断路器控制回路原理

合集下载

断路器控制回路基本原理

断路器控制回路基本原理

1、控制回路的基本要求开始学习控制回路之前,我们先了解一下控制回路需要具备哪些基本的功能:(1)能进行手动跳合闸和由保护和自动装置的跳合闸;(2)具有防止断路器多次重复动作的防跳回路;(3)能反映断路器位置状态;(4)能监视下次操作时对应跳合闸回路的完好性;(5)有完善的跳、合闸闭锁回路;2、典型的控制回路根据控制回路的几点基本要求,我们以10kV的PSL641保护装置为例,分为五个步骤,一步步搭建基本的控制回路,并了解每个部分的作用。

(1)跳闸与合闸回路首先,能够完成保护装置的跳合闸是控制回路最基本的功能。

这个功能的实现很简单,回路如下图所示。

假定断路器在合闸状态,断路器辅助接点DL常开接点闭合。

当保护装置发跳闸命令,TJ闭合时,正电源-> TJ-> LP1-> DL-> TQ-> 负电源构成回路。

跳闸线圈TQ得电,断路器跳闸。

合闸过程同理。

分闸到位后,DL常开接点断开跳闸回路。

DL常闭接点闭合,为下一次操作对应的合闸回路做好准备。

利用DL常开接点断开跳闸电流,一是为了防止TJ粘连造成TQ烧坏(因为TQ的热容量是按短时通电来设计的);二是因为如果由TJ来断开合闸电流,由于TJ接点的断弧容量不够,容易造成TJ接点烧坏(HJ也是一样的道理),这就为下一次保护跳闸(或合闸)埋下了隐患且不易被发现。

(2)跳闸/合闸保持回路为了防止TJ先于DL辅助接点断开(如开关拒动等情况),我们增加了“跳闸自保持回路”。

该回路可以起到保护出口接点TJ以及可靠跳闸的作用。

增加的部分用红色标记,R 在Ω左右。

当分闸电流流过TBJ时,TBJ动作,TBJ1闭合自保持,直到DL断开分闸电流。

这时无论TJ是否先于DL断开,都不会影响断路器分闸,也不会烧坏TJ。

(3)防跳回路TBJ我们有时也叫它“防跳继电器”。

这是因为它有另一个非常重要的功能:防跳。

防跳的概念:所谓的防跳,并不是“防止跳闸”,而是“防止跳跃”。

继电保护--控制回路断线原理及查找方法

继电保护--控制回路断线原理及查找方法

继电保护--控制回路断线原理及查找方法一、控制回路断线信号原理断路器控制回路,即是控制断路器分合的回路,电源为直流,一般为±110V 多见,本文均以此电源为例。

控制回路断线信号一般是有断路器分合闸回路合闸位置继电器和分闸位置继电器常闭接点串联组成,如图1所示:4XD5控制回路断线0453TWJB 3TWJA 11HWJA 11HWJB 4XD10443TWJC11HWJC图1 控制回路信号回路路断线;若断路器在分位,表明合闸回路断线。

二、控制回路断线查找方法1、控制回路断线常见原因分析:(1)控制回路电源失电(电源空开跳闸或电源接线松动);(2)保护屏、端子箱或断路器机构内有关接线松动;(3)断路器内辅助接点松动或损坏;(4)断路器内SF6闭锁或分合闸低油压闭锁;(5)断路器未储能或储能接点存在问题;(6)断路器分合闸线圈烧损等。

以上(3)(4)(5)(6)为断路器内控制回路,会在专门文章里介绍。

2、控制回路断线查找步骤方法(1)当控制回路断线时,首先确认断路器控制电源是否正常;查看操作箱及机构箱是否有明显烧损痕迹或焦糊味(2)若电源正常及无其他明显异常,再确认断路器在什么位置,当断路器在合位时,肯定是分闸回路断线;若在分位,肯定是合闸回路断线;(3)分段查找,确认是保护屏内问题还是机构箱内问题,使用万用表直流档测量合闸回路4CD12或分闸回路4CD2电位。

