数学界,打破常规被清华录取.欧拉:莱昂哈德·欧拉瑞士数学家,13岁读巴塞尔大学,15岁大学毕业,16岁获得硕士学位,主要贡献在于将整个数学推至物理领域,一生写下886本书和论文,研究领域非常广泛,包括天文学、弹道学、航海学、建筑学等.很多学者认为,没有欧拉的众多发现,我们将过着不一样的生活,大学中学习最著名定理有欧拉定理.高斯:近代数学的奠基者,被认为是数学历史上最重要的数学家,和阿基米德、牛顿并成为世界三大数学家.后人称他为“数学王子”.(展示高斯求和公式)祖冲之:南北朝时期数学家,最主要的研究贡献在刘徽开创的探索圆周率的精确方法的基础之上,首次将圆周率精算到小数点后第七位,他的一生都在漂泊,但是在走走停停的过程中却做出了杰出的贡献.哥德巴赫:德国数学家,牛津大学毕业,1742年提出了著名的哥德巴赫猜想,成为了数学界的一场革命,在和欧拉长达35年通信的讨论中未果,至今未能解决.(哥德巴赫猜想:任何一个大于2的偶数可以表示成2个素数之和的证明)陈景润:曾厦门大学的校长,由于华罗庚教授的赏识,被调到中国科学数学研究院,并针对于研究哥德巴赫猜想,被公认为是对哥德巴赫猜想研究的重要人员,成为哥德巴赫猜想研究上的里程碑,他的成果被国际数学界称为“陈氏定理”.四、课堂练习1、计算:1–2+3–4+5–6+…–100+101=.答案:–502、计算:1+2+3+…+2003+2004+2003+…+3+2+1=..答案:40160163、今有一块正方形土地,要在其上修筑两条笔直的道路,使道路把这片土地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请你设计三种不同的修筑方案.(只需画简图)答案:4.下面有一张某地区的公路分布图,请你找出从A至D的一条最短路线(图中所标最短路线为里程)答案:A→B1→C2→D五、课堂小结同学们通过这节课了解了很多数学家背后的小故事,但是同学们注意,我们更应该学习的是数学家们在求学路上那些背后的故事后面所折射出来的精神,同学们应该让这些精神变成学习的榜样,应该在数学家身上学习到,我们每个人都能学好数学,同学们都是潜力股. 六、课后作业写一篇关于你最欣赏的数学家的文章,写出你最欣赏他哪里,你要向他学习什么精神?七、板书设计§1.2 人类离不开数学一、教师讲述生活中的数学案例二、学生概括生活中的数学案例---------------- ---------------1.3 人人都能学会数学教学目标1.让学生体会数学与我们的生活密切相关;2.让学生从现实生活中抽象出点、线、面、体等图形,培养学生的观察能力、分析能力,感受学习数学的乐趣;3.在学习的过程中养成独立思考与合作交流的习惯.教学重难点【教学重点】让学生感受数学伴随着我们的成长,我们的成长离不开数学.【教学难点】让学生树立学习数学的信心.课前准备无教学过程一、教学环节指导行为提示:创设问题,情境导入,结合生活中的实际例子,充分调动学生的积极性,激发学生求知欲望.行为提示:让学生阅读教材,尝试完成“自学互研”的所有内容,并适时给学生提供帮助,率先做完的小组内互查,大部分学生完成后,进行小组交流.知识链接:1.数与式:认识、计算、解方程、解应用题;2.图形:图形的认识、图形的画法、图形的有关计算.二、情景导入,生成问题1.数学并不神秘,不是只有天才才能学好数学,只要通过努力,人人都能学会数学.学好数学,要对数学有兴趣,要有刻苦钻研的精神,善于发现和提出问题,善于独立思考 . 2.思考并解决下列问题:(1)某地出租车收费标准为:起步价5元,3km后每千米1.2元,某人乘坐出租车5km,应付款__7.4__元.(2)如图,阴影部分的面积相等的是( D )A.①与④B.①与③C.②与③ D.①与②、③三、自学互研生成能力知识模块人人都能学会数学阅读教材P5~P7,完成下面的内容.1.点动成__线__,线动成__面__,面动成__体__;面与面相交得到__线__,线与线相交得到__点__.2.三棱柱有__6__个顶点,__9__条棱,__5__个面,它的侧面的形状都是__长方形__,它的底面是__两个形状相同的三角形__.3.如图,是6级台阶侧面的示意图,如果要在台阶上铺地毯,那么至少要买适合台阶宽度的地毯多少m?分析:要在台阶上铺地毯,实际上并不需要测出每一级台阶的长度,可以把图想象为由一根绳子围成的图形,将它拉成为一个长和宽分别为3.1m和2m的长方形,所以台阶的总长就是:3.1+2=5.1(m).解:3.1+2=5.1(m).∴至少要买适合台阶宽度的地毯5.1m.归纳:(1)发展进一步获得的数学基础知识和基本技能;(2)体会数学知识间的联系,培养逻辑思维方式;(3)感受数学的价值,养成独立思考的学习习惯.做这一类题的技巧是:1.从已知中寻找突破口,发现变化的规律;2.一般采用“从一般到特殊”的思维方式;3.掌握用“加、减、乘、除”的基本形式表达发现的规律.学法指导:解决寻找规律问题的方法是:观察第2个数(或图形)与前一个数(或图形)有什么联系、变化,类推下一个,由一般到特殊.行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评分.展示目标:知识模块展示重点在于通过解决数学问题,让学生知道数学并不是那么难,只有通过自身的努力才能学好数学.【范例】:如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成4个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形剪成4个小正方形,共得到10个小正方形,称为第三次操作;……根据以上操作,若要得到2017个小正方形,则需要操作的次数是__672__.分析:本题是规律类型的数学题,通过观察,我们容易发现,当操作第n(n 为正整数)次时,共得到(3n +1)个小正方形,从而我们可以列一个关于n(以n 为未知数)的方程,解出n 的值即可.解:设操作n 次可以得到2017个小正方形,根据题意得:3n +1=2017,解得:n =672.答:需要操作的次数是672.仿例:根据前面几个数的规律填空:(1)5,8,13,21,34,____;55(2)12,23,35,58,813,____.1322分析:(1)规律:第1个数加上第2个数得到第3个数,第2个数加上第3个数得到第4个数,第3个数加上第4个数得到第5个数,第4个数加上第5个数得到第6个数…;(2)规律:前一个分数的分母是下一个分数的分子,前一个数的分子与分母的和是后一个分数的分母.变例:在学校体育课上,老师准备了一些橘子给同学们,小明非常勤快,帮老师数橘子,他7个7个地数,还余4个,5个5个地数,还余3个,3个3个地数,正好数完,则老师至少为同学们准备了__18__个橘子.四、交流展示,生成新知1.各小组共同探讨“自学互研”部分,将疑难问题板演到黑板上,小组间就上述疑难问题相互释疑;2.组长带领组员参照展示方案,分配好展示任务,同时进行组内小展示,将形成的展示方案在黑板上进行展示.五、课后反思查漏补缺收获:________________________________________________________________________2.1 有理数第1课时教学目标1、在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。

新华师大版八年级上册初中数学 1-命题 教案

新华师大版八年级上册初中数学 1-命题 教案

第十三章全等三角形13.1 命题、定理与证明1.命题【知识与技能】1.了解命题的概念,理解命题的结构.2.会识别命题的真假,会说明一个命题是假命题.【过程与方法】通过小组交流讨论,培养学生合作意识与沟通能力通过与小学的因数分解进行类比,培养学生类比学习法【情感态度与价值观】培养学生求知欲,增强学生学习的成就感命题的结构,真命题与假命题识别.识别命题的真假.多媒体课件.我们已经学习了哪些图形的特性?看哪个小组回答得最多?根据学生的回答,选取一个导入新课.如“对顶角相等”这个句子,表示判断一件事情的语句就是今天学习的内容.板书课题:命题.1.命题的定义与结构【教师讲解】以上所举例子都是判断某一件事情的语句.表示判断的语句叫做命题.辨一辨下面的语句是命题的是:①你很美.②你的奶奶身体好吗?③直角都互补;④平行于同一直线的两直线平行.【教学说明】命题的形式是陈述句,且作了判断.将你所列举的命题改写成“如果……那么……”的形式,并指出条件与结论.【教学说明】“如果……”的部分是条件,“那么……”部分是结论,寻找命题的条件与结论即将命题写成“如果……那么”的形式,注意改写后语句应通顺.2.真命题与假命题.【教学说明】条件成立、结论也成立的命题叫做真命题,条件成立,不能保证结论是正确的命题叫做假命题,让学生一对一给出命题,并辨别真假.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分,教师巡视并及时评价.四、典例精析,拓展能力例指出下列命题的条件和结论,并判断命题的真假,如果是假命题请举一个反例.(1)经过一点有且只有一条直线与已知直线垂直;(2)两个无理数之和仍是无理数.【答案】(1)真命题,条件是经过一点画已知直线的垂线,结论:有且是只有一条.(2)假命题,条件是:两个数都是无理数,结论是:它们的和是无理数.如2与-2都是无理数,但和为0,是有理数.【教学说明】找命题条件与结论时,关键将命题改写成“如果……那么……”的形式,说明假命题举出一个反例即可,辨别命题的真假应思维全面.五、运用新知,深化理解命题“一个角的补角一定大于这个角”的条件是,结论是,它是一个,反例为 .【教学说明】使学生掌握寻找命题条件与结论的方法,说明一个命题为假命题,应举出一个反例.1.一般地,能明确指出概念含义或特征的句子,称为定义,定义必须严密;2.可以判断出正确的或是错误的句子叫做命题.正确的命题称为真命题,错误的命题称为假命题;3.许多命题可以写成“如果……,那么……”的形式.其中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.【正式作业】教材课本练习1、2,习题13.1的1、2题。

