高中物理竞赛辅导机械振动和机械波
高考物理第六章机械振动和机械波知识点

高考物理第六章机械振动和机械波知识点高考物理第六章机械振动和机械波知识点机械振动和机械波部分是高中物理的一大重要版块,学好这一部分对整个高中阶段物理的学习至关重要。
下面是店铺为大家精心推荐的机械振动和机械波知识点总结,希望能够对您有所帮助。
机械振动和机械波必背知识点一、机械振动:物体在平衡位置附近所做的往复运动,叫机械振动。
1、平衡位置:机械振动的中心位置;2、机械振动的位移:以平衡位置为起点振动物体所在位置为终点的有向线段;3、回复力:使振动物体回到平衡位置的力;(1)回复力的方向始终指向平衡位置;(2)回复力不是一重特殊性质的力,而是物体所受外力的合力;4、机械振动的特点:(1)往复性; (2)周期性;二、简谐运动:物体所受回复力的大小与位移成正比,且方向始终指向平衡位置的运动;(1)回复力的大小与位移成正比;(2)回复力的方向与位移的方向相反;(3)计算公式:F=-Kx;如:音叉、摆钟、单摆、弹簧振子;三、全振动:振动物体如:从0出发,经A,再到O,再到A/,最后又回到0的周期性的过程叫全振动。
例1:从A至o,从o至A/,是一次全振动吗?例2:振动物体从A/,出发,试说出它的一次全振动过程;四、振幅:振动物体离开平衡位置的最大距离。
1、振幅用A表示;2、最大回复力F大=KA;3、物体完成一次全振动的路程为4A;4、振幅是表示物体振动强弱的物理量;振幅越大,振动越强,能量越大;五、周期:振动物体完成一次全振动所用的时间;1、T=t/n (t表示所用的总时间,n表示完成全振动的次数)2、振动物体从平衡位置到最远点,从最远点到平衡为置所用的时间相等,等于T/4;六、频率:振动物体在单位时间内完成全振动的次数;1、f=n/t;2、f=1/T;3、固有频率:由物体自身性质决定的频率;七、简谐运动的图像:表示作简谐运动的物体位移和时间关系的图像。
1、若从平衡位置开始计时,其图像为正弦曲线;2、若从最远点开始计时,其图像为余弦曲线;3、简谐运动图像的作用:(1)确定简谐运动的周期、频率、振幅;(2)确定任一时刻振动物体的位移;(3)比较不同时刻振动物体的速度、动能、势能的大小:离平衡位置跃进动能越大、速度越大,势能越小;(4)判断某一时刻振动物体的运动方向:质点必然向相邻的后一时刻所在位置运动4、作受迫振动的物体的振动频率等于驱动力的`频率与其固有频率无关;物体发生共振的条件:物体的固有频率等于驱动力的频率;八、单摆:用一轻质细绳一端固定一小球,另一端固定在悬点的装置。
高一物理机械振动和机械波PPT教学课件

实质:通过传播振动的形式而将振源的能量传播出去.
②介质中各质点的振动周期和波的传播周期都与
波源的振动周期
相同. 介质
③机械波的传播速度只由
决定.
(3)波速、波长、周期、频率的关系:v= =f·λ
6.振动图象和波动图象的物理意义不同:振动图象反
映的是 一个质点在各个时刻的位置 ,而波动图象 是 某时刻各质点的位移 .振动图象随时间推移图
思路方法
1.判断波的传播方向和质点振动方向的方法:①特殊 点法,② 微平移法(波形移动法) .
2.利用波传播的周期性,双向性解题
(1)波的图象的周期性:相隔时间为周期整数倍的
ห้องสมุดไป่ตู้
两个时刻的波形相同,从而使题目的解答出现多解
的可能.
(2)波传播方向的双向性:在题目未给出传播方向 正向 负向
时,要考虑到波可沿x轴
等于这几列波分别在该质点处引起的位移的
.
