高等代数与解析几何第七章

合集下载

高等代数与解析几何第七章习题线性变换与相似矩阵答案

高等代数与解析几何第七章习题线性变换与相似矩阵答案

第七章线性变换与相似矩阵习题习题判别下列变换是否线性变换1设是线性空间中的一个固定向量,Ⅰ,,解:当时,显然是的线性变换;当时,有,,则,即此时不是的线性变换;Ⅱ,;解:当时,显然是的线性变换;当时,有,,则,即此时不是的线性变换;2在中,Ⅰ,解:不是的线性变换;因对于,有,,所以;Ⅱ;解:是的线性变换;设,其中,,则有,;3在中,Ⅰ,解:是的线性变换:设,则,,;Ⅱ,其中是中的固定数;解:是的线性变换:设,则,,;4把复数域看作复数域上的线性空间,,其中是的共轭复数;解:不是线性变换;因为取,时,有,,即;5在中,设与是其中的两个固定的矩阵,,;解:是的线性变换;对,,有,;习题在中,取直角坐标系,以表示空间绕轴由轴向方向旋转900的变换,以表示空间绕轴由轴向方向旋转900的变换,以表示空间绕轴由轴向方向旋转900的变换;证明表示恒等变换,,;并说明是否成立;证明:在中任取一个向量,则根据,及的定义可知:,,;, ,;,,,即,故;因为,,所以;因为,,所以;因为,,所以;习题在中,,,证明;证明:在中任取一多项式,有;所以;习题设,是上的线性变换;若,证明;证明:用数学归纳法证明;当时,有命题成立;假设等式对成立,即;下面证明等式对也成立;因有,即等式对也成立,从而对任意自然数都成立; 习题证明1若是上的可逆线性变换,则的逆变换唯一;2若,是上的可逆线性变换,则也是可逆线性变换,且;证明:1设都是的逆变换,则有,;进而;即的逆变换唯一;2因,都是上的可逆线性变换,则有,同理有由定义知是可逆线性变换,为逆变换,有唯一性得;习题设是上的线性变换,向量,且,,,都不是零向量,但;证明,,,线性无关;证明:设,依次用可得,得,而,故;同理有:,得,即得;依次类推可得,即得,进而得;有定义知,,,线性无关;习题设是上的线性变换,证明是可逆线性变换的充要条件为既是单射线性变换又是满射线性变换,即是一一变换;证明:已知是可逆线性变换,即存在;若,则两端用作用即得,因此是单射线性变换;若任取,则存在,使得,即是满射线性变换;已知既是单射线性变换又是满射线性变换,即双射;现定义新的变换:,定有,且有,规定,有,同时有,即有;由定义知是可逆线性变换;习题设是上的线性变换,证明1是单射线性变换的充要条件为;2是单射线性变换的充要条件为把线性无关的向量组变为线性无关的向量组;证明:1已知是单射线性变换,对,则有,由单射得,即;已知,若,则有,得,即得,故是单射;2已知是单射线性变换;设线性无关,现证也线性无关;令,整理有,而是单射,有,已知线性无关,所以,故也线性无关;已知把线性无关的向量组变为线性无关的向量组;若,则有,并一定有;否则若,则说明向量线性无关,而表示把线性无关的向量组变为线性相关的向量组,与条件矛盾;而由可得,即是单射线性变换;习题设是中全体可逆线性变换所成的子集,证明关于线性变换的乘法构成一个群;超范围略习题设,是上的线性变换,且证明1若,则;2若,则;证明:1因为,;所以,从而或;又因为;故;2因为,,所以;习题设与分别是数域上的维与维线性空间,是的一个有序基,对于中任意个向量,证明存在唯一的线性映射,使,;证明:先证明存在性;对任意的,有唯一的线性表达式我们定义显然有,;现验证为到的一个线性映射;1对任意的向量,因为,由定义得;2对任意的,因为,由定义得; 所以为到的一个线性映射;再证唯一性:若另有到的一个线性映射,也使得,;则对任意向量,一定有;由在中的任意性,可得;习题设与分别是数域上的维与维线性空间,是线性映射;证明是的子空间,是的子空间;又若有限,证明;这时称为的零度,称为的秩;证明:1先证与分别为与的子空间,对,,有,所以,故为的子空间;同理,对,,则,使,,所以所以为的子空间.2再证因有限,不妨设,,在中取一个基,再把它扩充为的一个基,则是像空间的一个基.