华师大版七年级下册数学全册教案设计

华师大版七年级下册数学全册教案设计

华师大版数学七年级下册全册教案设计清风染绿叶第6章 一元一次方程6.1 从实际问题到方程1.掌握如何设未知数.2.掌握如何找等式来列方程.3.了解尝试法、代入法寻找方程的解.重点1.确定所有的已知量和确定“谁”是未知数x.2.列方程.难点找出问题中的相等关系.一、创设情境,问题引入在现实生活中,有很多问题都跟数学有关,例如下面的问题:问题1:某校初一年级有328名师生乘车外出春游,已有2辆校车乘坐了64人,还需租用44座的客车多少辆?这个问题用数学中的什么方法来解决呢?二、探索问题,引入新知1.在小学里,我们学过方程,你还能记得什么样的式子是方程吗?含有未知数的等式叫方程.2.讲解导入中的问题:根据小学所学的列方程,按照问题问“什么”就设这个“什么”为未知数x的方法来解决这个问题.分析:设需租用客车x辆,则客车可以乘坐44x人,加上2辆校车上的64人,就是328人.列方程为44x+64=328.解:设还需租用44座的客车x辆,则共可乘坐44x人.根据题意列方程得:44x+64=328.设问:你们谁会解这个方程?请大家自己试一试.问题2:张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年后你们的年龄是我年龄的三分之一?”方法一:我们可以按年龄的增长依次去试.1年后,老师的年龄是46岁,同学的年龄是14岁,不是老师年龄的三分之一;2年后,老师的年龄是47岁,同学的年龄是15岁,也不是老师年龄的三分之一;3年后,老师的年龄是48岁,同学的年龄是16岁,恰好是老师年龄的三分之一.方法二:也可以用列方程的办法来解.解:设x 年后同学的年龄是老师年龄的三分之一,x 年后同学的年龄是(13+x)岁,老师年龄是(45+x)岁.根据题意,列出方程得13+x =(45+x).13这个方程不太好解,大家可以用尝试、检验的方法找出它的解,即只要将x =1,2,3,4,…代入方程的左右两边,看哪个数能使左右两边的值相等,这样得到方程的解为 x =3.结论:使方程左右两边的值相等的未知数的值,就是方程的解.要检验一个数是否为方程的解,只要把这个数代入方程的左右两边,看能否使左右两边的值相等.如果左右两边的值相等,那么这个数就是方程的解.3.由上面的两个问题,你能总结出列方程解决实际问题的步骤吗?结论:设未知数x ;找出相等关系;根据相等关系列方程.【例】 某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下23的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?(列方程不必求解)分析:设这批书共有3x 本,根据每包书的数目相等,即可得出关于x 的方程,解之即可得出结论.解:设这批书共有3x 本,根据题意列方程得:=.2x -4016x +409点评:本题考查了方程的应用,根据每包书的数目相等,列出关于x 的一元一次方程是解题的关键.三、巩固练习1.下列各式中,是方程的是( )A .3+5B .x +1=0C .4+7=11D .x +3>02.下列方程中,解为x =-3的是( )A .x +1=0B .2x -1=8-x 13C .-3x =1D .x +=0133.下列四个数中,方程x +2=0的解为( )A .2B .-2C .4D .-44.已知甲数比乙数的2倍大1,如果设甲数为x ,那么乙数可表示为________;如果设乙数为y ,那么甲数可表示为________.5.一根细铁丝用去后还剩2 m ,若设铁丝的原长为x m ,可列方程为23________________.6.检验下列各数是不是方程=x -2的解.3x(1)x =2; (2)x =-1.7.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(列方程并估计问题的解)四、小结与作业小结这节课主要讲了下面两个问题:1.复习了用列方程的方法来解应用题;2.检验一个数是否为方程的解的方法.作业1.教材第4页“习题6.1”中第1,3题.2.完成练习册中本课时练习.现代数学教学观念要求学生从“学会”向“会学”转变,本课从探究到应用都有意识地营造一个较为自由的空间,让学生能积极地动手、动口、动脑,使学生在学知识的同时形成方法.整个教学过程突出了三个注重:①注重学生参与知识的形成过程,体验应用数学知识解决简单问题的乐趣. ②注重师生间、同学间的互动协作、共同提高.③注重知能统一,让学生在获取知识的同时,掌握方法,灵活应用.6.2 解一元一次方程6.2.1 等式的性质与方程的简单变形第1课时 等式的性质1.借助天平的操作活动,发现并理解等式的性质.2.应用等式的性质进行等式的变换.3.经历观察、比较、抽象、归纳等思维活动,发展学生的数学思维能力.重点等式的性质和运用.难点引导学生发现并概括出等式的性质.一、创设情境,问题引入同学们,你们还记得“曹冲称象”的故事吗?请同学说说这个故事.小时候的曹冲是多么地聪明啊!随着社会的进步,科学水平的发达,我们有越来越多的方法测量物体的重量.最常见的方法是用天平测量一个物体的质量.我们来做这样一个实验,测一个物体的质量(设它的质量为x).首先把这个物体放在天平的左盘内,然后在右盘内放上砝码,并使天平处于平衡状态,此时两边的质量相等,那么砝码的质量就是所要称的物体的质量.二、探索问题,引入新知请同学来做这样一个实验:如下图,天平处于平衡状态,它表示左右两个盘内物体的质量a ,b 是相等的.得到:a =b.1.若在平衡天平两边的盘内都添上(或都拿去)质量相等的物体,则天平仍然平衡.得到:a +c =b +c a -c =b -c2.若把平衡天平两边盘内物体的质量都扩大(或缩小)相同的倍数,则天平仍然平衡.得到:ac =bc(c ≠0) =(c ≠0)a c b c观察上面的实验操作过程,回答下列问题:(1)从这个变形过程,你发现了什么一般规律?(2)这几个等式两边分别进行了什么变化?等式有何变化?(3)通过上面的操作活动,你能说一说等式有什么性质吗?结论:等式的基本性质:性质1:等式的两边都加上(或减去)同一个数或同一个整式,等式仍然成立.如果a =b ,那么a +c =b +c ,a -c =b -c.性质2:等式两边都乘或除以同一个数(除数不为0),等式仍然成立.如果a =b ,那么ac =bc ,=(c ≠0).a c b c【例1】 用适当的数或整式填空,使所得结果仍是等式,并说明是根据等式的哪一条性质,以及怎样变形的:(1)如果2x +7=10,那么2x =10-________________________________________;(2)如果=2,那么a =________________________________________;a 4(3)如果2a =1.5,那么6a =________________________________________;(4)如果-5x =5y ,那么x =________________________________________.分析:根据等式的基本性质进行填空.解:(1)根据等式的性质1,若2x +7=10,则2x =10-7(等式的两边同时减去7,等式仍成立);故填:7(等式的两边同时减去7,等式仍成立);(2)根据等式性质2,若=2,则a =8(等式的两边同时乘以4,等式仍成立);故填:a 48(等式的两边同时乘以4,等式仍成立);(3)根据等式性质2,若2a =1.5,则6a =4.5(等式的两边同时乘以3,等式仍成立);故填:4.5(等式的两边同时乘以3,等式仍成立);(4)根据等式性质2,若-5x =5y ,则x =-y(等式的两边同时除以-5,等式仍成立);故填:-y(等式的两边同时除以-5,等式仍成立).点评:等式性质:1.等式的两边同时加上或减去同一个数或同一个整式,等式仍成立;2.等式的两边同时乘以或除以同一个不为0数或整式,等式仍成立.三、巩固练习1.下列说法正确的是( )A .等式两边都加上一个数或一个整式,所得结果仍是等式B .等式两边都乘以一个数,所得结果仍是等式C .等式两边都除以同一个数,所得结果仍是等式D .一个等式的左、右两边分别与另一个等式的左、右两边分别相加,所得结果仍是等式2.对于数x ,y ,c ,下列结论正确的是( )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则=x c y cD .若=,则2x =3y x 2c y 3c3.在方程的两边都加上4,可得方程x +4=5,那么原方程是________.4.在方程x -6=-2的两边都加上________,可得x =________.5.方程5+x =-2的两边都减5得x =______.6.如果-7x =6,那么x =________.7.只列方程,不求解.某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少100套,如果每天平均生产32套服装,就可以超过订货任务20套,问原计划几天完成?