9.波的现象 (1)波的叠加、干涉、衍射、多普勒效应. (2)波的干涉 ①必要条件:频率相同. ②设两列波到某一点的波程差为Δx.若两波源振 动情况完全相同,则
③加强区始终加强,减弱区始终减弱.加强区的振 幅A=A1+A2,减弱区的振幅A=|A1-A2|. ④若两波源的振动情况相反,则加强区、减弱区的
移随时间变化的表达式为:x= A sin (ωt+φ)或x= Acos (ωt+φ).
3.简谐运动的能量特征是:振动的能量与 振幅有关, 随 振幅 的增大而增大.振动系统的动能和势能相
互转化1 ,总机械能守恒,能量的转化周期是位移周
期的 2 .
弹簧振子
4.简谐运动的两种模型是
和单摆.当单摆摆
高中物理竞赛辅导__机械振动和机械波

k 1 、 k 2 …… n 的轻弹簧串联起来,组成一个 为 k 新弹簧组,当这个新弹簧组在 F 力作用下伸长
1 ,那么总伸长 时,各弹簧的伸长为 x n
2 D l D l O
x = å x i
i =1
各弹簧受的拉力也是 F,所以有
T
p
2p
t
图 522
xi = F / k i
x = A cos( wt + j )
T = 2p
m k 。
m
k
(1)恒力对弹簧振子的作用 比较一个在光滑水平面上振动和另一个竖直悬挂振动的弹簧振子, 如果 m 和 k 都相同(如图 5-2-1),则它们的振动周期 T 是相同的,也就 是说,一个振动方向上的恒力不会改变振动的周期。
m
(2)
这就是简谐振动方程,式中 j 0 是 t=0 时的相位,称为初相: wt + j 0 是 t 时刻的相位。
w ,其方向与参考圆相切,这个线速度在 x 轴上的投影是 参考圆上的质点的线速度为 A
v = - A w cos(wt + j 0 )
这也就是简谐振动的速度
2
(3)
w ,其方向指向圆心,它在 x 轴上的投影是 参考圆上的质点的加速度为 A
F = å k i x = x å k i
i =1 i =1
高中物理竞赛力学教程 第五讲 机械振动和机械波
根据劲度系数的定义,弹簧组的劲度系数
F n k = = å k i x i =1
导出了弹簧串、并联的等效劲度系数后,在解题中要灵活地应用,如图 523 所示的 一个振动装置,两根弹簧到底是并联还是串联?这里我们必须抓住弹簧串并联的本质特征: 串联的本质特征是每根弹簧受力相同; 并联的本质特征是每根弹簧形变相同。 由此可见图 523 中两根弹簧是串联。 当 m 向下偏离平衡位置 Dx 时,弹簧组伸长了 2 Dx ,增加的弹力为
高中物理奥赛讲义机械振动和机械波

高中物理奥赛讲义:机械振动和机械波内容综述:机械振动是质点机械运动的一种重要形态,它比质点的匀速运动、匀变速直线运动都复杂。
机械波是机械振动在介质中的传播,是有相互作用的一系列质点对机械振动的有序传递运动。
对机械振动和机械波的研究有重要意义,在后面还要学习交流电、电磁振荡和电磁波、光波、虽然它们的物理本质和具体形式不同,但很多规律是相同的。
因此,理解和掌握了机械振动和机械波的基本特征和基本规律,对学习有相同规律的其它知识就会触类旁通,容易掌握。
在生产和生活中常见的机械振动和机械波是比较复杂的。
在物理学中,对于一个复杂的运动可以看成是由若干个简单运动合成的,这些简单的运动是一些最基本的运动,掌握了这些基本的运动规律,其合运动规律就清楚了,这是物理学的一种研究方法,简谐运动和简谐波是一种最简单并且是最基本的机械振动和机械波,一些复杂的机械振动和机械波都可以看成是由它们合成的,因此我们主要学习简谐运动和简谐波。
在本期中,阐述质点做简谐运动的条件;介绍简谐运动的一种研究方法参考圆;阐明描述简谐运动的物理量振幅、周期、频率、相位;分析简谐运动方程和图象。
要点讲解:1.质点做简谐运动的条件振动是物体(质点)在一定位置附近的往复运动,这个位置称为平衡位置。
当物体离开平衡位置时,总要受到指向平衡位置的力,这个力称为回复力。
物体在离开平衡位置时必须受到回复力的作用是一切振动的产生条件,但是回复力的规律不同,产生的振动规律也不同。
物体做简谐运动的条件是:物体受回复力F的大小跟位移x的大小成正比,方向跟位移方向相反,写成数学表达式即:F=-Kx(1)在这里要注意正确理解两点:第一,做简谐运动物体的位移是相对于平衡位置的,位移的方向总是由平衡位置指向物体,而回复力总由物体是指向平衡位置,所以回复力总跟位移方向相反,式中的负号表示了这种相反关系.第二,公式中的K表示回复力大小跟位移大小的比例系数。