断路器分位时,若测量图2中4CD12为无电位或为+110V(部分设计回路4CD11、4CD12是短接的,因分位监视回路设计串有存在分压电阻,若回路正常时,4CD12一般都是-110V),则表明合闸回路自点4CD12后存在问题,致使负电位未过来,即表明机构内控制回路存在问题(确认排除后面接线无松动);断路器合位时,若测量图3中4CD2为+110V(因分位监视回路设计时存在分压电阻,若回路正常,4CD2一般都是-110V),则表明分闸回路自点4CD2后存在问题,致使负电位未过来,即表明机构内控制回路存在问题(确认排除后面接线无松动);综上反之是保护屏内操作箱有问题(确认屏内接线无松动)。

断路器控制回路原理

断路器控制回路原理

第5章断路器控制回路教学目的:掌握断路器控制方式、断路器控制回路的基本要求、断路器的基本跳、合闸控制回路、灯光监视的断路器控制回路、灯光监察液压操作机构操作断路器控制回路复习旧课:操作电源概述、蓄电池组直流操作直流、硅整流电容储能装置直流系统、复式整流装置直流系统、直流系统的绝缘监察与电压监察装置;重点:掌握断路器控制方式、断路器控制回路的基本要求、断路器的基本跳、合闸控制回路、灯光监视的断路器控制回路、灯光监察液压操作机构操作断路器控制回路;难点:掌握断路器控制方式、断路器控制回路的基本要求、断路器的基本跳、合闸控制回路、灯光监视的断路器控制回路、灯光监察液压操作机构操作断路器控制回路;引入新课:第一节概述一、断路器控制方式断路器是电力系统中最重要的开关设备,在正常运行时断路器可以接通和切断电气设备的负荷电流,在系统发生故障时则能可靠地切断短路电流。