四、小结与作业小结通过及时的练习对所学新知进行巩固和深化,在练习中,要求学生说出计算的依据,帮助学生巩固等式性质的同时,也提升了说理能力.作业1.教材第5页“练习”.2.完成练习册中本课时练习.本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力.通过两次实践活动,学生亲自参与了等式的性质发现的过程,真正做到“知其然,知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高.第2课时 方程的简单变形1.理解并掌握方程的两个变形规则;2.使学生了解移项法则,即移项后变号,并且能熟练运用移项法则解方程;3.运用方程的两个变形规则解简单的方程.重点运用方程的两个变形规则解简单的方程.难点运用方程的两个变形规则解简单的方程.一、创设情境、复习引入1.等式有哪些性质?2.在4x -2=1+2x 两边都减去________,得2x -2=1,两边再同时加上________,得2x =3,变形依据是________.3.在x -1=2中两边乘以________,得x -4=8,两边再同时加上4,得x =12,变14形依据分别是________.二、探索问题、引入新知1.方程是不是等式?2.你能根据等式的性质类比出方程的变形依据吗?结论:方程的两边都加上(或都减去)同一个数或同一个整式,方程的解不变.方程两边都乘以(或都除以)同一个不为零的数,方程的解不变.3.你能根据这些规则,对方程进行适当的变形吗?【例1】 解下列方程:(1)x -5=7; (2)4x =3x -4.分析:(1)利用方程的变形规律,在方程x -5=7的两边同时加上5,即x -5+5=7+5,可求得方程的解.(2)利用方程的变形规律,在方程4x =3x -4的两边同时减去3x ,即4x -3x =3x -3x -4,可求得方程的解.像上面,将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项.点评:(1)上面两小题方程变形中,均把含未知数x 的项,移到方程的左边,而把常数项移到了方程的右边.(2)移项需变号.【例2】 解下列方程:(1)-5x =2; (2)x =;3213分析:(1)利用方程的变形规律,在方程-5x =2的两边同除以-5,即-5x÷(-5)=2÷(-5)(或=,也就是x =) 可求得方程的解.-5x -52-52-5(2)利用方程的变形规律,在方程x =的两边同除以或同乘以,即x÷=÷(或321332233232133232x ×=×),可求得方程的解.231323解: (1)方程两边都除以-5,得x =-.25(2)①方程两边都除以,得x =÷=×,即x =.②方程两边同乘以,得x =×321332132329231323=,即x =.2929结论:(1)上面两题的变形通常称作“将未知数的系数化为1”.(2)上面两个解方程的过程,都是对方程进行适当的变形,得到x =a 的形式.根据上面的例题,你能总结出解一元一次方程的一般步骤吗?点评:解方程的一般步骤是:(1)移项;(2)合并同类项;(3)系数化为1.三、巩固练习1.下面是方程x +3=8的三种解法,请指出对与错,并说明为什么?(1)x +3=8=x =8-3=5;(2)x +3=8,移项得x =8+3,所以x =11;(3)x +3=8,移项得x =8-3,所以x =5.2.下列方程的变形是否正确?为什么?(1)由3+x =5,得x =5+3.(2)由7x =-4,得x =-.74(3)由y =0,得y =2.12(4)由3=x -2,得x =-2-3.3.解下列方程.(1)4x -3=2x -2;(2)1.3x +1.2-2x =1.2-2.7x ;(3)3y -2=y +1+6y.4.方程 2x +1=3和方程2x -a =0 的解相同,求a 的值.四、小结与作业小结先小组内交流收获和感想然后以小组为单位派代表进行总结.教师加以补充.作业1.教材第9页“习题6.2.1”中第1 、2 、3题.2.完成练习册中本课时练习.本节课是在等式基本性质的基础上总结出方程的变形规则,再根据方程的变形规则,通过移项、系数化为1来解简单的方程.学生掌握的较好.6.2.2 解一元一次方程第1课时 一元一次方程的解法(1)1.一元一次方程的定义.2.了解如何去括号解方程.3.了解去分母解方程的方法.重点1.一元一次方程的定义;2.解一元一次方程的步骤.难点灵活使用变形解方程.一、创设情境、复习引入上两堂课讨论了一些方程的解法,那么那些方程究竟是什么类型的方程呢?先看下面几个方程:每一行的方程各有什么特征?(主要从方程中所含未知数的个数和次数两方面分析)4+x =7;3x +5=7-2x ;y -=+1;26y3x +y =10;x +y +z =6;x 2-2x -3=0;x 3-1=0.二、探索问题、引入新知1.比较一下,第一行的方程(即前3个方程)与其余方程有什么区别?(学生答)可以看出,前一行方程的特点是:(1)只含有一个未知数;(2)未知数的次数都是一次的.“元”是指未知数的个数,“次”是指方程中含有未知数的项的最高次数,根据这一命名方法,上面各方程是什么方程呢?(学生答)结论:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程.2.上两堂课我们探讨的方程都是一元一次方程,并且得出了解一元一次方程的一些步骤.下面我们继续通过解一元一次方程来探究方程中含有括号的一元一次方程的解法.【例1】 解方程:3(x -2)+1=x -(2x -1).分析:方程中有括号,先去括号,转化成上节课所讲方程的特点,然后再解方程.解:去括号3x -6+1=x -2x +1,合并同类项 3x -5=-x +1,移项 3x +x =1+5,合并同类项4x =6,系数化为1,x =1.5.【例2】 解方程:-=1.x -322x +13分析:只要把分母去掉,就可将方程化为上节课的类型.和-的分母为2和x -322x +133,最小公倍数是6,方程两边都乘以6,则可去分母.解:去分母3(x -3)-2(2x +1)=6,去括号3x -9-4x -2=6,合并同类项-x -11=6,移项-x =17,系数化为1,x =-17.回顾上面的解题过程,总结一下:解一元一次方程通常有哪些步骤?结论:解一元一次方程通常的一般步骤为:去分母,去括号,移项,合并同类项,系数化为1.三、巩固练习1.下列方程为一元一次方程的是( )A .y +3=0 B .x +2y =3C .x 2=2xD .+y =21y2.若代数式x +2的值为1,则x 等于________.3.解下列一元一次方程.(1)2-3x =6-5x ;(2)2(x -2)-3(1-2x)=0;(3)(a -1)-2-a =2;4314(4)-=1.x -324x -153.y 取何值时,2(3y +4)的值比5(2y -7)的值大3?4.当x 为何值时,代数式与x -1互为相反数?18+x 3四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第11页“练习”.2.完成练习册中本课时练习.从学生的作业中反馈出:对去分母的第一步还存在较大的问题,是不是说明过程的叙述不太清楚,部分学生模棱两可,自己做的时候就会暴露出不懂的,这也提醒我今后的教学中在关键的知识点上要下“功夫”,切不可轻易的解决问题(想当然).备课时应该多多思考学生的具体情况,然后再修改初备的教案,尽量完善,尽量完美.第2课时 一元一次方程的解法(2)1.掌握分母中含有小数的一元一次方程的解法,灵活运用解方程的步骤解方程.2.通过练习使学生灵活的解一元一次方程.重点使学生灵活的解一元一次方程.难点使学生灵活的解一元一次方程.一、创设情境、复习引入通过前面的学习,得出了解一元一次方程的一般步骤,任何一个一元一次方程都可以通过去分母、去括号、移项、合并同类项等步骤转化成x =a 的形式.因此当一个方程中的分母含有小数时,应首先考虑化去分母中的小数,然后再求解这个方程.二、探索问题,引入新知【例1】 解方程:--=10.09x +0.020.073+2x 30.3x +1.40.2分析:此方程的分母中含有小数,通常将分母中的小数化为整数,然后再按解方程的一般步骤求解.解:--=10.09x +0.020.073+2x 30.3x +1.40.2利用分数的基本性质,将方程化为:--=19x +273+2x 33x +142去分母,得6(9x +2)-14(3+2x)-21(3x +14)=42,去括号,得54x +12-42-28x -63x -294=42,移项,得54x -28x -63x =42-12+42+294,合并同类项,得-37x =366,系数化为1,得x =-.36637点评:解此方程时一定要注意区别:将分母中的小数化为整数根据的是分数的基本性质,分数的分子和分母都乘以(或除以)同一个不等于零的数,分数的值不变,所以等号右边的1不变.去分母是方程的两边都乘以各分母的最小公倍数42,所以等号右边的1也要乘以42,才能保证所得结果仍成立.