波纹管膨胀节的设计与应用
金属波纹膨胀节

金属波纹膨胀节引言金属波纹膨胀节是一种用于管道、容器和设备中的一种特殊膨胀节。
它具有良好的耐压和耐温性能,并能够吸收管道在温度变化或压力变化时产生的热膨胀和冷缩。
本文将介绍金属波纹膨胀节的工作原理、结构特点、应用范围以及维护保养等内容。
工作原理金属波纹膨胀节的工作原理基于金属波纹进行变形实现的。
当管道受到热膨胀或冷缩的影响时,金属波纹将发生相应的变形,从而吸收或释放管道的应变。
膨胀节的工作原理可总结为以下几个方面:1.膨胀:当管道受到热膨胀的影响时,膨胀节会延展以吸收应力,并减少管道的受力。
2.收缩:当管道受到冷缩的影响时,膨胀节会收缩以弥补管道的变形,使其保持正常形状。
通过这种方式,金属波纹膨胀节可以有效地防止管道受到应力过大而引发的破裂,同时保证管道系统的正常运行。
结构特点金属波纹膨胀节的结构特点主要包括以下几个方面:1.波纹形状:金属波纹膨胀节的波纹呈现出波纹状,可根据具体需求设计为单波纹、双波纹或多波纹结构。
波纹的形状和数量可以影响膨胀节的柔韧性和承压能力。
2.材料选择:金属波纹膨胀节可以由不同材料制成,如不锈钢、碳钢等。
不同材料具有不同的耐压和耐温性能,从而满足不同的工作条件要求。
3.连接方式:金属波纹膨胀节可以通过法兰连接、卡箍连接、焊接连接等多种方式与管道或设备相连接。
连接方式的选择应根据实际工程情况来确定。
4.防护措施:为了防止膨胀节受到外界环境的侵蚀和损坏,可以在膨胀节表面进行防锈、防腐处理,并采取相应的防护措施。
应用范围金属波纹膨胀节广泛应用于各个领域的管道系统和设备中。
以下是金属波纹膨胀节的主要应用范围:1.石油化工:金属波纹膨胀节在石油化工领域中被广泛应用于管道系统中,用于吸收管道在高温、高压条件下的热膨胀和冷缩。
2.锅炉系统:金属波纹膨胀节在锅炉系统中的应用能够吸收锅炉管道由于温度变化引起的热膨胀和冷缩,从而保证锅炉的安全运行。
3.化工装备:金属波纹膨胀节还广泛应用于化工装备中,如反应釜、蒸馏塔等设备的连接处,用于吸收由于温度和压力变化引起的应力。
金属波纹膨胀节的设计、制造和安装

金属波纹膨胀节的设计、制造和安装M.1对管道设计者的要求M.1.1设计者应提供金属波纹膨胀节的设计工况及对设置膨胀节的管道的设计要求,并结合合金元素的含量、制造方法和最终热处理条件来确定材料产生应力腐蚀裂纹的敏感性。
M.1.2除膨胀节中流动介质的性能外,设计者还应考虑其外部环境和由于波纹管在低温下操作,可能在其外壁产生冷凝或结冰的工况。
M.1.3宜给出波纹管的单层最小厚度。
M.1.4应确认膨胀节检修维护的可达性。
M.1.5需要从膨胀节制造商处获得的数据应至少包括下列内容:1波纹管的有效面积;2横向、轴向和角向刚度;3特定设计条件下的设计疲劳寿命;4安装长度和重量;5在管道上附加支撑或约束的要求;6质量证明文件;7试验压力;8设计计算书;9总装配图。
M.1.6 管道设计提出的膨胀节设计条件应包括以下内容:1膨胀节正常操作状态下的压力、温度以及可能出现的压力、温度的波动上、下限。
若给出的膨胀节组件设计温度(不是介质温度),则该温度应通过适当的换热计算方法或试验方法来核实,或通过对在同样条件下服役的相同设备的测量来获得。
2操作期内同时作用的压力、温度、所施加的端点位移、膨胀节本身的热膨胀所对应的循环数。