事实上,对,存在,使得;设,则有即中的任意向量都可由线性表示;现证向量组线性无关:设,有,即,所以向量可由向量组线性表示,进而有,整理有,又因线性无关,所以必有,因此线性无关,即为的一个基,故;习题证明关于定义中所定义的线性映射的加法与数量乘法构成上的一个线性空间;证明:现证明定义中所定义的线性映射的加法与数量乘法都是从到的线性映射;事实上,对,,有故为到的线性映射;同理,对,,有,,故为到的线性映射;另外线性映射的加法与数量乘法显然满足:1结合律:;2交换律: ;3存在零线性映射,对,有;4对,有负线性映射,使得;5;6;7;8;其中,所以关于定义中所定义的线性映射的加法与数量乘法构成上的一个线性空间;习题证明:;证明:设为维线性空间,为维线性空间,即,;取定的一组基和的一组基;令为到的如下映射:,其中为在基与基下的矩阵;这样定义的是到的同构映射;事实上,1若,,且,则有,;由于,对每一个都有,故有,即是单射;2,令;则存在唯一的线性映射使得,并且由此可见,是满射;3对,,有,,其中即有,,所以,故有,所以是到的同构映射;进而有;习题习题求下列线性变换在所指定的一个基下的矩阵:1的线性变换,,其中为固定矩阵;求,在这个基下的矩阵;2设是线性空间的线性变换,求在基下的矩阵;36个函数:,,,,,的所有实系数线性组合构成实数域上一个6维线性空间;求微分变换在基下的矩阵;解:1由,的定义直接可得:,,,; 所以在这个基下的矩阵为;,,,;所以在这个基下的矩阵为;2由直接可得:,,,………………………,………………………;所以在基下的矩阵为:;3由微分运算性质直接可得:,,,,,;所以微分变换在基下的矩阵为:;习题设是的一个基,,,,;已知线性无关;证明:1 存在唯一的线性变换,使,;21中的在基下的矩阵为;31中的在基下的矩阵为;证明:1因为线性无关,所以也是的一个基;故对的一个基及个向量,定存在唯一的线性变换,使,;2 由已知条件有,,其中与都是的基,所以可逆,且有,进而有;再由1得,所以在基下的矩阵为;3 类似有,所以在基下的矩阵为;习题在中,定义线性变换为,,,其中,,;1求在基下的矩阵;2求在基下的矩阵;解:1由定义知,, 所以有;故在基下的矩阵为:;2类似有;故在基下的矩阵为:;习题在中,线性变换在基,,下的矩阵是;求在基下的矩阵;解:已知,,则有;即在基下的矩阵为:;习题设数域上3维线性空间的线性变换在基下的矩阵为1求在基下的矩阵;2求在基下的矩阵;3求在基下的矩阵;解:1由已知可得,,;所以在基下的矩阵为:;2由已知可得,,;所以在基下的矩阵为:;3由已知可得,,;所以在基下的矩阵为:;习题在维线性空间中,设有线性变换与向量使,但;证明:在中存在一个基,使在该基下的矩阵为;证明:由习题知:维线性空间的向量组,,,线性无关,且有个向量,即构成的一组基,而线性变换作用此基有:,,……………,;故在基,,,下的矩阵为:;习题设是数域上维线性空间的全体线性变换组成的数域上的线性空间,试求,并找出中的一个基;求证:任取的一组基,令为到的映射:,其中;由引理及定理知为同构映射,即;所以它们的维数相同,而,故;现取,,使得,即,;已知,是的一组基,故,为的一组基;习题证明:与维线性空间的全体线性变换都可交换的线性变换是数乘变换;证明:在某组确定的基下,数域上的维线性空间的线性变换与数域上的阶方阵间建立了一个双射,因为与一切阶方阵可交换的方阵为数量矩阵,所以与一切线性变换可交换的线性变换必是数乘变换;习题设是维线性空间的一个线性变换,如果在的任意一个基下的矩阵都相同,则是数乘变换;证明:设在基下的矩阵为,只要证明为数量矩阵即可;设为任意可逆矩阵,令,则也是的一组基,且在这组基下的矩阵为,依题意有;特别地,当取时,计算可得;再取,由可得,即为数量矩阵,所以是数乘变换;习题证明:与相似,其中是的一个排列;证明:用依次表示这两个矩阵,取一个维线性空间及其一组基,对于矩阵,存在的线性变换,使得,由此可得;因为与是在不同基下的矩阵,所以与相似;习题如果可逆,证明与相似;证明:因为,所以与相似;习题如果与相似,与相似,试判断下列叙述是否正确如果不正确,请举反例,否则给出证明;1与相似;2与相似;3与相似;答:1正确;证明:由于与相似,与相似,因此存在可逆阵,,使得,,从而有,其中,所以与相似;2不正确;反例:设,,则有,使,,即,故与相似;再取,则与显然相似;但,;设,且满足,即,计算得,即得,故不可逆;所以与不相似;3不正确;反例:取同2,有,, 两矩阵秩不同;显然,与不相似;习题习题设是数域上线性空间,是的线性变换;如果是的特征值,则对任意多项式,是的特征值,且的属于的特征向量也是的属于的特征向量;证明:设为的属于的特征向量,即,则对任意自然数,有;事实上,当时,显然成立;假设时,有成立;现证时也成立,即;故由数学归纳法得式对任意自然数均成立;设,则有,即;习题对复数域上线性空间上的下述线性变换,求出它的特征值与特征向量,判断是否可以对角化,在可对角化时,求出过度矩阵,并计算;已知在的一个基下的矩阵为1;2;3;4;解:1设在基下的矩阵为,矩阵的特征多项式为;所以的特征值为,;先求的属于特征值的特征向量;解齐次线性方程组,求得基础解系为,所以的属于特征值的全部特征向量为;再求