断路器一般由动触头、静触头、灭弧装置、操动机构及绝缘支架等构成。

为实现断路器的自动控制,在操动机构中还有与断路器的传动轴联动的辅助触头。

断路器的控制方式有多种,分述如下。

1.按控制地点分断路器的控制方式接控制地点分为集中控制和就地(分散)控制两种。

(1)集中控制。

在主控制室的控制台上,用控制开关或按钮通过控制电缆去接通或断开断路器的跳、合闸线圈,对断路器进行控制。

一般对发电机、主变压器、母线、断路器、厂用变压器35kV以上线路等主要设备都采用集中控制。

(2)就地(分散)控制。

在断路器安装地点(配电现场)就地对断路器进行跳、合闸操作(可电动或手动)。

一般对10kV线路以及厂用电动机等采用就地控制,可大大减少主控制室的占地面积和控制电缆数。

2.按控制电源电压分断路器的控制方式接控制电源电压分为强电控制和弱电控制两种。

(1)强电控制。

从断路器的控制开关到其操作机构的工作电压均为直流110V或220V。

(2)弱电控制。

控制开关的工作电压是弱电(直流48V),而断路器的操动机构的电压是220V。

高压断路器分合闸电气控制回路原理解析

高压断路器分合闸电气控制回路原理解析

高压断路器分合闸电气控制回路原理解析高压断路器是电力系统中重要的保护设备,用于保护电力系统设备免受过电流和短路电流的损害。

而高压断路器的分合闸电气控制回路则是控制断路器分合闸操作的关键。

高压断路器的分合闸电气控制回路一般由控制电源、分合闸线圈、控制开关和保护元件等组成。

其工作原理可以简述为:通过控制开关将控制电源的电流导通,使得分合闸线圈得以通电,进而使得断路器实现分合闸操作。

控制电源是高压断路器分合闸电气控制回路的核心组成部分。

控制电源为控制线圈提供所需的电流,通常采用直流电源供电。

控制电源的电压和电流需根据断路器的额定参数来确定,以确保控制线圈的正常工作。

分合闸线圈是高压断路器分合闸电气控制回路的另一个重要组成部分。

分合闸线圈是断路器的动作元件,通过分合闸线圈的磁场作用,可以实现断路器的分合闸操作。

分合闸线圈一般由铜线绕成,其匝数和截面积需根据断路器的额定电流和控制电压来确定。

然后,控制开关是高压断路器分合闸电气控制回路中的重要组成部分。

控制开关用于控制控制电源的导通和断开,从而控制分合闸线圈的通断。

常见的控制开关有按钮开关、刀开关等。

通过按下按钮或操作刀开关,可以使得控制电源的电流导通,进而使得分合闸线圈通电或断电,实现断路器的分合闸操作。

保护元件是高压断路器分合闸电气控制回路中的重要组成部分。

保护元件用于监测电力系统中的电流、电压等参数,并在发生故障时及时切断控制电源,以保护断路器和电力系统设备的安全。

常见的保护元件有过流保护、短路保护、接地保护等。

总的来说,高压断路器的分合闸电气控制回路通过控制电源、分合闸线圈、控制开关和保护元件等组成,实现了对断路器分合闸操作的控制和保护。

这一回路的正常工作对于电力系统的安全运行至关重要。

因此,在设计和使用高压断路器分合闸电气控制回路时,需要严格按照相关标准和规范进行,以确保其稳定可靠的工作。

断路器的原理

断路器的原理

断路器的原理
断路器是一种用于保护电路的电气开关装置,其工作原理主要是通过电磁机构或热释放原理实现的。

以下是断路器的工作原理:
1. 电磁机构原理:
断路器中包含有电磁线圈,当电路中的电流超过了设定的额定电流值时,电磁线圈中的电流也会增大。

当电流达到设定的故障电流值时,电磁线圈产生的电磁力会使得触发器释放,断开电路,阻止过大的电流流过。

这是由于电磁线圈内产生的电磁力会抵消电路中的电流力。

2. 热释放原理:
断路器中还包含有一种特殊的材料,称为"双金属片"。

当电路中的电流超过额定电流时,双金属片受热变形,弯曲并失去其形状记忆特性。

一旦温度升高到能使双金属片弯曲的程度,它将促使触发器释放,使断路器打开,这样在短时间内过大的电流也会得到有效阻断。

断路器是非常重要的电气保护装置,主要用于预防电路中的过载和短路故障。

它能够在电路中的电流超过安全值时迅速切断电路,从而保护其他电气设备和人身安全。

断路器控制回路超详细讲解

断路器控制回路超详细讲解