【例2】 解下列方程:(1)3(2x -1)+4=1-(2x -1);(2)++=1.4x +364x +324x +33分析:我们已经学习了解方程的一般步骤,具体解题时,要观察题目的结构特征,灵活应用步骤.第(1)小题中可以把(2x -1)看成一个整体,先求出(2x -1)的值,再求x 的值;第(2)小题,应注意到分子都是4x +3,且++=1,所以如果把4x +3看成一个整161213体,则无需去分母.解:(1)3(2x -1)+4=1-(2x -1) ,3(2x -1)+(2x -1)=1-4,4(2x -1)=-3,2x -1=-,342x =,14x =18(2)++=1,4x +364x +324x +33(++)(4x +3)=1,1612134x +3=1,4x =-2,x =-12点评:解方程时,要注意观察分析题目的结构,根据具体情况合理安排解题的步骤,注意简化运算,这样可以提高解题速度,培养观察能力和决策能力.三、巩固练习1.解方程(1)5x +3=-7x +9;(2)5(x -1)-2(3x -1)=4x -1;(3)=;3x +127+x 6(4)-=1+;x 25x +1162x -43 (5)-=0.75.3+0.2x 0.20.2+0.03x 0.012.m 为何值时,代数式2m -的值与代数式的值的和等于5?5m -137-m23.如下是某同学解方程的过程,请你仔细阅读,然后回答问题.解:-1=2+x +122-x4-1×4=2+×4 ①x +122-x42x +2-4=8+2-x ②2x +x =8+2+2+4 ③3x =16 ④x = ⑤163(1)该同学有哪几步出现错误?(2)请你解题中的方程.4.马虎同学在解方程-m =时,不小心把等式左边m 前面的“-”当做1-3x 21-m3“+”进行求解,得到的结果为x =1,求代数式m 2-2m +1的值.四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第14页“习题6.2.2”中第1,2 题.2.完成练习册中本课时练习.这几堂课我们都在探讨一元一次方程的解法,具体解题时要仔细审题,根据方程的结构特征,灵活选择解法,以简化解题步骤,提高解题速度.对于利用方程的意义解决的有关数学题,仔细领会题目中的信息,应把它转化为方程来求解.第3课时 一元一次方程的实际应用1.使学生掌握用一元一次方程解决实际问题的一般步骤;初步了解用列方程解实际问题(代数方法)比用算术方法解的优越性.2.通过分析找出实际问题中已知量和未知量之间的等量关系,并根据等量关系列出方程.重点掌握用一元一次方程解决实际问题的一般步骤.难点通过分析找出实际问题中已知量和未知量之间的等量关系,并根据等量关系列出方程.一、创设情境、复习引入在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否用一元一次方程来解决,若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较它有什么优越性?某数的3倍减2等于它与4的和,求某数.(用算术方法解由学生回答)解:(4+2)÷(3-1)=3答:某数为3.如果设某数为x,根据题意,其数学表达式为3x-2=x+4,此式恰是关于x的一元一次方程.解之得x=3.上述两种解法,很明显算术方法不易思考,而应用设未知数,列出方程并通过解一元一次方程求得应用题的解有化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.我们知道方程是一个含有未知数的等式,而等式表示了一个相等的关系.对于任何一个应用题中所提供的条件应首先找出一个相等的关系,然后再将这个相等的关系表示成方程.下面我们通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.二、探索问题,引入新知【例1】如图,天平的两个盘内分别盛有51 g,45 g盐,问应该从盘A内拿出多少盐放到盘B内,才能使两者所盛盐的质量相等?分析:设应从盘A内拿出盐x g,可列出下表.盘A盘B原有盐(g)5145现有盐(g)(51-x)(45+x) 等量关系:盘A中现有的盐=盘B中现有的盐.解:设应从盘A内拿出盐x g,放到盘B内,则根据题意,得51-x=45+x,解这个方程,得x=3.经检验,符合题意.答:应从盘A内拿出盐3 g放到盘B内.【例2】学校团委组织65名团员为学校建花坛搬砖.女同学每人搬6块,男同学每人搬8块,每人各搬4次,总共搬了1800块.问有多少名男同学?分析:设男同学有x人,可列出下表.(完成下表)男同学女同学总数参加人数(名)x65每人搬砖数(块)6×4共搬砖数(块)1800 解:设男同学有x 人,根据题意,得32x +24(65-x)=1800,解这个方程得x =30.经检验,符合题意.答:这些团员中有30名男同学.3.根据上面两道例题的解答过程,你能总结出用一元一次方程解实际问题的过程吗?结论:用一元一次方程解答实际问题,关键在于抓住问题中有关数量的相等关系,列出方程.求得方程的解后,经过检验,就可得到实际问题的解答.这一过程也可以简单地表述为:问题方程解答――→分析抽象――→求解检验其中分析和抽象的过程通常包括:(1)弄清题意和其中的数量关系,用字母表示适当的未知数;(2)找出能表示问题含义的一个主要的等量关系;(3)对这个等量关系中涉及的量,列出所需的表达式,根据等量关系,得到方程.在设未知数和解答时,应注意量的单位要统一.三、巩固练习1.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x =16(27-x)B .16x =22(27-x)C .2×16x =22(27-x)D .2×22x =16(27-x)2.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10%x =330B .(1-10%)x =330C.(1-10%)2x=330 D.(1+10%)x=3303.一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是________元.4.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为________元.四、小结与作业小结先小组内交流收获和感想,然后以小组为单位派代表进行总结,最后教师作以补充.作业1.教材第14页“习题6.2.2”中第4,5 题.2.完成练习册中本课时练习.本节课我始终把分析题意、寻找数量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法.但学生在学习的过程中,却不能很好地掌握这一要领,经常会出现一些意想不到的错误.如,数量之间的相等关系找得不清楚;列方程忽视了解设的步骤等.在教学中我始终把分析题意与寻找数量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法.针对学生在学习过程中不重视分析等量关系的现象,在教学过程中我要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的相等关系.在课堂练习的安排上适当让学生通过模仿例题的思想方法,加强学生解应用题的能力,通过一元一次方程应用题的教学,学生能够比较正确的理解和掌握解应用题的方法,初步养成正确思考问题的良好习惯.6.3 实践与探索第1课时 体积和面积问题1.使学生能够找出简单应用题中的已知量、未知量和相等关系,然后列出一元一次方程来解简单应用题,并会根据应用题的实际意义,检查求得的结果是否合理.2.能够利用一元一次方程解决图形面积、体积等相关问题.重点利用一元一次方程解决图形面积、体积等相关问题.难点找问题中的等量关系.一、创设情境、复习引入我们学过一些图形的相关公式,你能回忆一下,有哪些公式?回忆一些图形的有关公式,为本节课学习用一元一次方程解决图形相关问题,找等量关系起到帮助作用.二、探索问题,引入新知问题:用一根长60厘米的铁丝围成一个长方形:(1)如果长方形的宽是长的,求这个长方形的长和宽;23(2)如果长方形的宽比长少4厘米,求这个长方形的面积;(3)比较(1),(2)所得两个长方形面积的大小.还能围出面积更大的长方形吗?解:(1)设长方形的长为x 厘米,则宽为x 厘米.根据题意,得 2(x +x)=60,解这2323个方程, 得x =18,所以长方形的长为18厘米,宽为12厘米.(2)设长方形的长为x 厘米,则宽为(x -4)厘米,根据题意,得2(x +x -4)=60,解这个方程, 得x =17,所以S =13×17=221(平方厘米).(3)在(1)的情况下S =12×18=216(平方厘米);在(2)的情况下S =13×17=221(平方厘米).还能围出面积更大的长方形,当围出的长方形的长宽相等时,即为正方形,其面积最大,此时其边长为15厘米,面积为225平方厘米.讨论:在第(2)小题中,能不能直接设面积为x 平方厘米?如不能,怎么办?如果直接设长方形的面积为x 平方厘米,则如何才能找出相等关系列出方程呢?诱导学生积极探索:不能直接设面积为未知数,则需要设谁为未知数呢?那么设未知。