的属于特征值的特征向量;解齐次线性方程组,求得基础解系为,所以的属于特征值的全部特征向量为;可以对角化;取的两个线性无关的特征向量,,即,其中为由;2设在基下的矩阵为,且当时,有,于是矩阵的特征多项式为,所以的特征值为;求的属于特征值的特征向量;解齐次线性方程组,求得基础解系为,,因为的属于特征值的两个线性无关的特征向量为,所以以中任意非零向量为其特征向量;当时,矩阵的特征多项式为,所以的特征值为;先求的属于特征值的特征向量;解齐次线性方程组,求得基础解系为,所以的属于特征值的全部特征向量为;再求的属于特征值的特征向量;解齐次线性方程组,求得基础解系为,所以的属于特征值的全部特征向量为;可以对角化;取的两个线性无关的特征向量,,即,其中为由;3设在基下的矩阵为,矩阵的特征多项式为;所以的特征值为;先求的属于特征值的特征向量;解齐次线性方程组,求得基础解系为,所以的属于特征值的全部特征向量为;再求的属于特征值的特征向量;解齐次线性方程组,求得基础解系为,所以的属于特征值的全部特征向量为;由于找不到的三个线性无关的特征向量,故不可对角化;4设在基下的矩阵为,矩阵的特征多项式为;所以的特征值为;先求的属于特征值的特征向量;解齐次线性方程组,求得基础解系为,,,所以的属于特征值的全部特征向量为;再求的属于特征值的特征向量;解齐次线性方程组,求得基础解系为,所以的属于特征值的全部特征向量为;可以对角化;取的四个线性无关的特征向量,,,,即,其中为由基到基的过渡矩阵;且有;习题证明:是矩阵的特征值的充要条件是矩阵为奇异阵; 证明:设非零向量为矩阵的属于特征值的特征向量,则有,整理得,因,所以齐次线性方程组有非零解,故系数行列式;反之亦然;习题设,求;解:矩阵的特征多项式为;所以的特征值为;对,解齐次线性方程组,得基础解系;对,解齐次线性方程组,得基础解系;对,解齐次线性方程组,得基础解系;令,有,进而有,故;习题设是4维线性空间的一个基,线性变换在这个基下的矩阵为;1 求在一个基下的矩阵,其中2求的特征值与特征向量;3求一可逆阵,使为对角阵;解:1由条件有,令,则线性变换在基下的矩阵为;2因为线性变换的特征多项式为;所以线性变换的特征值为;先求的属于特征值的特征向量;解齐次线性方程组,求得基础解系为,,所以的属于特征值的线性无关的特征向量为,;全部特征向量为;再求的属于特征值的特征向量;解齐次线性方程组,求得基础解系为,所以的属于特征值的线性无关的特征向量为;全部特征向量为;最后求的属于特征值的特征向量;解齐次线性方程组,求得基础解系为,所以的属于特征值的线性无关的特征向量为;全部特征向量为;3因为,所以所求的可逆矩阵为,于是有;习题1设是线性变换的两个不同特征值,是分别属于的特征向量;证明:不是的特征向量;2证明:如果线性变换以中每个非零向量作为它的特征向量,则是数乘变换;证明:1因为,,所以;假设是线性变换的属于特征值的特征向量,即,且有,整理可得;由于线性变换的属于不同特征值的特征向量线性无关,因此,于是得,这与题设矛盾,因而不是的特征向量;2任取的一个非零向量,设;再任取的一个向量,若或,则显然有;若,则由假设也是特征向量,设;如果,则由1知,不是的特征向量,这与题意矛盾;故,即仍有;这就说明的任意两个特征值都相等,故为数乘变换;习题设是的线性变换;证明:1的行列式为零的充要条件是至少有一个特征值为零;2如果是可逆线性变换,则其特征值一定不为零;又如果是的特征值,则必是的特征值;证明:1设线性变换在一组基下的矩阵为,是的所有特征值,则有,所以的行列式为零至少有一个;2反证法设可逆线性变换有一个特征值为,而是它的一个特征向量,即有;用作用的两边得,;这与矛盾,故可逆线性变换的特征值一定不为零;设为的属于特征值的一个特征向量,即;由于可逆,得,进而有,即,也可写成,故必是的一个特征值;习题设,是阶方阵;证明:1;2如果,则,即相似的矩阵必有相同的迹;3设,;验证:与有相同的特征多项式,但与不相似;证明:1设,为任意两个阶方阵,则主对角线上的元素为,,;它们的和为;同样,的主对角线上的元素的和为;故;2根据1可得; 即相似的矩阵必有相同的迹;3因为,所以其特征多项式为;又因为,所以其特征多项式为,故与有相同的特征多项式;现设矩阵,使得成立,展开有,,即得;解得;所以是不可逆的,故与不相似;习题设的线性变换的互不相同的特征值为;如果在每一个特征值的特征子空间中取基,恰构成全空间的一个基;证明:必可对角化;证明:设特征值的特征子空间的基为,,则有,,,即每一个,都是的特征向量;又知,恰构成空间的一个基,即得有个线性无关的特征向量,所以必可对角化;。