由短时工况引起的循环数(如开车、停车和非正常操作)应单独说明,并应叠加累积疲劳效应。
3可能承受的动力荷载(如风荷载、地震荷载、热冲击、振动等)和重力荷载(如绝热材料、雪、冰等产生的重力荷载)。
4同设计要求相关的流体介质特性,如业主指定的介质类型、流体速率和方向、内部衬里等。
5影响膨胀节设计的其它条件,如保护罩的使用、内、外隔热层、限位装置、其它约束、膨胀节上的外加接管(如排气和排液管)等。
M.1.7 管道设计应符合下列规定:1在进行管道布置、固定点位置和管架设计时,应避免膨胀节承受过量或非预期的变形和作用力。
2膨胀节不宜承受扭转荷载,当扭转不可避免时,应给出具体的扭矩值,以便膨胀节设计时对受力结构件进行加强。
波纹管膨胀节在工程现场的使用

01
02
03
04
安装前检查
确保波纹管膨胀节在安装前没 有损坏,所有附件齐全且完好
。
安装位置
选择合适的安装位置,确保膨 胀节能够自由伸缩,不受其他
结构或设备的阻碍。
安装方向
按照设计要求正确安装膨胀节 ,确保其在使用过程中能够正
常工作。
维护与保养
定期对波纹管膨胀节进行检查 和维护,及时处理异常情况,
确保其长期稳定运行。
电力行业
电力行业是另一个广泛应用波纹管膨胀节的领域,主要用于 高温、高压蒸汽和热水的管道系统,以补偿和吸收管道的热 膨胀和机械振动。
在电力行业中,由于管道系统中的介质多为高温、高压的蒸 汽和热水,因此需要采用耐高温、耐高压、耐腐蚀的波纹管 膨胀节,以确保管道系统的正常运行和安全生产。
建筑行业
建筑行业中,波纹管膨胀节主要用于给排水、供暖、空调 等管道系统中,以补偿和吸收管道的热膨胀和机械振动, 提高管道系统的稳定性和使用寿命。
在建筑行业中,波纹管膨胀节需要具备较高的耐压能力和 耐腐蚀性能,以确保长期稳定的使用效果。
其他行业
01
除了石油化工、电力和建筑行业 外,波纹管膨胀节还广泛应用于 船舶、航天、冶金、制药等其他 行业中。
02
在这些行业中,波纹管膨胀节需 要根据具体的应用场景和需求进 行定制化设计和制造,以满足各 种复杂工况下的使用要求。
特性
具有结构紧凑、补偿量大、流动阻力 小、耐腐蚀、抗疲劳等优点,广泛应 用于石油、化工、航空航天、核工业 等领域的管道系统中。
工作原理
工作原理
波纹管膨胀节通过波纹管的伸缩 变形来吸收管道的位移量,从而 实现管道系统的柔性连接。
作用力
在波纹管膨胀节受到外力作用时 ,波纹管内部的压力和位移会产 生相互作用力,使波纹管发生形 变,吸收管道的位移量。
波纹管膨胀节的设计与应用

波纹管膨胀节的设计与应用膨胀节也称补偿器,是一种弹性补偿装置,主要用来补偿管道或设备因温度影响而引起的热胀冷缩位移(有时也称热位移)。
膨胀节的补偿元件是波纹管。
在操作过程中,波纹管除产生位移(变形)外,往往还要承受一定的工作压力,因此,膨胀节也是一种承压的弹性补偿装置,所以,保证其安全可靠地工作是十分重要的。
膨胀节除作为热位移补偿装置使用外,也常被用于隔振和降噪。
膨胀节波纹管的波形较多,常用的有U形、Ω形、S形等,在这里,主要介绍U形波纹管膨胀节的设计与应用中的有关问题。
1、膨胀节结构类型及其应用1.l U形波纹管膨胀节的结构类型U形波纹管膨胀节的结构类型较多,不同类型的膨胀节,适用的场合也各不相同。
主要的类型有单式轴向型、单式和复式铰链型、复式自由型、复式拉杆型、直管和弯管压力平衡型等。