对于一个确定的简谐运动,K是一个常量,对不同的简谐运动,K有不同的值。
高三物理 机械振动和机械波

高三物理机械振动和机械波知识要点:1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。
机械振动产生的条件是:(1)回复力不为零。
(2)阻力很小。
使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。
机械振动是高中阶段力学学习中最复杂的运动,所以本部分内容的高考大纲要求和学习方法与其他章节也有所区别。
2、简谐振动:在机械振动中最简单的一种理想化的振动。
对简谐振动可以从两个方面进行定义或理解:(1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。
(2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。
3、描述振动的物理量,研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。
(1)位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。
位移是矢量,其最大值等于振幅。
(2)振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。
振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。
(3)周期T:振动物体完成一次余振动所经历的时间叫做周期。
所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。
(4)频率f:振动物体单位时间内完成全振动的次数。
(5)角频率 :角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。
引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。
因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。
周期、频率、角频率的关系是:T f T f ===122,ωππ。
高中物理机械振动机械波知识点总结课件新人教版选修

物理实验中的机械振动与波
实验中的振动与波
在物理实验中,我们可以设计和进行各种与机械振动和波相关的实验,如单摆实 验、共振实验、干涉和衍射实验等。这些实验可以帮助我们深入理解机械振动和 波的原理。
实验中的注意事项
在进行与机械振动和波相关的实验时,需要注意安全问题,如避免共振引起的破 坏力、防止声波对耳膜的损伤等。
科技应用中的机械振动与波
科技应用中的振动与波
在科技领域,机械振动和波的应用非 常广泛,如地震勘测、无损检测、医 疗成像等。这些应用都基于对机械振 动和波的深入理解和掌握。
科技应用的发展前景
随着科技的不断发展,机械振动和波 的应用前景将更加广阔。例如,利用 振动和波进行物质分拣、环境监测等 领域的研究正在不断深入。
学习方法与技巧
强化基础知识的学习
注重实验与观察
机械振动与机械波的知识点比较抽象,需 要强化基础知识的学习,如振动与波的基 本概念、周期公式等。
实验是学习物理的重要手段,通过实验观 察机械振动与机械波的现象,有助于加深 对知识点的理解。
多做练习题
形成知识网络
练习是巩固知识的重要途径,通过多做练 习题可以加深对知识点的理解和掌握。
波动方程的建立
波动方程的推导
通过建立微分方程,描述波动过 程中各点的振动状态,从而得出
波动方程。
波动方程的形式
常见的波动方程形式有简谐振动方 程和一维波动方程等。
波动方程的求解
通过求解波动方程,可以得到波的 传播速度、波长等物理量。
振动方程的理解与应用
振动方程的意义
振动方程描述了单个质点在平衡位置附近的振动规律。
高中物理机械振动机械波知 识点总结课件新人教版选修
目录
高中物理机械振动和机械波PPT课件

练习2:
有两个简谐运动:
x1
3a sin(4bt
4
)和x2
9a sin(8bt
)
2
它们的振幅之比是多少?它们的周期各是
多少 ?t =0时它们的相位差是多少?