华师大版七年级数学上册课本电子书

华师大版七年级数学上册课本电子书

华师大版七年级数学上册课本电子书第一章走进数学世界 ......................... 2 §1.1与数学交朋友 .......................... 2 1. 数学伴我们成长 ....................... 2 2.人类离不开数学 ....................... 3 3. 人人都能学会数学 ..................... 6阅读材料华罗庚的故事 ......................... 6 视数学为生命的陈景润 (8)少年高斯的速算 ..................... 8 §1.2 让我们来做数学 ....................... 11 1.跟我学 .............................. 11 2. 试试看 .............................. 12 第徽?走进数学世界§1.1 与数学交朋友1. 数学伴我们成长当你呱呱落地降临人世的第一天,医生就要检测一下你的各项健康指标,为你量量身体的长度,称称你的体重,这些都与数和量有关,这就是数学,人生到世界上来的第一天就遇到数学,数学哺育着你成长。

随着年龄增长,你随时随地都在接触数学.你开始在大人们的指导下,学习数数;学习画三角形、方块和圆;用剪刀剪出各种美丽的图案,或者用纸折出小鸟、小船等各种形状的玩具;到商店去购买你喜欢吃的各种食品;…….这一切的一切,你会逐渐意识到都和?数、数的运算、数的比较、图形的大小、图形的形状、图形的位置有关,这又是数学.你进入学校,正式开始学习数学这门学科,懂得了初步的数学语言.知道了整数和分数;学会了加、减、乘、除;认识了三角形、长方形、正方形、圆,以及长方体、正方体、圆柱体和球等几何图形;了解了简单的统计知识.数学知识开阔了你的视野,改变了你的思维方式,使你变得更聪明了.2. 人类离不开数学自然界中的数学不胜枚举,如蜜蜂营造的蜂房,就是奇妙的数学图形——正六边形.这种结构消耗最少的材料,这里竟还有一个节约的数学道理在里面呢蜜蜂营造的蜂房上海东方明珠电视塔人类从蛮荒时代的结绳计数,到如今用电子计算机指挥宇宙航行,无时无刻不受到数学的恩惠和影响.高耸入云的建筑物、海洋石油钻井平台、人造地球卫星等等,莫不是人类数学智慧的结晶.随着市场经济的发展,成本、利润、投入、产出、贷款、效益、股份、市场预测、风险评估等一系列经济词汇频繁使用,买与卖、存款与保险、股票与债券……几乎每天都会碰到.而这些经济活动无一能离开数学. 股市走势图在许多地方,我们常见到如图 1.1.1那样图案的地面,它们分别是用同样大小的正方形、正六边形的材料铺成的,这样形状的地砖能铺成平整、无空隙的地面. 图 1.1.1那么除了这两种形状的材料外,还有哪些形状能够象图 1.1.1 那样铺满地面呢我们还可以举出如图 1.1.2,图 1.1.3,图 1.1.4所示的各种形状的材料,能够铺满地面. 图 1.1.2 图 1.1.3 图 1.1.4请你说出图中各种形状的名称.你还能举出其它的形状吗这些形状的材料为什么能铺满地面试一试1. 请举一个你在生活中用到数学的例子.2. 用剪刀将如图所示长方形纸片沿着一条直线剪成两部分,要使这两部分既能拼成平行四边形,又能拼成三角形和梯形,该怎么剪?第 2 题3. 人人都能学会数学数学并不神秘,不是只有天才才能学好数学,只要通过努力,人人都能学会数学.阅读材料-华罗庚的故事我国著名的数学家华罗庚说:“聪明在于学习,天才在于积累。

华师大版七年级上《§1.2 让我们来做数学(二)》教学设计

§1.2 让我们来做数学(二)一.教学目的⑴知识目标:使学生明白生活离不开数学,数学能更好地服务于生活的道理。

⑵能力目标:使学生初步体验解数学题的过程,实际上是充满观察、蔡祥、实验、归纳、类比、论证的探索过程。

⑶情感目标:使学生对数学产生一定的兴趣,获得学好数学的自信心,并学会与他人合作,养成独立思考和交流合作的习惯。

二.教学重点让生活数学化,让数学生活化。

三.教学难点如何将现实生活问题抽象为数学问题,感受数学,做数学,学会从数学角度提出问题,理解问题。

四.教具准备火柴棒若干盒五.教学过程㈠玩一玩——谁怕谁桌上放着60根火柴,甲、乙轮流每次取走1~3根火柴规定谁取走最后一根火柴,谁就获胜。

聪明的你是先让对方取?还是你先取?注:可先让学生演示甲、乙角色,看一看谁获胜。

(答案:先取者胜)让学生想一想其中的道理,先独立思考,再4人一组交流,最后小组代表汇报。

归纳:把火柴编号为1至60,为拿到60,你必须抢到;要抢到,先要抢到;要抢到,先要……,所以这个游戏是偏向。

提问:你找到这类游戏的奥妙了吗?(抢答)作业1:请同学们课后设计一类似的游戏,比比谁更聪明?㈡想一想——能难道我吗?1.母子俩人去买米,米价原价2元/千克,现价4元/千克,妈妈每次卖10千克,儿子拿不动,每次卖10元,问两人谁买得合算?你能说出理由吗?注:给五分钟思考、计算,再抢答,此题关键是计算比较两人的平均米价。

2.有两位农夫一起去摆摊卖鸡蛋,已知两人的鸡蛋一样多,但是农夫甲的鸡蛋大一点,因此农夫希望1元钱2个,农夫乙则只卖1元钱3个,到市场上时,农夫甲突然有事要走,便请农夫乙帮忙,农夫甲走后,农夫乙想我俩每卖5个鸡蛋可得2元钱,若将鸡蛋混合到一起卖,卖2元钱5个鸡蛋,效果是一样的,于是干脆混合到一起卖,鸡蛋卖完了,他却惊讶地发现,总收入比预想的少了7元钱!农夫乙一下糊涂了,不知怎么少的,请你帮帮忙,好吗?注:先独立思考,再小组讨论,最后小组代表汇报答案:此题若用方程解则很容易,这里选用纯算术方法:本来两人分开卖时每个蛋的单价分别为1/2元和1/3元,两人各卖一个鸡蛋总收入为1/2+1/3=5/6元,现在合起来卖。