断路器控制回路超详细讲解断路器控制回路是电力系统中非常重要的组成部分,它用于控制断路器的开启和关闭。

断路器控制回路可以分为两种类型:直接控制和间接控制。

直接控制是指断路器的操作直接由控制回路控制,而间接控制是指断路器的操作由其他装置控制,例如继电器。

直接控制回路包含的元件和电路直接控制回路是指通过控制线圈直接控制断路器的开启和关闭。

控制线圈是一个感应电磁铁,当通过线圈的电流变化时,它将产生磁场,这将导致断路器的操作。

直接控制回路通常包括下列元件:1. 电源:电源为控制电路提供电能。

电源可以是电池、发电机或从电网中提取的电能。

2. 保险丝:保险丝用于保护控制线圈不被短路电流损坏。

3. 控制变压器:控制变压器是一个特殊的变压器,用于将控制电路的电压变换为适合线圈的电压。

4. 控制线圈:控制线圈是一个感应电磁铁,将通过线圈的电流变化而导致磁场的变化。

5. 开关:开关通常由手动或自动控制,用于将电源连接或断开控制电路,以控制开启或关闭断路器。

6. 控制信号:控制信号可以来自其他控制设备或监测系统,例如继电器或保护装置。

间接控制回路包含的元件和电路间接控制回路也被称为电动机驱动控制回路。

它是另一种常用的断路器控制回路,常用于大型电力系统。

间接控制回路包含以下元件:1. 电源:电源为电机提供能量。

2. 控制装置:控制装置可以是手动或自动的,通常由计算机控制。

3. 开关:开关用于控制电机的开启和关闭。

4. 电动机:电动机通常由直流电机驱动,它们具有高扭矩和低速度特性,非常适用于卡住和复位操作。

5. 速度控制器:速度控制器用于控制电动机的转速,它通常是一个带有反馈的控制循环。

6. 快速制动器:快速制动器用于停止电动机的运转,通常由电阻器、电容器和刹车装置组成。

断路器控制回路的工作原理当通过控制线圈的电流增加时,它将产生磁场,并将吸引磁芯以打开断路器。

当线圈的电流减小时,磁芯将向回弹,关闭断路器。

控制信号可以来自其他控制设备或监测系统,例如继电器或保护装置。

断路器控制回路原理图解

断路器控制回路原理图解

断路器控制回路原理图解n一次设备是指直接用于生产、输送、分配电能的电器设备,包括发电机、电力变压器、断路器、隔离开关、母线、电力电缆和输电线路等,是构成电力系统的主体。

二次设备是用于对电力系统及一次设备的工况进行监测、控制、调节和保护的低压电气设备,包括测量仪表、通信设备等。

二次设备之间的相互连接的回路统称为二次回路,它是确保电力系统安全生产、经济运行和可靠供电不可缺少的重要组成部分。

本文简单描述一下断路器控制回路的基本原理,由最基本的回路入手,逐步加入防跳回路和闭锁回路,并对电路做一些完善。

当然,本文所给出的回路原理图仅仅是最最基本的、用于解释其基本原理的,实际应用中的回路要复杂得多。

一、最最基本的回路原理图:SB1:合闸开关SB2:分闸开关QF:断路器辅助触点LC :合闸线圈LT : 分闸线圈其动作原理很简单,不再赘述。

二、增加防跳回路:上面的回路存在一个问题:如果SB1按下,而此时电路中存在故障,继电保护设备会立即动作,使断路器跳闸,此过程几乎瞬时发生,而操作人员尚来不及松开SB1, 则SB1回路中的QF由于断路器跳闸而复又闭合,此时会导致LC再次得电,断路器再次合闸。

如此往复,发生了“跳跃”。

如果合闸成功,但SB1由于某种原因粘连而无法断开,那么在操作人员按下SB2进行分闸时,由于SB1粘连,同样会导致跳跃现象的发生。

跳跃现象对设备和操作人员的安全均构成很大危害,所以需要增加防跳回路。

增加了防跳回路的原理图如下:KCFKCF(I):电流防跳继电器,电流达到限定值时动作,此回路中,防止 合闸于故障时的跳跃KCF(V):电压防跳继电器,电压达到限定值时动作,此回路中,防止 分闸于故障时的跳跃动作过程如下:合闸:SB1按下a 绿灯(GL )失电熄灭,LC 得电a 断路器合闸a QF 改变状态a 红灯(RL )亮,KCF(I)得电【由于有RL 和R 的限流,分 闸线圈LT 不足以动作】a KCF 各辅助触点改变状态a KCF(V)得电 达到上述状态,则合闸动作完成,此过程几乎瞬时完成,SB1尚来不 及松开。