五、简谐运动的几何描述—参考圆
匀速圆周运动在x轴上的投影为简谐运动。
五、简谐运动的几何描述—参考圆
用旋转矢量图画简谐运动的 x t 图
t 1 t 2 1 2
同相:频率相同、初相相同(即相差为0) 的两个振子振动步调完全相同。
反相:频率相同、相差为π 的两个振子 振动步调完全相反。
练习1:
下图是甲乙两弹簧振子的 x – t 图象,两
振动振幅之比为_2__∶___1,频率之比为_1_∶___1 ,
甲和乙的相差为_____ 。
实验器材
带有铁夹的铁架台、中心有小孔的金属小球,不易伸长的细线(约 1 米)、秒表、毫米刻度尺和游标卡尺.
实验步骤
(1)用细线和金属小一个球制作单摆。 (2)把单摆固定悬挂在铁架台上,让摆球自然下垂,在单摆平衡位 置处作上标记。 (3)用毫米刻度尺量出摆线长度 l′,用游标卡尺测出摆球的直径, 即得出金属小球半径 r,计算出摆长 l=l′+r. (4)把单摆从平衡位置处拉开一个很小的角度(不超过 5°),然后放 开金属小球,让金属小球摆动,待摆动平稳后测出单摆完成 30~ 50 次全振动所用的时间 t,计算出金属小球完成一次全振动所用时 间,这个时间就是单摆的振动周期,即 T=Nt (N 为全振动的次数).
解析 作一条过原点的与 AB 线平行的直线,所作的直线就是准确测
量摆长时所对应的图线.过横轴上某一点作一条平行纵轴的直线,则 和两条图线的交点不同,与准确测量摆长时的图线的交点对应的摆长
高中物理竞赛——振动和波基本知识

中学物理竞赛——振动和波基本学问《振动和波》的竞赛考纲和高考要求有很大的不同,必需做一些相对具体的补充。
一、简谐运动 1、简谐运动定义:∑F= -k x①凡是所受合力和位移满意①式的质点,均可称之为谐振子,如弹簧振子、小角度单摆等。
谐振子的加速度:a= -mk x 2、简谐运动的方程 回避高等数学工具,我们可以将简谐运动看成匀速圆周运动在某一条直线上的投影运动(以下均看在x 方向的投影),圆周运动的半径即为简谐运动的振幅A 。
依据:∑Fx = -m ω2Acos θ= -m ω2x对于一个给定的匀速圆周运动,m 、ω是恒定不变的,可以令:m ω2 = k这样,以上两式就符合了简谐运动的定义式①。
所以,x 方向的位移、速度、加速度就是简谐运动的相关规律。
从图1不难得出——位移方程:x= Acos(ωt + φ) ②速度方程:v= -ωAsin(ωt +φ) ③加速度方程:a= -ω2A cos(ωt +φ) ④ 相关名词:(ωt +φ)称相位,φ称初相。
运动学参量的相互关系:a= -ω2xA = 202)v (x ω+tg φ= -x v ω 3、简谐运动的合成a 、同方向、同频率振动合成。
两个振动x 1 = A 1cos(ωt +φ1)和x 2 = A 2cos(ωt +φ2) 合成,可令合振动x = Acos(ωt +φ) ,由于x = x 1 + x 2 ,解得A = )cos(A A 2A A 12212221φ-φ++ ,φ= arctg22112211cos A cos A sin A sin A φ+φφ+φ明显,当φ2-φ1 = 2k π时(k = 0,±1,±2,…),合振幅A 最大,当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),合振幅最小。
b 、方向垂直、同频率振动合成。