高等数学第七章向量代数与空间解析几何习题

高等数学第七章向量代数与空间解析几何习题
2
解 ∵ a + b = AC = 2MC = −2MA ,
D
C
b
M
b − a = BD = 2MD = −2MB ,

MA
=

1 2
(a
+
b),
MB
=

1 2
(b

A a ),
a
B
图 7.2
MC
=
1 2
(a
+
b),
MD
=
1 2
(b

a ).
10. 用向量的方法证明: 连接三角形两边中点的线段(中位线)平行且等于第三

a⋅b =
a

b

cos(a,
b)
=
10
×
cos
π 3
=5,
所以
r 2 = 100 − 60 + 36 = 76 ,
故 r = 76 .
3. 已知 a + b + c = 0 , 求证 a × b = b × c = c × a
证 法1
∵a + b + c = 0 ,
所以
c = −(a + b) ,
解 因 a = m − 2n + 3 p = (8i + 5 j + 8k) − 2(2i − 4 j + 7k) + 3(i + j − k) = 7i + 16 j − 9k ,
故沿 x 轴方向的分向量为 axi = 7i ; 沿 y 轴方向的分向量为 ay j = 16 j .
16. 若线段 AB 被点 C(2, 0, 2)和D(5, −2, 0) 三等分, 试求向量 AB 、点 A 及点 B 的

《高等代数与解析几何》教学大纲

《高等代数与解析几何》教学大纲

《咼等代数与解析几何》课程教学大纲一、课程基本信息1、课程名称:高等代数与解析几何(上、下)2、课程编号:03030001/23、课程类别:学科基础课4、总学时/学分:160/105、适用专业:信息与计算科学6、开课学期:第一、二学期二、课程与人才培养标准实现矩阵说明掌握自然科学基础知识和数学专业所需的技术基础及专业知识,掌握分析问题、解决问题的科学方法;通过所学专业基础知识,获取数学专业知识的能力,更新知识和应用知识的能力。

三、课程的地位性质与目的本课程是数学与应用数学专业学生的重要的基础课程,是现代信息科学中不可缺少的数学工具。

高等代数与解析几何最突出的特点就是代数与几何在知识与理论上的有机结合,在思想和方法上的融会贯通。

主要目的是掌握本门课程的基本理论和基本方法;同时通过本课程的教学,锻炼和提高学生的思维能力,培养学生分析问题和解决问题的能力,培养学生创新能力,提高学生的数学素养。

四、学时分配表五、课程教学内容和基本要求总的目标:通过本课程的学习要求学生对高等代数与解析几何的基本概念、基本定理有比较全面、系统认识,能把几何的观点与代数的方法结合起来,“代数为几何提供研究方法,几何为代数提供直观背景”,逐步培养学生运用几何与代数相结合的方法分析问题、解决问题的能力,培养学生抽象的思维能力及空间想象能力。

本课程各章的教学内容和基本要求如下:第一章向量代数【教学内容】1、向量的线性运算2、向量的共线与共面3、用坐标表示向量4、线性相关性与线性方程组5、n维向量空间6、几何空间向量的内积7、几何空间向量的外积8、几何空间向量的混合积【基本要求】理解向量的概念,掌握向量的线性运算、内积、外积、混合积运算;熟悉向量间垂直、共线、共面的条件;会用坐标进行向量的运算。

【教学重点及难点】重点:向量的概念,向量的线性运算、内积、外积、混合积运算;用坐标进行向量的运算。

难点:向量间垂直、共线、共面的条件。

第二章行列式【教学内容】1、映射与变换2、置换的奇偶性3、矩阵4、行列式的定义理解n阶行列式的概念及性质,掌握常见类型的行列式的计算;熟悉克拉默法则。

高等代数与解析几何第七章(1-3习题)线性变换与相似矩阵答案

高等代数与解析几何第七章(1-3习题)线性变换与相似矩阵答案

第七章线性变换与相似矩阵习题7.1习题7.1.1判别下列变换是否线性变换?(1 )设「是线性空间「中的一个固定向量,解:当■时,■-. - 显然是’的线性变换;当小时,有■,则□ l闵+觀h 6逐)+e(碣),即此时■不是"的线性变换。