高压断路器分合闸电气控制回路原理解析

高压断路器分合闸电气控制回路原理解析

高压断路器分合闸电气控制回路原理解析本文将对高压断路器分合闸电气控制回路的原理进行解析。

高压断路器是电力系统中最主要的设备之一,它主要用于保护电网设备免受故障的影响。

其分合闸电气控制回路是其中一个非常重要的部分。

高压断路器分合闸电气控制回路包括断路器本体、电源、控制开关及线路等。

其原理如下:
1. 控制电源部分:控制电源一般由电网中的电源提供电能,也
可以通过备用电源供电。

控制电源的主要作用是为控制开关提供电能,使其能够正常工作。

2. 控制开关部分:控制开关可以是手动开关或自动开关。

手动
开关一般由操作人员手动操作,而自动开关则由电气信号自动控制。

控制开关的作用是控制断路器的分合闸动作。

3. 断路器本体部分:断路器本体是整个分合闸控制回路的核心
部分。

断路器本体主要由分合闸机构、触头、弹簧、支架等部件组成。

断路器分合闸的动作是由控制开关的信号作用于分合闸机构而实现的。

4. 控制线路部分:控制线路是将控制电源和控制开关与断路器
本体连接起来的部分。

控制线路包括控制电缆、信号线、控制变压器等。

总之,高压断路器分合闸电气控制回路是一个由控制电源、控制开关、断路器本体和控制线路等组成的复杂系统。

其正常工作对电网的稳定运行具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5 章断路器控制回路教学目的:掌握断路器控制方式、断路器控制回路的基本要求、断路器的基本跳、合闸控制回路、灯光监视的断路器控制回路、灯光监察液压操作机构操作断路器控制回路复习旧课:操作电源概述、蓄电池组直流操作直流、硅整流电容储能装置直流系统、复式整流装置直流系统、直流系统的绝缘监察与电压监察装置;重点:掌握断路器控制方式、断路器控制回路的基本要求、断路器的基本跳、合闸控制回路、灯光监视的断路器控制回路、灯光监察液压操作机构操作断路器控制回路;难点:掌握断路器控制方式、断路器控制回路的基本要求、断路器的基本跳、合闸控制回路、灯光监视的断路器控制回路、灯光监察液压操作机构操作断路器控制回路;引入新课:第一节概述一、断路器控制方式断路器是电力系统中最重要的开关设备,在正常运行时断路器可以接通和切断电气设备的负荷电流,在系统发生故障时则能可靠地切断短路电流。

断路器一般由动触头、静触头、灭弧装置、操动机构及绝缘支架等构成。

为实现断路器的自动控制,在操动机构中还有与断路器的传动轴联动的辅助触头。

断路器的控制方式有多种,分述如下。

1. 按控制地点分断路器的控制方式接控制地点分为集中控制和就地(分散)控制两种。

(1)集中控制。

在主控制室的控制台上,用控制开关或按钮通过控制电缆去接通或断开断路器的跳、合闸线圈,对断路器进行控制。

一般对发电机、主变压器、母线、断路器、厂用变压器35kV 以上线路等主要设备都采用集中控制。

(2)就地(分散)控制。

在断路器安装地点(配电现场)就地对断路器进行跳、合闸操作(可电动或手动)。

一般对10kV 线路以及厂用电动机等采用就地控制,可大大减少主控制室的占地面积和控制电缆数。

2. 按控制电源电压分断路器的控制方式接控制电源电压分为强电控制和弱电控制两种。

(1)强电控制。

从断路器的控制开关到其操作机构的工作电压均为直流110V 或220V 。

(2)弱电控制。

控制开关的工作电压是弱电(直流48V),而断路器的操动机构的电压是220V。

目前在500kV 变电所二次设备分散布置时,在主控室常采用弱电一对一控制。

3. 按控制电源的性质分断路器的控制方式按控制电源的性质可分为直流操作和交流操作(包括整流操作)两种。

直流操作一般采用蓄电池组供电;交流操作一般是由电流互感器、电压互感器或所用变压器提供电源。

二、对断路器控制回路的基本要求断路器的控制回路必须完整、可靠,因此应满足下面一些要求:(1)断路器的合、跳闸回路是按短时通电设计的,操作完成后,应迅速切断合、跳闸回路,解除命令脉冲,以免烧坏合、跳闸线圈。

为此,在合、跳闸回路中,接入断路器的辅助触点,既可将回路切断,又可为下一步操作做好准备。

(2)断路器既能在远方由控制开关进行手动合闸和跳闸,又能在自动装置和继电保护作用下自动合闸和跳闸。

(3)控制回路应具有反映断路器状态的位置信号和自动合、跳闸的不同显示信号。

(4)无论断路器是否带有机械闭锁,都应具有防止多次合、跳闸的电气防跳措施。

(5)对控制回路及其电源是否完好,应能进行监视。

(6)对于采用气压、液压和弹簧操作的断路器,应有压力是否正常,弹簧是否拉紧到位的监视回路和闭锁回路。

(7)接线应简单可靠、使用电缆芯数应尽量少。

三、控制开关控制开关又称万能转换开关,是由运行人员手动操作,发出控制命令使断路器进行跳、合闸的装置。

发电厂和变电所常用的控制开关为LW 系列自动复位的控制开关,有三种类型:(1)LW2 系列控制开关:是跳、合闸操作都分两步进行,手柄和触点盒有两个固定位置和两个操作位置的封闭式控制开关。