各种类型的结构示意图见图l~图10。
为提高膨胀节的承载能力,可设计带加强环或稳定环的膨胀节,其纳构示意如图11所示。
(1) 单式轴向型膨胀节由一个波纹管及结构件组成、主要用于吸收轴向位移而不能承受波纹管压力推力的膨胀节(见图1)。
(2) 单式铰链型膨胀节由一个波纹管及销轴、铰链板和立板等结构件组成、受波纹管压力推力的膨胀节(见图2)。
(3) 单式万向铰链型膨胀节由一个波纹管及销轴、铰链板、万向环和立板等结构组成、能在任一平而内角位移并能承受波纹管压力推力的膨胀节(见图3)。
(4) 复式自由型膨胀节由中间管所连接的两个波纹管(及控制杆或四连杆)等结构件组成、主要用于吸收轴向与横向组合位移而不能承受波纹管压力推力的膨胀节(见图4)。
(5) 复式技杆型膨胀节由中间管所连接的两个波纹管及拉杆和端板等结构件组成、能吸收任一方向横向位移并能承受波纹管压力推力的膨胀节,(见图5)。
(6) 复式铰链型膨胀节由中间管所连接的两个波纹管及销轴、铰链板和立板等结构件组成、只能吸收单方向横向位移并能承受波纹管压力推力的膨胀节(见图6)。
波纹管膨胀节

波纹管膨胀节波纹管膨胀节是一种用于管道系统的重要设备,用于吸收由于温度变化引起的管道伸缩。
它具有很大的应用价值,并在各个领域得到广泛应用。
本文将详细介绍波纹管膨胀节的原理、结构、分类、工作原理以及使用注意事项。
波纹管膨胀节是一种用于管道系统的柔性连接器,其主要作用是吸收温度变化引起的管道伸缩。
由于金属材料的特性,当管道受热膨胀或受冷缩小时会产生应力。
而波纹管膨胀节通过其特殊的波纹结构,可以有效地吸收这些应力,保护管道系统的完整性。
波纹管膨胀节的结构相对简单,通常由两个法兰连接的金属波纹管组成。
金属波纹管的波纹结构能使其具有较大的伸缩量,同时保证了管道系统的密封性。
波纹管膨胀节的内部压力一般较低,但能够承受一定的外部压力,以保证管道系统的正常运行。
根据波纹管膨胀节的结构和材料的不同,可以将其分为多种类型。
常见的类型包括金属波纹管膨胀节、橡胶波纹管膨胀节等。
金属波纹管膨胀节具有耐高温、耐压力的特点,适用于一些高温、高压的管道系统;而橡胶波纹管膨胀节由橡胶和加固层构成,具有较好的柔性和密封性能。
波纹管膨胀节的工作原理是通过其波纹结构来吸收管道伸缩产生的应力。
当管道受热膨胀或受冷缩小时,波纹管膨胀节会自动伸缩,从而避免管道系统的破裂或漏水。
而当管道系统的温度恢复正常时,波纹管膨胀节也可以自动回到原始的状态,保持管道的紧密连接。
在使用波纹管膨胀节时,需要注意以下几点。
首先,选择合适的波纹管膨胀节型号和材料,以适应管道系统的工作环境和工作条件。
其次,安装时应注意波纹管膨胀节的方向和位置,以保证其正常工作。
最后,在使用过程中要定期检查波纹管膨胀节的密封性和波纹的状况,及时更换损坏的部件。
总的来说,波纹管膨胀节作为管道系统中的重要设备,具有重要的作用。
它能够有效地吸收由温度变化引起的管道伸缩,保护管道系统的完整性。
在选择和使用波纹管膨胀节时,我们需要根据实际需求作出合适的选择,并注意其安装和维护。
通过正确使用波纹管膨胀节,我们将能够确保管道系统的正常运行,达到预期的效果。
波纹管膨胀节在工程现场的使用(最新版)

常用膨胀节类型
1. 按是否能吸收管道内介质压力所产生 的压力推力(盲板力),可分为无约束 型波纹管膨胀节和有约束型膨胀节。