当质点同时参加两个垂直的振动x = A 1cos(ωt + φ1)和y = A 2cos(ωt + φ2)时,这两个振动方程事实上已经构成了质点在二维空间运动的轨迹参数方程,消去参数t 后,得一般形式的轨迹方程为212A x +222A y -221A A xy cos(φ2-φ1) = sin 2(φ2-φ1) 明显,当φ2-φ1 = 2k π时(k = 0,±1,±2,…),有y =12A A x ,轨迹为直线,合运动仍为简谐运动;当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),有212A x +222A y = 1 ,轨迹为椭圆,合运动不再是简谐运动;当φ2-φ1取其它值,轨迹将更为困难,称“李萨如图形”,不是简谐运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理竞赛辅导机械振动和机械波§5.1简谐振动5.1.1、简谐振动的动力学特点假如一个物体受到的回复力回F与它偏离平稳位置的位移x 大小成正比,方向相反。
即满足:K F -=回的关系,那么那个物体的运动就定义为简谐振动依照牛顿第二是律,物体的加速度m K m F a -==回,因此作简谐振动的物体,其加速度也和它偏离平稳位置的位移大小成正比,方何相反。
现有一劲度系数为k 的轻质弹簧,上端固定在P 点,下端固定一个质量为m 的物体,物体平稳时的位置记作O 点。
现把物体拉离O 点后松手,使其上下振动,如图5-1-1所示。
当物体运动到离O 点距离为x 处时,有mg x x k mg F F -+=-=)(0回式中0x 为物体处于平稳位置时,弹簧伸长的长度,且有mg kx =0,因此kx F =回讲明物体所受回复力的大小与离开平稳位置的位移x 成正比。
因回复力指向平稳位置O ,而位移x 总是背离平稳位置,因此回复力的方向与离开平稳位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。
注意:物体离开平稳位置的位移,并不确实是弹簧伸长的长度。
5.1.2、简谐振动的方程由于简谐振动是变加速运动,讨论起来极不方便,为此。
可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平稳位置O 为圆心,以振幅A 为半径作圆,这圆就称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度ω作匀速圆周运动,它在开始时与O 的连线跟x 轴夹角为0ϕ,那么在时刻t ,参考圆上的质点与O 的连线跟x 的夹角就成为0ϕωϕ+=t ,它在x 轴上的投影点的坐标)cos(0ϕω+=t A x 〔2〕这确实是简谐振动方程,式中0ϕ是t=0时的相位,称为初相:0ϕω+t 是t 时刻的相位。
参考圆上的质点的线速度为ωA ,其方向与参考圆相切,那个线速度在x 轴上的投影是0cos(ϕωω+-=t A v 〕 〔3〕 这也确实是简谐振动的速度参考圆上的质点的加速度为2ωA ,其方向指向圆心,它在x 轴上的投影是图5-1-1图5-1-202cos(ϕωω+-=t A a 〕 〔4〕这也确实是简谐振动的加速度 由公式〔2〕、〔4〕可得x a 2ω-=由牛顿第二定律简谐振动的加速度为x m k m F a -==因此有m k=2ω 〔5〕简谐振动的周期T 也确实是参考圆上质点的运动周期,因此k m w T ⋅==ππ225.1.3、简谐振动的判据物体的受力或运动,满足以下三条件之一者,其运动即为简谐运动: ①物体运动中所受回复力应满足 kx F -=;②物体的运动加速度满足 x a 2ω-=;③物体的运动方程能够表示为)cos(0ϕω+=t A x 。
事实上,上述的三条并不是互相独立的。
其中条件①是差不多的,由它能够导出另外两个条件②和③。
§5.2 弹簧振子和单摆简谐振动的教学中经常讨论的是弹簧振子和单摆,下面分不加以讨论。
5.2.1、弹簧振子弹簧在弹性范畴内胡克定律成立,弹簧的弹力为一个线性回复力,因此弹簧振子的运动是简谐振动,振动周期k mT π2=。