七年级数学上1.1与数学交朋友-数学伴我们成长(华师大)全面版

如果你单独看这一幅作品,你可能 没有什么太多的感慨,但是当我将其中的六 幅相同的作品组合在一起,你再仔细观察一 下你会发现它真的很美!很美!
六幅相同的作品组合在一起(即镶嵌在一起)
再来观察爱舍尔的另一幅作品组成的画,你能发 现在这幅图画中,基本图形是什么样的吗?
答案:
以上这些美丽的图案与我们数学有什么关系 吗?答案当然是有关系了,它用到了数学上的镶 嵌这部分知识,以后我们会给同学们做详细的介 绍。
数是多少? 3.一个数加5,再乘以2,然后减去4,
再除以2,最后得到6,问这个数是 多少?
再见
只要我们坚持了,就没有克服不了的困难。或许,为了将来,为了自己的发展,我们会把一件事情想得非常透彻,对自己越来越严,要求越来越高,对任何机会都不曾错过,其 目的也只不过是不让自己随时陷入逆境与失去那种面对困难不曾屈服的精神。但有时,“千里之行,始于足下。”我们更需要用时间持久的用心去做一件事情,让自己其中那小 小的浅浅的进步,来击破打破突破自己那本以为可以高枕无忧十分舒适的区域,强迫逼迫自己一刻不停的马不停蹄的一直向前走,向前看,向前进。所有的未来,都是靠脚步去 丈量。没有走,怎么知道,不可能;没有去努力,又怎么知道不能实现?幸福都是奋斗出来的。那不如,生活中、工作中,就让这“幸福都是奋斗出来的”完完全全彻彻底底的 渗入我们的心灵,着心、心平气和的去体验、去察觉这一种灵魂深处的安详,侧耳聆听这仅属于我们自己生命最原始最动人的节奏。但,这种聆听,它绝不是仅限于、执着于 “我”,而是观察一种生命状态能够扩展和超脱到什么程度,也就是那“幸福都是奋斗出来的”深处又会是如何?生命不止,奋斗不息!又或者,对于很多优秀的人来说,我们 奋斗了一辈子,拼搏了一辈子,也只是人家的起点。可是,这微不足道的进步,对于我们来说,却是幸福的,也是知足的,因为我们清清楚楚的知道自己需要的是什么,隐隐约 约的感觉到自己的人生正把握在自己手中,并且这一切还是通过我们自己勤勤恳恳努力,去积极争取的!“宝剑锋从磨砺出,梅花香自苦寒来。”当我们坦然接受这人生的终局, 或许,这无所皈依的心灵就有了归宿,这生命中觅寻处那真正的幸福、真正的清香也就从此真正的灿烂了我们的人生。一生有多少属于我们的时光?陌上的花,落了又开了,开 了又落了。无数个岁月就这样在悄无声息的时光里静静的流逝。童年的玩伴,曾经的天真,只能在梦里回味,每回梦醒时分,总是多了很多伤感。不知不觉中,走过了青春年少, 走过了人世间风风雨雨。爱过了,恨过了,哭过了,笑过了,才渐渐明白,酸甜苦辣咸才是人生的真味!生老病死是自然规律。所以,面对生活中经历的一切顺境和逆境都学会 了坦然承受,面对突然而至的灾难多了一份从容和冷静。这世上没有什么不能承受的,只要你有足够的坚强!这世上没有什么不能放下的,只要你有足够的胸襟! 一生有多少 属于我们的时光?当你为今天的落日而感伤流泪的时候,你也将错过了明日的旭日东升;当你为过去的遗憾郁郁寡欢,患得患失的时候,你也将忽略了沿途美丽的风景,淡漠了 对未来美好生活的憧憬。没有十全十美的生活,没有一帆风顺的旅途。波平浪静的人生太乏味,抑郁忧伤的人生少欢乐,风雨过后的彩虹最绚丽,历经磨砺的生命才丰盈而深刻。 见过了各样的人生:有的轻浮,有的踏实;有的喧哗,有的落寞;有的激扬,有的低回。肉体凡胎的我们之所以苦恼或喜悦,大都是缘于生活里的际遇沉浮,走不出个人心里的 藩篱。也许我们能挺得过物质生活的匮乏,却不能抵挡住内心的种种纠结。其实幸福和欢乐大多时候是对人对事对生活的一种态度,一花一世界,一树一菩提,就是一粒小小的 沙子,也有自己精彩的乾坤。如果想到我们终有一天会灰飞烟灭,一切象风一样无影亦无踪,还去争个什么?还去抱怨什么?还要烦恼什么?未曾生我谁是我?生我之时我是谁? 长大成人方是我,合眼朦胧又是谁?一生真的没有多少时光,何必要和生活过不去,和自己过不去呢。你在与不在,太阳每天都会照常升起;你愁与不愁,生活都将要继续。时

华东师大版数学教材总目录(最新)

华东师大版数学教材总目录(最新)2011年12月10日七年级上册第1章走进数学世界1.1 与数学交朋友 1.2 让我们来做数学第2章有理数2.1正数和负数 2.2数轴 2.3相反数 2.4绝对值 2.5有理数的大小比较2.6有理数的加法 2.7有理数的减法 2.8有理数的加减混合运算2.9 有理数的乘法 2.10有理数的除法 2.11有理数的乘除混合运算2.12科学记数法 2.13有理数的混合运算 2.14近似数和有效数字2.15用计算器进行数的简单运算第3章整式的加减3.1列代数式 3.2代数式的值 3.3整式 3.4整式的加减第4章图形的初步认识4.1生活中的立体图形 4.2画立体图形 4.3立体图形的表面展开图 4.4平面图形4.5最基本的图形——点和线 4.6角 4.7相交线 4.8平行线第5章数据的收集与表示5.1数据的收集 5.2数据的表示七年级下册第6章一元一次方程6.1从实际问题到方程 6.2解一元一次方程 6.3实践与探索第7章二元一次方程组7.1二元一次方程组和它的解 7.2二元一次方程组的解法 7.3实践与探索第8章一元一次不等式8.1认识不等式 8.2解一元一次不等式 8.3一元一次不等式组第9章多边形9.1三角形 9.2多边形的内角和与外角和 9.3用正多边形拼地板第10章轴对称10.1生活中的轴对称 10.2轴对称的认识 10.3等腰三角形第11章体验不确定现象11.1可能还是确定 11.2机会的均等与不等 11.3在反复实验中观察不确定现象八年级上册第12章数的开方12.1平方根与立方根 12.2实数与数轴第13章整式的乘除13.1幂的运算 13.2整式的乘法 13.3乘法公式 13.4整式的除法 13.5因式分解第14章勾股定理14.1勾股定理 14.2勾股定理的应用第15章平移与旋转15.1平移 15.2旋转 15.3中心对称 15.4图形的全等第16章平行四边形的认识16.1平行四边形的性质 16.2矩形、菱形与正方形的性质 16.3梯形的性质八年级下册第17章分式17.1分式及其基本性质 17.2分式的运算17.3可化为一元一次方程的分式方程 17.4零指数幂与负整指数幂第18章函数及其图象18.1变量与函数 18.2函数的图象 18.3一次函数 18.4反比例函数 18.5实践与探索第19章全等三角形19.1命题与定理 19.2全等三角形的判定 19.3尺规作图 19.4逆命题与逆定理第20章平行四边形的判定20.1平行四边形的判定 20.2矩形的判定 20.3菱形的判定 20.4正方形的判定20.5等腰梯形的判定第21章数据的整理与初步处理21.1算术平均数与加权平均数 21.2平均数、中位数和众数的选用21.3极差、方差与标准差九年级上册第22章二次根式22.1 二次根式阅读材料蚂蚁和大象一样重吗22.2 二次根式的乘除法1. 二次根式的乘法2. 积的算术平方根3. 二次根式的除法22.3 二次根式的加减法第23章一元二次方程23.1 一元二次方程23.2 一元二次方程的解法阅读材料一元二次方程根的判别式§23.3 实践与探索第24章图形的相似24.1 相似的图形24.2 相似图形的性质1. 成比例线段2. 相似图形的性质阅读材料黄金分割24.3 相似三角形1. 相似三角形2. 相似三角形的判定3. 相似三角形的性质4. 相似三角形的应用阅读材料线段的等分相似三角形与全等三角形24.4 中位线24.5 画相似图形阅读材料数学与艺术的美妙结合-分形24.6 图形与坐标1. 用坐标确定位置2. 图形的变换与坐标第25章解直角三角形25.1 测量25.2 锐角三角函数1. 锐角三角函数2. 用计算器求锐角三角函数值25.3 解直角三角形阅读材料葭生池中课题学习高度的测量第26章随机事件的概率26.1 概率的预测1. 什么是概率2. 在复杂情况下列举所有机会均等的结果阅读材料电脑键盘上的字母为何不按顺序排列26.2 模拟实验1. 用替代物做模拟实验2. 用计算器做模拟实验课题学习通讯录的设计附表随机数表九年级下册第27章二次函数27.1 二次函数27.2 二次函数的图象与性质的图象与性质1. 二次函数2. 二次函数3. 求二次函数的关系式阅读材料生活中的抛物线27.3 实践与探索第28章圆28.1 圆的认识1. 圆的基本元素2. 圆的对称性3. 圆周角28.2 与圆有关的位置关系1. 点与圆的位置关系2. 直线与圆的位置关系3. 切线4. 圆与圆的位置关系阅读材料你能画吗28.3 圆中的计算问题1. 弧长和扇形的面积2. 圆锥的侧面积和全面积阅读材料古希腊人对大地的测量圆周率课题学习硬币滚动中的数学第29章几何的回顾29.1 几何问题的处理方法29.2 反证法阅读材料《几何原本》课题学习中点四边形第30章样本与总体30.1 抽样调查的意义1. 人口普查和抽样调查2. 从部分看全体3. 这样选择样本合适吗阅读材料空气污染指数(API)30.2 用样本估计总体1. 简单的随机抽样2. 抽样调查可靠吗3. 用样本估计总体阅读材料漫谈收视率30.3 借助调查作决策1. 借助调查作决策2. 容易误导决策的统计图阅读材料标准分课题学习改进我们的课桌椅。