常用膨胀节类型
2. 按波纹管的波形结构参数,可分为U形、 Ω形、S形、V形;目前多数采用U形波纹。
常用膨胀节类型
3. 按波纹管的位移型式,可分为轴向型、横 向型、角向型及压力平衡型波纹管膨胀节。 这是目前通用分类,惯例是综合它的特 性分类的,没有严格的标准。“盲板力” Nhomakorabea念的理解
密闭管道内压力介质对管道的作用力:
如果在管段中加入柔性 连接件(波纹管膨胀节) ,这个力就会将连接件拉 伸
“盲板力”概念的理解
盲板力:
在管道系统中,压力介质对管道的作 用力在轴向的体现。
盲板力的粗略估算:
F=P × S
F:盲板力 Kgf P:压强 Kgf /cm2 S:管道截面积cm2
2、分析计算线性膨胀量; 3、对角依次紧固约束螺栓,使达到预补
偿量; 3、拉杆螺栓加背帽(很重要)。
波纹管膨胀节的作用机理
更严谨的膨胀节安装方法 : 在膨胀节被安装到管道上之前,对
其反向补偿;管道安装完成后,对其预 补偿调整;管道温变后膨胀节将接近自 由状态。
例如:工作状态受热的管道上先将膨胀节拉伸,管道安 装完成后,对其压缩调整。受热后管道伸长,膨胀 节将达到接近自由状态的形状。
低温系统中,预补偿方向相反,即约 束波纹管时,预拉长(预留管道收缩量)。
波纹管膨胀节的作用机理
膨胀节的“预补偿” 管道的膨胀量公式: △L=α×L×△T
L:管道长度m α:为线膨胀系数,碳钢取0.012mm/m △T:管道温差
预补偿的量,可参考理论膨胀量,根据实 际情况决定。
波纹管膨胀节端板设计方法探讨

波纹管膨胀节端板设计方法探讨引言:波纹管膨胀节是一种用于管道系统中的重要设备,其主要作用是在管道系统中吸收热胀冷缩引起的变形,保证管道系统的安全运行。
而波纹管膨胀节的端板设计是其结构中关键的一环,直接影响到整个设备的性能和使用寿命。
本文将探讨波纹管膨胀节端板的设计方法。
一、设计原则在波纹管膨胀节端板的设计过程中,需要遵循以下原则:1. 端板应能够承受管道系统内介质的压力和温度,保证设备的完整性和密封性。
2. 端板应具有足够的刚度和强度,以承受波纹管膨胀节在工作状态下的力学负荷。
3. 端板的设计应考虑到波纹管膨胀节的可维修性和可更换性,方便设备的维护和保养。
二、端板结构设计1. 端板的材料选择应考虑到介质的性质和工作条件。
常见的材料有碳钢、不锈钢等,根据介质的腐蚀性和温度要求选择合适的材料。
2. 端板的形状通常为圆形或矩形,根据具体的工程需求进行选择。
圆形端板适用于弯曲波纹管膨胀节,矩形端板适用于直线波纹管膨胀节。
3. 端板的厚度应根据波纹管膨胀节的工作压力和温度确定,以满足设备的强度和刚度要求。
三、端板密封设计1. 端板与波纹管的连接处应采用密封结构,以确保介质不泄漏。
常见的密封方式有法兰连接、螺栓连接等,选择合适的连接方式需要考虑到介质的性质和工作条件。
2. 端板的密封面设计应考虑到介质的压力和温度变化所引起的端板变形,确保端板在工作状态下能够保持良好的密封性能。
四、端板的加工和安装1. 端板的加工应保证其尺寸和形状的精度,以确保与波纹管的连接质量。
常见的加工方法有切割、冲压、焊接等。
2. 端板与波纹管的连接通常采用焊接方式,焊缝应满足相关标准的要求,以确保连接的牢固性和密封性。
3. 端板的安装应按照相关标准和要求进行,确保设备的安全可靠。