此种开关常用于火电厂和有人值班的变电所中。

(2)LW1 系列控制开关:是跳、合闸操作只用一步,其手柄和触点只有一个固定位置和两个操作位置的控制开关。

此种开关常用于无人值班的变电所和水电站中。

(3)LWX 系列强电小型控制开关:其跳、合闸为一步进行,近年来在各种集控台的控制和300MW 以上机组的分控室中已被广泛应用。

下面以LW2 型控制开关为例说明控制开关的结构及作用。

1. 控制开关的构成图5-l 是发电厂和变电所普遍应用的LW2-Z 型控制开关的结构图。

左端是操作手柄,装于屏前;与手柄固定连接的方轴上装有5~8 节触点盒,用螺杆相连装于屏后,如图5-1 (a)所示。

图5-1(b)是控制开关的左视图,由图可见,控制开关的手柄有两个固定位置和两个操作位置。

固定位置:垂直位置是预备合闸和合闸后;水平位置是预备跳闸和跳闸后。

操作位置:右上方为合闸位置,左下方为跳闸位置。

图5-1 LW2-Z 型控制开关结构图(a)控制开关外形图;(b)控制开关左视图控制开关的操作过程:合闸操作:如图5-1(b)示出手柄为预备合闸状态,将手柄右旋30°为合闸位置,手放开后在自复弹簧的作用下,手柄复位于垂直位置,成为合闸后位置;跳闸操作:先将手柄左旋至水平位置,即预备合闸位置,再左旋30°即为跳闸位置,手放开后在自复弹簧的作用下,手柄复位于水平位置,成跳闸后位置。

2. 控制开关的触点盒位置表控制开关右端的数节触点盒,其四角均匀固定着四个静触点,其触点外端伸出盒外接外电路,而内端与固定于方轴上的动触点簧片相配合。

由于动触点(簧片)的形状及安装位置的不同,组成14 种型号的触点盒,代号为1、la 、2、4、5、6、6a、7、8、10、20、30、40、50,如表5-1 所示。

其中1、1a、2、4、5、6、6a、7、8 型的动触点是固定于方轴上随轴表5-1 LW2-Z 和LW2-YZ 型触点盒位置表转动的,而后 5 种触点是有自由行程的,即进行跳、合闸操作时动触点随轴转动,复后触点不随轴复位,其中10、40、50 型的动触点在轴上有而手柄自45°的自由行程;20 型有90°自由行程;30 型有135°自由行程。

LW2 型控制开关型号、型式及其符号含义(1)型号说明LW2-1-2/3 4 -5 6 -7式中 1 开关型式,共有2 6 类,如表5-1 所示;触点型式,共14 种;3 4 5 板面型式,共有两种,“F为”方形,“O”为圆形;手柄型式,共有9 种;定位器型式,共有两种,45°定位用“ 8表”示,90°定位不表示;6 限位装置,有者以“×表”示,无者不表示;7 触点特殊排列时用 A 表示。

(2)开关型式及其表示符号表5-2 开关型式及其型号含义表型号特点表5-3 LW2 -Z-1a、4、6a、40、20/F8 型开关触点通断符LW2-YZ LW2-Y LW2-Z LW2-WLW2 LW2-H 带定位及自动复归,手柄内有信号灯带定位,手柄内有信号灯带有自复及定位机构带有自复机构带有定位机构带定位及可取出的手柄3. 常用的断路器触点图表下面以LW2-Z-la、4、6a、40、20、20/F8 型控制开关为例介绍。