T\a}解:当「时,显然是「的线性变换;T(闵+觀縊讥坷)+丁(%「,即此时L不是「的线性变换。

(2)在匚中,:T|=(心勾+解:「不是:的线性变换。

因对于叩),所以贰加)黑如©)。

J-f(□)解:是二的线性变换。

设■-T (硏丁(E = (2xj -鬲圖+画尼啊/V —vG —(10,0)€ 护有1!:"'二!,有则有左苴中&二(兀心■IIL.. JI. ■KJO|i —、赢I jr .跚)+(2”-兀5L TXa)a眼JCT 三(1Th f 丰乃1(範+为H (西+沟)必(画+另))価+必)二我住+3a:(上c)- T[上q .上吆上3 =心匕、-kxj r +匕勺.2上勺)=jfc(2x1-无|,阳+ 可,2 両(3)在•[;中,([)」- ,解:0是H用的线性变换:设貳⑴居(Q它月旳.,贝U直(/a)+欢))=/(兀+i)+gd+i)=</◎》+龙⑵), a財优论kj\x+5-逝/(劝,唯总F。

(u)处『姦訂芻》,其中•是;中的固定数;解:「-是;一的线性变换:设釁鑰廉8.詰圜,则⑺(7U)+g⑴)=/W+gfe)=次/⑴)卡以gO)),◎(射妙-妙厲)-如y(幼伏訂。

5 穴u(4)把复数域’看作复数域上的线性空间,步②匕加,其中「是一的共轭复数;解:「不是线性变换。

因为取兴习,「-7时,有*鸞日關上(7(仕)=滋二i即0(k&)主去曲空)(5)在:,■ 中,设■与:-是其中的两个固定的矩阵,- U Z&1解:「是"的线性变换。

对1蓟如=P瞒Q= ^PXQ二£啲O习题7.1.2在{中,取直角坐标系-,以-表示空间绕「轴由轴向…方向旋转900的变换,以表示空间绕'轴由--轴向八方向旋转90°的变换,以&表示空间绕轴由 轴向Oy 方向旋转900的变换。

高等代数与解析几何教学大纲

高等代数与解析几何教学大纲

《高等代数与解析几何》教学大纲说明高等代数与解析几何是数学的主要基础课. 通过本课程的教学将逐步培养学生运用几何与代数相结合的方法分析问题和解决问题的能力. 因此在教学中应注意讲清代数概念的几何背景, 培养学生的空间想象力.本课程如按每学期每周4节正课2节习题课安排, 在一学年内应能讲授完本大纲的内容。

至于教科书《高等代数与解析几何》中的打星号的选学内容可以作为第三学期的选修课内容。

第一章第一章向量代数(22课时)第二章第二章行列式(12课时)第三章第三章线性方程组与线性子空间(20课时)第四章第四章矩阵的秩与矩阵的运算(14课时)第五章第五章线性空间与欧几里得空间(16课时)第六章第六章几何空间的常见曲面(14课时)第七章第七章线性变换(6课时)第八章第八章线性空间上的函数(10课时)第九章第九章坐标变换与点变换(12课时)第十章第十章一元多项式与整数的因式分解(14课时)第十一章第十一章多元多项式(12课时)第十二章第十二章多项式矩阵与若尔当典范形(10课时)以下计划中所列参考课时数均不包括习题课课时.第一章向量代数(22课时)内容包括向量的线性运算,向量的共线与共面,用坐标表示向量,线性相关性与线性方程组,n维向量空间,几何空间向量的内积、外积与混合积,平面曲线的方程等。

本章的教学目的是使学生对向量及其运算以及线性相关性有一个较直观的认识,为以后抽象向量的学习打下基础。

第二章行列式(12课时)本章从讲解映射与变换以及置换的奇偶性入手,通过体积的计算引入行列式的定义,同时也给出行列式的常用定义,然后引入矩阵的概念,以帮助理解行列式的性质,再讲解行列式按一行(一列)展开以及用行列式解线性方程组的克拉默法则,最后证明拉普拉斯定理。

本章的教学目的是使学生对行列式的意义及其计算有所了解。

并会应用克拉默法则解线性方程组。

对行列式计算的技巧不能太强调。

第三章线性方程组与线性子空间(20课时)用消元法解线性方程组是与初等数学相衔接的,在此基础上讨论线性方程组的解的情况,然后引出向量组的线性相关性的有关性质,再学习线性子空间及线性子空间的基与维数,以帮助理解齐次线性方程组的解的结构。