结论:波纹管膨胀节端板的设计是保证设备性能和使用寿命的关键。
在设计过程中,需要考虑到端板的材料选择、结构设计、密封设计以及加工和安装等方面的要求。
合理的端板设计能够提高设备的可靠性和使用寿命,确保管道系统的安全运行。
波纹管膨胀节的选型设计与应用

波纹管膨胀节的选型设计与应用波纹管膨胀节是一种常用于管道系统中的补偿器件。
它能够承受由于温度变化、压力变化等因素引起的管道系统的热膨胀和冷缩,从而保护管道系统的安全运行。
波纹管膨胀节的选型设计与应用是非常重要的。
本文将从以下几个方面对其进行详细介绍。
选型设计:1.需要考虑的因素:选型设计时需要考虑的因素有很多,包括工作条件、介质性质、管道连接方式、尺寸等。
其中最重要的因素是波纹管膨胀节的工作条件,包括工作温度、工作压力以及膨胀补偿量等。
这些因素将直接影响到波纹管膨胀节的选型和设计。
2.选用合适的波纹管膨胀节:根据工程实际需要,可以选用不同形式和材质的波纹管膨胀节。
常见的波纹管膨胀节有不锈钢波纹管膨胀节、橡胶波纹管膨胀节、金属波纹管膨胀节等。
根据工程的实际要求选择合适的波纹管膨胀节。
3.确定波纹管膨胀节的尺寸:应用:1.波纹管膨胀节在化工行业中的应用:在化工行业中,常常需要输送各种介质,这些介质的温度、压力等参数都是不稳定的。
因此,在化工行业中,波纹管膨胀节是必不可少的组件。
它能够对管道系统的热膨胀和冷缩进行补偿,确保管道的正常运行。
2.波纹管膨胀节在锅炉行业中的应用:在锅炉行业中,波纹管膨胀节主要用于锅炉管道系统中。
由于锅炉在工作过程中,温度变化较大,而波纹管膨胀节能够有效地对锅炉管道系统的热膨胀和冷缩进行补偿,保证锅炉的正常运行。
3.波纹管膨胀节在暖通空调行业中的应用:在暖通空调行业中,波纹管膨胀节主要用于冷水管道系统中。
冷水管道系统在工作过程中会由于温度变化而发生热膨胀和冷缩,而波纹管膨胀节能够对其进行补偿,防止管道系统的破裂和泄漏。
4.波纹管膨胀节在工业管道中的应用:在工业管道中,由于管道系统可能存在的温度变化、压力变化等因素,波纹管膨胀节被广泛应用。
它能够对工业管道系统的热膨胀和冷缩进行补偿,保证管道系统的安全运行。
综上所述,波纹管膨胀节的选型设计与应用是非常重要的。
选型设计时需要考虑多方面的因素,以确保选择合适的波纹管膨胀节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波纹管膨胀节的设计与应用膨胀节也称补偿器,是一种弹性补偿装置,主要用来补偿管道或设备因温度影响而引起的热胀冷缩位移(有时也称热位移)。
膨胀节的补偿元件是波纹管。
在操作过程中,波纹管除产生位移(变形)外,往往还要承受一定的工作压力,因此,膨胀节也是一种承压的弹性补偿装置,所以,保证其安全可靠地工作是十分重要的。
膨胀节除作为热位移补偿装置使用外,也常被用于隔振和降噪。
膨胀节波纹管的波形较多,常用的有U形、◎形、S形等,在这里,主要介绍U形波纹管膨胀节的设计与应用中的有关问题。
1、膨胀节结构类型及其应用1.l U形波纹管膨胀节的结构类型U形波纹管膨胀节的结构类型较多,不同类型的膨胀节,适用的场合也各不相同。
主要的类型有单式轴向型、单式和复式铰链型、复式自由型、复式拉杆型、直管和弯管压力平衡型等。
各种类型的结构示意图见图I〜图10。
为提高膨胀节的承载能力,可设计带加强环或稳定环的膨胀节,其纳构示意如图11所示。