〔1〕恒力对弹簧振子的作用比较一个在光滑水平面上振动和另一个竖直悬挂振动的弹簧振子,假如m 和k 都相同〔如图5-2-1〕,那么它们的振动周期T 是相同的,也确实是讲,一个振动方向上的恒力可不能改变振动的周期。
假如在电梯中竖直悬挂一个弹簧振子,弹簧原长0l ,振子的质量为m=1.0kg ,电梯静止时弹簧伸长l ∆=0.10m ,从t=0时,开始电梯以g/2的加速度加速下降s t π=,然后又以g/2加速减速下降直至停止试画出弹簧的伸长l ∆随时刻t 变化的图线。
由于弹簧振子是相对电梯做简谐运动,而电梯是一个有加速度的非惯性系,因此要考虑弹簧振子所受到的惯性力f 。
在匀速运动中,惯性力是一个恒力,可不能改变振子的振动周期,图5-2-1振动周期m k T /2/2πωπ==因为l mg k ∆=/,因此)(2.02s g l T ππ=∆=因此在电梯向下加速或减速运动的过程中,振动的次数都为)(52.0//次===ππT t n当电梯向下加速运动时,振子受到向上的惯性力mg/2,在此力和重力mg 的共同作用下,振子的平稳位置在2//211l k mg l ∆==∆的地点,同样,当电梯向下减速运动时,振子的平稳位置在2/3/232l k mg l ∆==∆的地点。
在电梯向下加速运动期间,振子正好完成5次全振动,因此两个时期内振子的振幅差不多上2/l ∆。
弹簧的伸长随时刻变化的规律如图5-2-2所示,读者能够摸索一下,假如电梯第二时期的匀减速运动不是从5T 时刻而是从4.5T 时刻开始的,那么t l ~∆图线将是如何样的?〔2〕弹簧的组合 设有几个劲度系数分不为1k 、2k ……n k 的轻弹簧串联起来,组成一个新弹簧组,当那个新弹簧组在F 力作用下伸长时,各弹簧的伸长为1x ,那么总伸长∑==ni ix x 1各弹簧受的拉力也是F ,因此有i i k F x /=故∑==ni i k F x 11依照劲度系数的定义,弹簧组的劲度系数x F k /=即得∑==ni i k k 11/1假如上述几个弹簧并联在一起构成一个新的弹簧组,那么各弹簧的伸长是相同的。
要使各弹簧都伸长x ,需要的外力∑∑====ni in i i k x x k F 112图5-2-2图5-2-3依照劲度系数的定义,弹簧组的劲度系数∑===ni ik x Fk 1导出了弹簧串、并联的等效劲度系数后,在解题中要灵活地应用,如图5-2-3所示的一个振动装置,两根弹簧到底是并联依旧串联?那个地点我们必须抓住弹簧串并联的本质特点:串联的本质特点是每根弹簧受力相同;并联的本质特点是每根弹簧形变相同。
由此可见图5-2-3中两根弹簧是串联。
当m 向下偏离平稳位置x ∆时,弹簧组伸长了2 x ∆,增加的弹力为212122k k k k xxk F +∆=∆=m 受到的合外力〔弹簧和动滑轮质量都忽略〕x k k kk k k k k xF ∆+=+∆⨯=∑21212121422因此m 的振动周期21214)(2k k k k m T +=π=2121)(k k k k m +π再看如图5-2-4所示的装置,当弹簧1由平稳状态伸长1l ∆时,弹簧2由平稳位置伸长了2l ∆,那么,由杆的平稳条件一定有〔忽略杆的质量〕b l k a l k 2211∆=∆•1212l b a k k l ∆⋅⋅=∆由于弹簧2的伸长,使弹簧1悬点下降122212l b ak k b a l x ∆⋅⋅=∆='∆因此物体m 总的由平稳位置下降了22221111l b a k k x l x ∆⎪⎪⎭⎫⎝⎛+⋅='∆+∆=∆现在m 所受的合外力1222122111x b k a k b k k l k F ∆+=∆=∑因此系统的振动周期图5-2-42212221)(2b k k b k a k m T +=π〔3〕没有固定悬点的弹簧振子 质量分不为A m 和B m 的两木块A 和B ,用一根劲度系数为k 的轻弹簧联接起来,放在光滑的水平桌面上〔图5-2-5〕。