华师大版七年级上册数学第一章《走进数学世界》教案

_________________ 第1一走进敢学世办课题数学伴我们成长人类离不开数学【学习目标】1.让学生通过生活实例感受数学与现实世界的密切联系、数学价值和应用意识;2.让学生通过对比初步体验到数学是一门充满着观察、实验、归纳、类比和猜测、探索过程的学科;3.在学习的过程中养成独立思考与合作交流的习惯.【学习重点】让学生感受数学与现实世界是密不可分的.【学习难点】培养学生独立思考与合作交流的习惯.救学环节指导行为堤岳:创设问题,情境导入,结合生活中的实际例子,充分调动学生的积极性,激发学生求知欲望.行为提示:让学生阅读教材,尝试完成''自学互研”的所有内容,并适时给学生提供帮助,率先做完的小组内互查,大部分学生完成后,进行小组交流.知识链接:小学学过的数学知识:1.整数、小数、分数的四则运算;2.初步认识元角分、年月日、长度单位、重量单位;3. 了解简单的几何图形;4.初步了解统计、概率的简单知识.5.初步了解方程及其简单的解法.做这一类我的技巧是:1.从已知中寻找突破口,发现变化的规律;2. 一般采用“从一般到特殊”的思维方式;3.掌握用“加、减、乘、除”的基本形式表达发现的规律.椅景导人生成问我在我们的周围,宇宙之大,粒子之微,火箭之速,化工之巧,生物之谜,日用之繁……,大千世界,天上人间,无处不有数学的贡献,让我们一起走进数学世界,去领略一下数学的风采.自学互研生成能力知识模块一数学伴我们成长阅读教材P2,完成下面的内容.从出生到步入七年级,我们都在不断地学习数学,回忆一下,我们在小学阶段学习的数学知识主要有哪些?归纳:(1)数与式:认识、计算、方程、解应用题;(2)图形:图形的认识、图形的画法、图形的计算:⑶统计知识:条形统计图、扇形统计图、折线统计图及从图中获取相应的信息.范例:计算并观察下面的几组算式:(1)1+3=_4_=(_2_)2:(2)1 +3+5=9=(3)2;(3)1 +3+5+7=J6=(4)2:(4)你能举一个类似的例子吗?1+3+5+7+9+11 + 13+15+17+19=」0Q =( @ P(5)一般地:1+3+5+7 + ……+(2〃-1)=(K仿例:如图1,线段A3,当在线段A8上加上1个点(该点不与点A、5重合)时,共有3条线段:当在线段A8上加上2个点(这2个点不与点A、8重合)时,如图2,共有6条线段:当在线段AB上加上3个点(这3个点不与点A、B重合)时,如图3,共有10条线段.................A B,图1) A11_1,困2)A_~~F,图3) /i ' ' '_i 图4)⑴当在线段AB上加上5个点(这5个点不与点A、8重合)时,如图4,共有2L条线段:行为提示:感受数学的魅力,人类离不开数学.发现数学的奥秘,是人类智慧的结晶.知识链接:同一种形状或不同形状的地砖,铺在地面上无空隙即可称为密铺.学生指导:两个不同形状的地砖的角(或多个角)铺成一个周角.行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评分.展示目标:知识模块一展示重点在于让学生理解数学与我们的生活密不可分;知识模块二展示重点在于让学生知道我们的生产、生活、科学实验与研究等都离不开数学. (2)猜测:当在线段AB上加上〃个点(这〃个点不与点A、8重合)时,共有_ + _条线段.变例:观察下而一列数:2, 5, 10, x, 26, 37, 50, 65,…,根据规律,其中x所表示的数是1Z.分析:第二个数比第一个数大3,第三个数比第二个数大5,第六个数比第五个数大11,由此可知:x比10 大7, 26比x 大9,所以x必为(10+7)或(26—9).知识模块二人类离不开数学阅读教材P?〜P4,完成下面的内容.大千世界,无奇不有!大至宇宙,小至微粒,无不蕴涵着丰富的数学奥秘!如蜜蜂营造的蜂房,公园中用不同形状的图形铺设的绚丽多彩的地面……,数学奇妙吧?下面就让我们一起研究一些数学问题吧!范例:哪些形状的砖可以密铺地而?下图分别是用同样大小的正方形和正六边形的地砖铺成的,它们可以铺成平整、无空隙的地面.那么除了这两种形状的地砖外,还有哪些形状的地砖能够像上图那样铺满地面呢?解:三角形、长方形、平行四边形、菱形等.仿例:用同一种形状的地砖密铺地而,下列形状的地砖不能采用的是(C )A.正三角形B.正方形C.正五边形D.正六边形变例:用两种不同形状的地砖密铺地而,这样的两种地砖的形状可以是正三角形和正六边形(任举一例).交流展岳生成新知阈现捌剧1.各小组共同探讨''自学互研”部分,将疑难问题板演到黑板上,小组间就上述疑难问题相互释疑;2.组长带领组员参照展示方案,分配好展示任务,同时进行组内小展示,将形成的展示方案在黑板上进行展示.知识模块一数学伴我们成长知识模块二人类离不开数学检测反馈达成目标【当堂检测】见所赠光盘和学生用书:【课后检测】见学生用书.课后反思杳漏补缺1.收获:___________________________________________________________________________2.存在困惑:___________________________________________________________________________课题人人都能学会数学【学习目标】1.让学生体会数学与我们的生活密切相关;2.让学生从现实生活中抽象出点、线、面、体等图形,培养学生的观察能力、分析能力,感受学习数学的乐趣;3.在学习的过程中养成独立思考与合作交流的习惯.【学习重点】让学生感受数学伴随着我们的成长,我们的成长离不开数学.【学习难点】让学生树立学习数学的信心.教学环节指导行为堤岳:创设问题,情境导入,结合生活中的实际例子,充分调动学生的积极性,激发学生求知欲望.行为提示:让学生阅读教材,尝试完成'‘自学互研”的所有内容,并适时给学生提供帮助,率先做完的小组内互查,大部分学生完成后,进行小组交流.知识链接:1.数与式:认识、计算、解方程、解应用题;2.图形:图形的认识、图形的画法、图形的有关计算.椅景导人生成问我1.数学并不神秘,不是只有天才才能学好数学,只要通过努力,人人都能学会数学.学好数学,要对数学有兴趣,要有刻苦钻研的精神,善于发现和提出问题,善于独立思考.2.思考并解决下列问题:(1)某地出租车收费标准为:起步价5元,3km后每千米1.2元,某人乘坐出租车5km,应付款7.4 元.(2)如图,阴影部分的面积相等的是(D )① ② ③ ④A.①与④B.①与③C.②与③D.①与②、③11学互研生成能力知识模块人人都能学会数学阅读教材巴〜P7,完成下面的内容.1.点动成—线线动成—面_,而动成—性_:而与面相交得到一线_,线与线相交得到—息2.三棱柱有—红个顶点,2条棱,一个而,它的侧面的形状都是—长方点它的底而是—两个形状相同的三角形3.如图,是6级台阶侧面的示意图,如果要在台阶上铺地毯,那么至少要买适合台阶宽度的地毯多少m?分析:要在台阶上铺地毯,实际上并不需要测出每一级台阶的长度,可以把图想象为由一根绳子围成的图形,将它拉成为一个长和宽分别为3.ln]和2m的长方形,所以台阶的总长就是:3.1+2=5.1(m).解:3.1+2=5.1(01).・••至少要买适合台阶宽度的地毯5.1m.归纳:(1)发展进一步获得的数学基础知识和基本技能:(2)体会数学知识间的联系,培养逻辑思维方式;(3)感受数学的价值,养成独立思考的学习习惯.做这一类题的技巧是:1.从已知中寻找突破口,发现变化的规律;2. 一般采用“从一般到特殊”的思维方式;3.掌握用“加、减、乘、除”的基本形式表达发现的规律.学生指导:解决寻找规律问题的方法是:观察第2个数(或图形)与前一个数(或图形)有什么联系、变化,类推下一个,由一般到特殊.学法指导:这些橘子的个数一定是3的倍数.行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评分.展示目标:知识模块展示重点在于通过解决数学问题,让学生知道数学并不是那么难,只有通过自身的努力才能学好数学.