高等数学第七章空间解析几何与向量代数课件.ppt

高等数学第七章空间解析几何与向量代数课件.ppt

D
b a BD
2 MB
b M
MA
1 2
(
a
b
)
MB
1 2
(
b
a
)
A
a
MC
1 2
(
a
b
)
MD
1 2
(
b
a
)
首页
上页
返回
下页
结束
C B
第9页,共33页。
三、空间直角坐标系
1. 空间直角坐标系的基本概念
过空间一定点 o ,由三条互相垂直的数轴按右手规则
组成一个空间直角坐标系.
• 坐标原点

z z 轴(竖轴)

计算向量
的模 、方向余弦和方向角 .
解: M1M 2 ( 1 2, 3 2 , 0 2 ) (1, 1, 2 )
(1)2 12 ( 2)2 2
cos 1 , cos 2
2
2
2 ,
,
3
3
3
4
首页
上页
返回
下页
结束
第21页,共33页。
3. 向量在轴上的投影与投影定理
z
r
在三个坐标轴上的分向量:
cos
x r
x x2 y2 z2
z
r
o
y
x
首页
上页
返回
下页
结束
第19页,共33页。
cos x
r
cos y
r
cos rz
x x2 y2 z2
y x2 y2 z2
z x2 y2 z2
方向余弦的性质:
z
r
o
y

高等代数与解析几何第七章知识题7答案解析

高等代数与解析几何第七章知识题7答案解析

习题7.4习题7.4.1设A 是一个n 阶下三角矩阵。

证明:(1)如果A 的对角线元素jj ii a a ≠),,2,1,(n j i Λ=,则A 必可对角化; (2)如果A 的对角线元素nn a a a ===Λ2211,且A 不是对角阵,则A 不可对角化。

证明:(1)因为A 是一个n 阶下三角矩阵,所以A 的特征多项式为)())((||2211nn a a a A E ---=-λλλλΛ,又因jj ii a a ≠),,2,1,(n j i Λ=,所以A 有n 个不同的特征值,即A 有n 个线性无关的特征向量,以这n 个线性无关的特征向量为列构成一个可逆阵P ,则有AP P 1-为对角阵,故A 必可对角化。

(2)假设A 可对角化,即存在对角阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n B λλλO21,使得A 与B 相似,进而A 与B 有相同的特征值n λλλ,,,21Λ。

又因为矩阵A 的特征多项式为n a A E )(||11-=-λλ,所以1121a n ====λλλΛ,从而E a a a a B nn 112211=⎪⎪⎪⎪⎪⎭⎫⎝⎛=O,于是对于任意非退化矩阵X ,都有B E a EX a X BX X ===--111111,而A 不是对角阵,必有A B BX X ≠=-1,与假设矛盾,所以A 不可对角化。

习题7.4.2设n 维线性空间V 的线性变换σ有s 个不同的特征值s λλλ,,,21Λ,i V 是i λ的特征子空间),,2,1(s i Λ=。

证明:(1)s V V V +++Λ21是直和;(2)σ可对角化的充要条件是s V V V V ⊕⊕⊕=Λ21。

证明:(1)取s V V V +++Λ21的零向量0,写成分解式有021=+++s αααΛ,其中i i V ∈α,s i ,,2,1Λ=。

现用12,,,-s σσσΛ分别作用分解式两边,可得⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++---0001212111221121s s s s s ss s αλαλαλαλαλαλαααΛΛΛΛΛΛΛΛΛ。

高等代数和解析几何第七章(1~3习题集)线性变换和相似矩阵答案解析

高等代数和解析几何第七章(1~3习题集)线性变换和相似矩阵答案解析

第七章线性变换与相似矩阵习题7.1习题7.1.1判别下列变换是否线性变换?(1)设是线性空间中的一个固定向量,(Ⅰ),,解:当时,显然是的线性变换;当时,有,,则,即此时不是的线性变换。