左列所示手柄的六种位置为屏前视图,而其余右边触点盒的触点通断状况是由屏后视的。

触点排号为逆时针方向次序,“?号”表示触点接通,“一”表示触点断开。

在发电厂和变电所的工程图中,控制开关的应用十分普遍,按新标准将控制开关SA 的触点通断状况用图形符号表示如表5-3 所示。

表中 6 条垂直虚线表示控制开关手柄的 6 个不同位置:C 一合闸、PC 一预备合闸、CD 一合闸后;T 一跳闸、PT 一预备跳闸、TD 一跳闸后。

水平线表示触点的引出线,水平线下的黑圆点表示该对触点在此位置是接通的,否则是断开的。

表5-4 LW2-Z-1a、4、6a、40、20、20/F8 型控制开关触点图表第二节断路器的基本控制回路在发电厂和变电所中有多种成熟的基本控制回路,这些典型接线可以独立运行,也可互相组合构成更复杂的控制回路。

一、断路器的基本跳、合闸控制回路断路器基本跳、合闸回路如图5-2 所示,其工作原理简述如下。

(1)合闸操作。

手动合闸是将控制开关SA 打至“合闸”位置,此时其5—8 触点瞬时接通;而断路器在跳闸位置时其动断触点QF2 是接通的,所以合闸接触器KM 线圈通电起动,其动合触点接通,断路器合闸线圈YC 通电启动,断路器合闸。

当合闸操作完成后,断路器的动断辅助触点QF2 断开,合闸接触器KM 线圈断电,在合闸回路中的两个动合触点断开,切断断路器合闸线圈YC 的电路;同时,断路器动合触点QF1 接通,准备好跳闸回路。

断路器的自动合闸是由自动重合闸装置的出口触点K1 闭合实现的。

(2)跳闸操作。

手动跳闸是将控制开关SA 打至“跳闸”位,此时其6—7 触点接通,而断路器在合闸位置时其动合触点QF1 是接通的,所以跳闸线圈YT 通电,断路器进行跳闸。

当跳闸操作完成后,断路器的动合触点QF1 断开,而动断触点QF2 接通,准备好合闸回路。

图5-2 断路器基本跳、合闸回路断路器的自动跳闸是由保护装置出口继电器K2 触点闭合来实现的。

二、断路器的防跳(跳跃闭锁)控制回路1.断路器的“跳跃”现象及危害如果手动合闸后控制开关(SA 的手柄尚未松开5—8 触点仍在接通状态)或者自动重合闸装置的出口触点K1 烧结,若此时发生故障,则保护装置动作,其出口K2 触点闭合,跳闸线圈YT 通电起动使断路器跳闸,则QF2 接通,使接触器KM 又带电,使断路器再次合闸,保护装置又动作使断路器又跳闸,断路器的这种多次“跳一合”现象称为“跳跃”。

如果断路器发生跳跃,势必造成绝缘下降、油温上升,严重时会引起断路器发生爆炸事故,危及设备和人身的安全。

2.断路器的“防跳”控制回路在35kV 及以上电压的断路器控制回路中,通常加装防跳中间继电器KCF ,如图5-3 所示。

KCF 常采用DZB 型中间继电器,它有两个线圈:电流起动线圈KCF1 ,串接于跳闸回路中;电压(自保持)线圈KCF2 ,与自身的动合触点串联,再并接于合闸接触器KM 的回路中。

当手动合闸时SA 的5—8 触点尚未断开或自动装置K1 触点烧结,此时发生故障,则继电保护装置动作,K2 触点闭合,经KCF1 的电流线圈、断路器动合触点QF1 ,跳闸线圈通电起动,使断路器跳闸。

同时,KCF1 电流线圈起动,其动合触点闭合,使其经电压线圈KCF2 自保持,而KCF 的动断触点断开,可靠地切断KM 线圈回路,即使SA 的5—8 触点接通,KM 也不会通电,防止了断路器跳跃现象的发生。

图5-3 由防跳继电器构成的断路器控制回路只有合闸命令解除(SA 的5—8 触点断开或K1 断开),KCF2 电压线圈断电,才能恢复至正常状态。

对于3~10kV 电压等级的断路器,如果采用室内开关柜,没装自动重合闸,由于开关柜具有机械防跳装置,为了简化接线,此时断路器可不设电气“防跳”装置。

三、断路器的位置指示断路器的跳闸、合闸状态在主控制室应有明确的指示信号,一般有双灯制(红、绿灯)和单灯制(白灯)两种接线方式。

相关文档
最新文档