现在让两木块将弹簧压缩后由静止开释,求系统振动的周期。
想象两端各用一个大小为F 、方向相反的力将弹簧压缩,假设某时刻A 、B 各偏离了原先的平稳位置A x 和B x ,因为系统受的合力始终是零,因此应该有B B A A x m x m = ① A 、B 两物体受的力的大小k x x F F B A B A )(+== ②由①、②两式可解得ABBA A x m m m kF +=BB BA B x m m m k F +=由此可见A 、B 两物体都做简谐运动,周期差不多上)(2B A BA m m k m m T +=π此咨询题也可用另一种观点来讲明:因为两物体质心处的弹簧是不动的,因此能够将弹簧看成两段。
假如弹簧总长为0l ,左边一段原长为0l m m m B A B +,劲度系数为km m m B BA +;右边一段原长为0l m m m B A A +,劲度系数为km m m B BA +,如此处理所得结果与上述结果是相同的,有爱好的同学能够讨论,假如将弹簧压缩之后,不是同时开释两个物体,而是先开释一个,再开释另一个,如此两个物体将做什么运动?系统的质心做什么运动?5.2.2、单摆 一个质量为m 的小球用一轻质细绳悬挂在天花板上的O 点,小球摆动至与竖直方向夹θ角,其受力情形如图5-2-6所示。
其中回复力,即合力的切向分力为θsin ⋅=mg F 回当θ<5º时,△OAB 可视为直角三角形,切向分力指向平稳位置A ,且l x=θsin ,因此图5-2-5图5-2-6x l mgF =回kx F =回〔式中l mg k =〕讲明单摆在摆角小于5º时可近似地看作是一个简谐振动,振动的周期为g lk m T ππ22==在一些异型单摆中,l 和g 的含意以及值会发生变化。
〔1〕等效重力加速度g '单摆的等效重力加速度g '等于摆球相对静止在平稳位置时,指向圆心的弹力与摆球质量的比值。
如在加速上升和加速下降的升降机中有一单摆,当摆球相对静止在平稳位置时,绳子中张力为)(a g m ±,因此该单摆的等效重力加速度为g '=a g ±。
周期为a g lT ±=π2再如图5-2-7所示,在倾角为θ的光滑斜面上有一单摆,当摆球相对静止在平稳位置时,绳中张力为θsin mg ,因此单摆的等效重力加速度为g '=θsin g ,周期为θπsin 2g lT = 又如一节车厢中悬挂一个摆长为l 的单摆,车厢以加速度a在水平地面上运动〔如图5-2-8〕。
由于小球m 相对车厢受到一个惯性力ma f =,因此它能够〝平稳〞在OA 位置,g atga =,此单摆能够在车厢中以OA 为中心做简谐振动。
当小球相对静止在平稳位置A 处时,绳中张力为22g a m +,等效重力加速度22g a g +=',单摆的周期222g a l T +=π〔2〕等效摆长l '单摆的等效摆长并不一定是摆球到悬点的距离,而是指摆球的圆弧轨迹的半径。
如图5-2-9中的双线摆,其等效摆长不是l ,而是θsin l ,周期图5-2-7a 图5-2-8图5-2-10g l T θπsin 2=再如图5-2-10所示,摆球m 固定在边长为L 、质量可忽略的等边三角形支架ABC 的顶角C 上,三角支架可围绕固定的AB 边自由转动,AB 边与竖直方向成a 角。
当m 作小角度摆动时,实际上是围绕AB 的中点D 运动,故等效摆长L L l 2330cos 0=='正因为m 绕D 点摆动,当它静止在平稳位置时,指向D 点的弹力为a mg sin ,等效重力加速度为a g sin ,因此此异型摆的周期a g L g l T sin 2322ππ=''=〔3〕悬点不固定的单摆如图5-2-11,一质量为M 的车厢放在水平光滑地面上,车厢中悬有一个摆长为l ,摆球的质量为m 的单摆。