(Ⅱ),;解:当时,显然是的线性变换;当时,有,,则,即此时不是的线性变换。

(2)在中,(Ⅰ),解:不是的线性变换。

因对于,有,,所以。

(Ⅱ);解:是的线性变换。

设,其中,,则有,。

(3)在中,(Ⅰ),解:是的线性变换:设,则,,。

(Ⅱ),其中是中的固定数;解:是的线性变换:设,则,,。

(4)把复数域看作复数域上的线性空间,,其中是的共轭复数;解:不是线性变换。

因为取,时,有,,即。

(5)在中,设与是其中的两个固定的矩阵,,。

解:是的线性变换。

对,,有,。

习题7.1.2在中,取直角坐标系,以表示空间绕轴由轴向方向旋转900的变换,以表示空间绕轴由轴向方向旋转900的变换,以表示空间绕轴由轴向方向旋转900的变换。

证明(表示恒等变换),,;并说明是否成立。

证明:在中任取一个向量,则根据,及的定义可知:,,;,,;,,,即,故。

因为,,所以。

因为,,所以。

因为,,所以。

习题7.1.3在中,,,证明。

证明:在中任取一多项式,有。

所以。

习题7.1.4设,是上的线性变换。

若,证明。

证明:用数学归纳法证明。

当时,有命题成立。

假设等式对成立,即。

下面证明等式对也成立。

因有,即等式对也成立,从而对任意自然数都成立。

习题7.1.5证明(1)若是上的可逆线性变换,则的逆变换唯一;(2)若,是上的可逆线性变换,则也是可逆线性变换,且。

证明:(1)设都是的逆变换,则有,。

进而。

即的逆变换唯一。

(2)因,都是上的可逆线性变换,则有,同理有由定义知是可逆线性变换,为逆变换,有唯一性得。

习题7.1.6设是上的线性变换,向量,且,,,都不是零向量,但。

证明,,,线性无关。

证明:设,依次用可得,得,而,故;同理有:,得,即得;依次类推可得,即得,进而得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D ( f (x) ) = f (x ) .
例 6 定义在闭区间 [ a , b ] 上的全体连续函
数组成实数域上一线性空间,以 C( a , b ) 代表. 在 这个空间中,变换
I ( f (x) ) =
是一线性变换.

x
a
f (t )dt
四、性质
线性变换有以下三个简单性质:
性质 1 设 A 是 V 的线性变换,则
1. 定义 定义3 设 A , B 是线性空间 V 的两个线性
变 换,定义它们的和 A + B 为 (A + B ) ( ) = A ( ) + B ( ) ( V ) .
2. 性质 性质 1 线性变换的和是线性变换. 性质 2 零变换与所有线性变换 A 的和仍
于A :