范例:如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作:然后,将其中的一个正方形再剪成4个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形剪成4个小正方形,共得到10个小正方形,称为第三次操作:……根据以上操作,若要得到2017个小正方形,则需要操作的次数是§72,.分析:本题是规律类型的数学题,通过观察,我们容易发现,当操作第n(n为正整数)次时,共得到(3n+l)个小正方形,从而我们可以列一个关于n(以n为未知数)的方程,解出n的值即可.解:设操作n次可以得到2017个小正方形,根据题意得:3n+1=2017,解得:n=672.答:需要操作的次数是672.仿例:根据前而几个数的规律填空:(1)5, 8, 13, 21, 34, .55.;J 2 3 5 8 B (2),亨亍 * 1T _五_.分析:(1)规律:第1个数加上第2个数得到第3个数,第2个数加上第3个数得到第4个数,第3个数加上第4个数得到第5个数,第4个数加上第5个数得到第6个数…;(2)规律:前一个分数的分母是下一个分数的分子,前一个数的分子与分母的和是后一个分数的分母.变例:在学校体育课上,老师准备了一些橘子给同学们,小明非常勤快,帮老师数橘子,他7个7个地数,还余4个,5个5个地数,还余3个,3个3个地数,正好数完,则老师至少为同学们准备了四个橘子.交流展示生成新知1.各小组共同探讨''自学互研”部分,将疑难问题板演到黑板上,小组间就上述疑难问题相互释疑;2.组长带领组员参照展示方案,分配好展示任务,同时进行组内小展示,将形成的展示方案在黑板上进行展示.尿圉攫团知识模块人人都能学会数学检测反馈达成目标【当堂检测】见所赠光盘和学生用书:【课后检测】见学生用书.课后反思杳漏补缺1.收获: ___________________________________________________________________________2.存在困惑:___________________________________________________________________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉菲登陆网址
患者男性18岁,发现右颌下无痛性质软肿物三月,表面皮肤正常,口内检查亦未见异常。行颌下手术中见肿物呈囊性,术中囊壁破裂,流出黏稠而略带黄色蛋清样液体,遂将囊壁及下颌下腺一并摘除,但术后不久囊肿复发。该病的最恰当的治疗方法是()A.切除下颌下腺,吸尽囊液,加压包扎B. 肾病综合征无下列哪种症状A.高脂血症B.蛋白尿C.类脂质尿D.尿钙排出多E.凹陷性水肿 下列何者非汽车底盘之结构?A.车身与车架B.制动系C.转向系D.润滑系 弱电集中控制的电源是110伏、36伏、32伏。A.正确B.错误 提高配位滴定选择性的方法是和利用消除干扰。 重型肝炎肝性脑病患者口服乳果糖是为了A.预防消化道出血B.防止腹泻C.预防肠道真菌感染D.加速黄疸消退E.降低肠道pH值,保持大便通畅,减少氨的形成和吸收 伴有Homer征的疾病是A.Tolosa-Hunt综合征B.有先兆的偏头痛C.无先兆的偏头痛D.紧张性头痛E.丛集性头痛 下列哪项是诊断钩端螺旋体病的血清学检查方法A.肥达试验B.外斐反应C.补体结合试验D.显微镜凝集溶解试验E.红细胞溶解试验 学习化社会最为本质性特征的是A、终身性B、发展性C、理想性D、平等性 不用蜂蜜为丸的丸剂是()A.朱砂安神丸B.天王补心丹C.磁朱丸D.大补阴丸E.以上均不含 患者,女性,48岁,左眼红痛伴视力下降4天。检查左眼视力0.4,结膜混合性充血,角膜后沉着物阳性,房水闪辉阳性,瞳孔小,有后粘连,玻璃体前部轻度混浊。下列哪种体征最具有鉴别诊断意义()A.角膜后沉着物阳性B.房水闪辉阳性C.瞳孔小,后粘连D.结膜混合性充血E.玻璃体前部轻 利用油脂的沸点远高于水的沸点的温度条件,对肉品进行热加工处理的过程称为.A.烘烤B.干燥C.烟熏D.油炸 [单选,案例分析题]女,56岁,因右眼剧烈胀痛,偏头痛,视力严重下降就诊。发病前一天晚上因在昏暗的灯光下玩麻将至深夜而引发。检查:右眼视力0.1,右眼混合充血,角膜雾状水肿混浊,前房浅,瞳孔中度散大,对光反射迟钝,晶状体轻度混浊,余窥不清。为支持诊断而应选择的检查方 与地方病发生有关的因素有A.与病区中的生物因素有关B.与病区中的气温有关C.与病区中的空气有关D.与病区中的降雨量有关பைடு நூலகம்.与病区中的气候有关 联系实际,谈谈目前我国中学课程改革的特点。 睫状体A.位于虹膜的外后方B.是血管膜最肥厚的部分C.是吸收房水的部位D.睫状肌的舒缩可调节晶状体的曲度E.睫状肌属平滑肌 若物体在运动过程中受到的合外力不为零,则。A.物体的动能不可能总是不变的B.物体的动量不可能总是不变的C.物体的加速度一定变化D.物体的速度方向一定变化 安全阀排放压力 《全民科学素质行动计划纲要》提出了全民科学素质行动计划在“十一五”期间的主要目标、任务与措施和到年的阶段性目标。A、2010B、2049C、2050D、2020 液舱自由液面对静稳性力矩MS的影响是。A.使静稳性力矩减小B.使静稳性力矩保持不变C.使静稳性力矩增大D.以上均有可能 下列哪一项是室间隔缺损超声诊断的直接征象A.左房左室扩大B.室间隔回声中断C.脉冲多普勒频谱D.右房右室扩大E.肺动脉高压征象 按国有资产用途分类,可以将国有资产分为:A.企业国有资产B.行政事业单位国有资产C.资源性国有资产D.其他国有资产 支气管扩张引起大咯血的原因为A.支气管动脉先天性解剖畸形B.支气管动脉与肺动脉终末支扩张血管瘤破裂C.合并重度支气管炎D.支气管发生囊性扩张E.支气管黏膜溃疡 机体活动功能可分为()A.3度B.4度C.5度D.6度E.7度 便携式浊度计法测定浊度时,对于高浊度的水样,应用蒸馏水稀释定容后测定。A.正确B.错误 细胞内液最主要的阳离子是A.Na+B.K+、Mg2+Ca2+D.K+E.Mg2+ 慢性左心功能不全常见的症状和体征不包括A.第三心音奔马律B.疲倦、乏力C.夜间阵发性呼吸困难D.咳粉红色泡沫痰E.第一心音增强 船舶随遇平衡的主要特征是。A.稳心与重心重合,复原力矩为零B.重心与漂心重合,复原力矩为零C.重心与浮心重合,复原力矩为零D.稳心与浮心重合,复原力矩为零 光面爆破打眼前准备工作有哪些? 单位结算卡可以在以下自助设备上使用。ATM/CRSB.交银自助通C.iTMD.自助票据机E.POS机F.电话银行 商业汇票的提示付款期限,自汇票到期日起日。 关于肉毒杆菌及其毒素的性质,哪项不对A.严格厌氧的梭状芽孢杆菌,革兰染色阳性B.在消化道内大量繁殖,产生大量外毒素C.芽孢对热及化学消毒剂抵抗力强D.肉毒杆菌外毒素是一种嗜神经毒素E.外毒素不耐热,胃酸及消化酶不能将其破坏 衡量经济总量平衡的主要标志是A.物价稳定B.充分就业C.总供给总需求平衡D.国际收支平衡 碳素钢按其用途可分为碳素结构钢和碳素钢。A、工具B、模具C、合金D、高速钢 随着人类社会生产力的进步、机器的使用和劳动生产力的提高,在大量使用机器提高了劳动生产力的同时,也产生了劳动者伤亡、病害等不安全、不卫生的因素。安全人机工程学研究的目的主要是:为保障劳动者的安全与健康,对这些不利因素发生的机理和预防措施进行研究,以便创造更和更文 产后消化系统的变化正确的是()A.盐酸分泌↑、蠕动↑B.盐酸分泌正常、蠕动↑C.盐酸分泌↑、蠕动↓D.盐酸分泌↓、蠕动正常E.盐酸分泌↓、蠕动↓ 巡回检查时发现一灭火器被一个木箱挡住,应该。A.把灭火器移出来B.做个标识指示木箱后有灭火器C.置之不理D.立即报告并协助搬开木箱 下列对滤过除菌法论述错误的是A.利用细菌不能通过致密具孔滤材的原理以除去气体或液体中微生物B.通常用于热不稳定的药品溶液C.一般过滤器孔径在0.45μm,可以有效地阻挡微生物及芽孢D.本法需要配合无菌操作技术E.在滤除细菌的同时可以除去一些微粒杂质 男性,30岁。反复发作性咳嗽脓痰,中至大量咯血10余年就诊。经支气管碘油造影确诊右下肺叶支气管扩张,拟行手术治疗。手术前X线检查见左肺少量散在斑片状阴影。医生决定推迟手术并进一步检查,下列各项你认为是否必要,如果必要则哪一项最重要A.必要,应作痰普通培养B.必要,应作 选择下列描述性长度的正确写法。A.425mm±5mmB.1.83m;C.1m73cmD.1m54。
相关文档
最新文档