(1)单式轴向型膨胀节由一个波纹管及结构件组成、主要用于吸收轴向位移而不能承受波纹管压力推力的膨胀节(见图1)。
1—端管2—波纹管图1 单式轴向型膨月长宙(2)单式铰链型膨胀节由一个波纹管及销轴、铰链板和立板等结构件组成、受波纹管压力推力的膨胀节(见图2)。
2—朋枚琏板4-波纹管5—主牧旌¥1囲2单式敦试躺膨胀节(3)单式万向铰链型膨胀节由一个波纹管及销轴、铰链板、万向环和立板等结构组成、能在任一平而内角位移并能承受波纹管压力推力的膨胀节(见图3)。
F—滞管2—立板 3 钱慨板4-悄轴5—万向环6—浹纹签图3 甲式万向较琏型彫张节(4)复式自由型膨胀节由中间管所连接的两个波纹管(及控制杆或四连杆)等结构件组成、主要用于吸收轴向与横向组合位移而不能承受波纹管压力推力的膨胀节(见图4)。
1——波纹借2——中冋詹3—端餘医1 4 复式归由犁妙月长节(5)复式技杆型膨胀节由中间管所连接的两个波纹管及拉杆和端板等结构件组成、能吸收任一方向横向位移并能承受波纹管压力推力的膨胀节,(见图5)。
t—疑极2—A-中间扳4—中闻密刍一波纹管6—揺悸图5塩式悴杆型膨胀曲(6) 复式铰链型膨胀节由中间管所连接的两个波纹管及销轴、铰链板和立板等结构件组成、只能吸收单方向横向位移并能承受波纹管压力推力的膨胀节(见图6)。
2--WW 3 ■ aat? 4—中间管阳6夏戎怏链型魔胀节(7) 复式万向铰链型膨胀节由中间管所连接的两个波纹管及十字销轴、一方向横向位移并能承受波纹管压力推力的膨胀节铰链板和立板等结构件组成、能吸收(见图7)。
1一端曾2波纹管3中何管4-W板5—十宇销轴6-立板复式万向枚楂型膨胀"(8) 弯管压力平衡型膨胀节由一个或中间管所连接的两个工作波纹管和一个平衡波纹管及弯头或三通、封头、拉杆和端板等结构件组成、主要用于吸收轴向与横向组合位移并能承受波纹管压力推力的膨胀节(见图8)。
I 一端管2—端板3—中间管斗一工作波纹管5—三通6—平衡波纹簣7—拉杆8—封头图8 弯管压力平衡型膨胀节(9)直管压力平衡型膨胀节由位于两端的两个工作波纹管和位于中间的一个平衡波纹管及拉杆和端板等结构件组成、主要用于吸收轴向位移并能承受波纹管压力推力的膨胀节(见图9)。
5—端板图乡貢管压力平衡型膨胀节(10)外压单式轴向型膨胀节由承受外压的波纹管及外管和端环等结构件组成、只用于吸收位移而不能承受波纹管压力推力的膨胀节(见图10)。
1一・进【」端管2—进口端环3—限位环4一外管5 —波纹管6—出口端环7—fiJ 口端管图10 外压单式轴向型膨胀节图丨1 加强U形波纹管1.2膨胀节的应用示例不同型式的膨胀节有不同位移补偿功能,在管路设计中,可以根据管路的结构及压力与通径等参数综合考虑给予选型。
1.2.1轴向位移的补偿图12图12是采用单式膨胀节吸收管线轴向膨胀的一个良好的典型实例图13是采用复式膨胀节吸收管线轴向膨胀的一个良好的典型实例图16表示一个包含"z"形管段的管线上使用膨胀节的方法。
图14图15是采用膨胀节吸收具有异径管的管线的轴向膨胀的一个良好的典型实例。
图17是采用弯管压力平衡式膨胀节吸收管线轴向膨胀的一个良好的典型实例。
图18表示如何采用直管压力平衡式膨胀节吸收长的直管段上的轴向位移图19是采用弯管压力平衡式膨胀节吸收汽轮机、泵、压缩机等设备的热膨胀的一个良好的典型实例。