A +0 =A .
m
+ a m -1 A
m -1
+ … + a0
是线性变换 A 的多项式.
线性变换的多项式有以下性质: 1) f (A ) 是一线性变换. 2) 如果在 P[ x ] 中,有 h(x ) = f (x) + g (x) , p(x) = f (x) g(x) , 那么 h(A ) = f (A ) + g(A ) , p (A ) = f (A ) g(A ) . 特别地, f (A ) g(A ) = g(A ) f (A ) .
A ( 0 ) = 0,A ( - ) = - A ( ) . 证明
由线性变换的定义,可得
A (0)=A (0· ) = 0 A ( ) = 0 , A ( - ) = A ( ( - 1 ) ) = ( -1 ) A ( )
= -A ( ).
性质 2 线性变换保持线性组合与线性关系式
第三节 线性变换的矩阵
主要内容
线性变换、基与基的像 线性变换的矩阵 向量像的计算公式 线性变换在不同基下矩阵的关系 相似矩阵
一、线性变换、基与基的像
设 V 是数域 P 上 n 维线性空间,1 , 2 , … , n 是 V 的一组基,这一节我们来建立线性变换与矩 阵的关系. 首先来讨论线性变换、基与基的像之间 的关系. 空间 V 中任一向量 可以被基 1 , 2 , … , n 线 性表出,即有
( B + C ) A =B A + C A .
4) 乘法对加法的左右分配律
三、线性变换的数量乘法
1. 定义
在上一节 中我们看到, 数域 P 中每个数 k 都决定一个数乘变换 K . 利用线性变换的乘法 , 可以定义数域 P 中的数与线性变换的数量乘法:
定义4 数域 P 中的数与线性变换的数量乘法
A A ... A
n个
来表示,称为 A 的 n 次幂,简单地记作 A n. 即
A n = A A ... A
n个
另外,规定 A 0 = E .
线性变换的幂运算规律 A n + m = A n A m , (A n )m = A m n (m , n 0) .
当线性变换 A 可逆时,定义 A 的负整数幂为
又如果 1 , 2 , … , r 之间有关系式
k 1 1 + k 2 2 + … + k r r = 0 ,
那么它们的像之间也有同样的关系 k1A ( 1 ) + k2A ( 2 ) + …+ krA ( r ) = 0 .
以上两点,根据定义不难验证,由此即得
性质 3 线性变换把线性相关的向量组变成
A i =B i ,
那么
i = 1, 2, … ,
A =B.
n,
结论 1 的意义就是,一个线性变换完全被它在 一组基上的作用所决定. 下面我们进一步指出,基 向量的像却完全可以是任意的,也就是说
2. 设 1 , 2 , … , n 是线性空间 V 的一组基. 对 于任意一组向量 1 , 2 , … , n 一定有一个线性变 换A 使
的 如果有 V 的变换 B 存在,使
A B =B A =E .
这时,变换 B 称为 A 的逆变换,记为 A
-1
.
2. 性质
如果线性变换 A 是可逆的,那么它的逆变 换 -1 A 也是线性变换.
证明
( )]
因为
A -1( ) = A -1[(A A -1) ( ) + (A A -1)
线性相关的向量组.
但应该注意,性质 3 的逆是不对的,线性变换 可能把线性无关的向量组也变成线性相关的向量 组. 例如零变换就是这样.
第二节 线性变换的运算
主要内容
线性变换的乘积 线性变换的加法 线性变换的数量乘法 线性变换的逆变换 线性变换的多项式 举例
一、线性变换的乘积
1. 定义
线性空间的线性变换作为映射的特殊情形当然 可以定义乘法.
某个数,定义 V 的变换如下:
k ,
V.
不难证明,这是一个线性变换,称为由数 k 决定的
数乘变换, 可用 K 表示. 显然,当 k = 1 时,我
们便得恒等变换,当 k = 0 时,便得零变换.
例 5 在线性空间 P[ x ] 或者 P[ x ]n 中,求微
商是一个线性变换. 这个变换通常用 D 代表ห้องสมุดไป่ตู้即
变换保持向量的加法与数量乘法.
下面我们来看几个简单的例子,它们表明线性 变换这个概念是有丰富的内容的.
举例: 例
线性空间 V 中的恒等变换或称单位
变换 E ,即
A ( ) =
以及零变换 0 ,即
( V) ,
0 ( ) = 0
都是线性变换.
( V)
例 3 设 V 是数域 P 上的线性空间,k 是 P 中
对于线性变换,我们已经定义了乘法、加法与 数量乘法三种运算. 由加法与数量乘法的性质可知,
线性空间 V 中全体线性变换,对于如上定义的加法
与数量乘法,也构成数域 P 上一个线性空间. 对于线性变换,我们也可定义逆变换.
四、线性变换的逆变换
1. 定义 定义5 线性空间 V 的线性变换 A 称为可逆
A = A (x11 + x22 + … + xnn )
= x1 A (1 ) + x2 A (2 ) + … + xn A (n ) (2)
上式表明,如果我们知道了基 1 , 2 , … , n 的像,
那么线性空间中任意一个向量 的像也就知道了,
或者说 1. 设 1 , 2 , … , n 是线性空间 V 的一组基. 如 果线性变换 A 与 B 在这组基上的作用相同,即
= A -1[A ( A -1( ) ) + A ( A -1 ( ) ) ] -1 = ( A A ) ( A -1( ) + A -1 ( ) ) =A
-1(
)+A
-1
( ) .
A -1( k ) = A -1( k (A A -1) ( ) )
=A =A
-1( -1(
k (A ( A
定义2 设 A , B 是线性空间 V 的两个线性变
换,定义它们的乘积 A B 为
(A B ) ( ) = A (B ( ) ) ( V ).
2. 性质 性质 1 线性变换的乘积是线性变换. 性质 2 结合律
(A B )C = A (BC ) .
注意:线性变换的乘法一般不满足交换律.
矩阵 A 称为 A 在基 1 , 2 , … , n 下的矩阵.
例 1 设 1 , 2 , … , m 是 n ( n > m ) 维线性空
间 V 的子空间 W 的一组基,把它扩充为 V 的一组 基 1 , 2 , … , n . 指定线性变换 A 如下:
用矩阵来表示就是
A ( 1 , 2 , … , n ) = ( A 1 , A 2 , … , A n )
= ( 1 , 2 , … , n ) A ,
其中
(5)
a11 a12 a1n a21 a22 a2 n A . a a a n2 nn n1
-1)
( ) ) )
A (k A
-1
-1
( ) ) )
-1
=(A 所以 A
-1
A )(k A
( ) .
( ) )
= k A
-1 是线性变换.
证毕
五、线性变换的多项式
下面引进线性变换的多项式的概念.
1. 线性变换的幂
既然线性变换的乘法满足结合律,当若干个线 性变换 A 重复相乘时,其最终结果是完全确定的, 与乘积的结合方式无关. 因此当 n 个( n 是正整数) 线性变换 A 相乘时,我们就可以用
A
-n=
( A -1 ) n
( n 为正整数 ) .
这时,指数法则可以推广到负整数幂的情形.
注意 线性变换乘积的指数法则不成立,即
一般来说
(A B )n A n B n .
2. 线性变换的多项式 定义6 设 f (x) = amxm + am -1xm -1 + … + a0 是
P[ x ] 中一多项式,A 是 V 的一线性变换,则称 f ( A ) = am A
不变. 换句话说,如果 是 1 , 2 , … , r 的线性 组合:
= k11 + k22 + … + krr ,
那么经过线性变换 A 之后,A ( ) 是 A ( 1 ),
A ( 2 ) , …, A ( r ) 同样的线性组合: A ( ) = k1A ( 1 ) + k2A ( 2 ) + …+ krA ( r ) .
相关文档
最新文档