膨胀节的主要作用是减小作用到设备壳体上的载荷。
122对横向位移、角位移及其组合位移的补偿在具有横向位移、角位移及其组合位移的场合,正确选择和使用膨胀节需要考虑到管道的构形、运行条件、预期的循环寿命、管道和设备的承载能力、可用于支承的结构物等多种因素。
在某些情况下,可能有几种膨胀节都适合同一项应用,这时可以单纯根据经济性来考虑选择哪一种。
然而,更为常见的是在各种可行的设计之中,应考虑到这一种或那一种具有独到之处,特别适合在某些特定的场合下使用。
(1)单式膨胀节>i;9v !MA凶曲生二二寻愉 A Gl 6Z S 0 «:图20 Array图20、图21是采用单式膨胀节吸收轴向与横向组合位移的典型实例一応态位置挣赛仮图22拎态中心域[冷劉再杰中心线6PG自中心坡图23图22,图23将图21中膨胀节两端的主固定支架改换为连杆。
(2)万能式膨胀节万能式膨胀节特别适合吸收横向位移。
此外,这种设计形式也可用于吸收轴向位移、角位移以及任意由这三种形式合成的位移。
万能式膨胀节一般用法是将这种带连杆的膨胀节设置在呈90°的"z"型管道的中间管臂内,图24和图25是两个应用实例。
图26是在存在轴向与横向组合位移的场合使用弯管压力平衡式膨胀节的典型实例。
图27表示在管道转角不等丁90 °时也可以使用弯管压力平衡式膨胀节。
SI28 图28给出一种常见的非常适于使用弯管压力平衡式膨胀节的场合。
图29刀能压力平衡式膨胀节图29给出了在横向位移较大的场合使用万能压力平衡式膨胀节的实例。
(3)铰链式膨胀节铰链式膨胀节一般以两、三个作为一组使用,用于吸收单平面管系中一个或多个方向的横向位移。
在这种系统中每一个膨胀节被它的铰链所制约,产生纯角位移;然而,被管段分开的每对铰链式膨胀节互相配合,能够吸收横向位移。
给定单个膨胀节的角位移。
每对铰链式膨胀节所能吸收的横向位移与其铰链销轴之间的距离成正比,因此为了使膨胀节充分发挥效用,应尽量加大这一距离。
膨胀节的铰链通常用于承受作用于膨胀节上的全部压力推力;另外,也可以用于承受管道和设备的重量、风载或类似的外力。
图30说明如何用双铰链系统吸收单平面"z"形弯管的主要热膨胀。
........ 0S31如果单平面管系的柔性不足以吸收双铰系统的弯曲挠度,或者由弯曲而产生的载荷超过了连接设备的许用极限,则可采用具有三个铰链式膨胀节的系统。
图31即表示在单平面"Z"形弯管中的三铰系统。
竖直管段的热膨胀将由B和C两个膨胀节的动作来吸收。
于是,很明显,膨胀节B必须能吸收由A和C两个膨胀节一起形成的转动。
图33说明连接设备亦产生平面位移时应用铰链式膨胀节的实例。
图32图32说明在弯管角度不等于 90°时,使用铰链式膨胀节的工作原理。
在这里只 需要使用中间固定支架平面导向支架。
图33图34给出了设备与管道连接系统中应用较链膨胀节的实例。
(4)万向较链式膨胀节图35正如铰链式膨胀节在平面管系中具有很大的优越性一样,万向铰链式膨胀节在空间管系中具有类似的优越性。
万向铰链式膨胀节具有吸收任意平面内的角位移的能力,常常利用这一点将它们组成一对,用来吸收横向位移。
图35给出了一个应用实例。
如果不可能或不打算利用管道的弯曲来吸收竖直管臂的伸长,则可采用如图36所示由两个万向铰链式膨胀节和一个铰链式膨胀节组成的系统。
2、U形波纹管膨胀节刚度和应力计算符号说明:Fex----作用在以Dm为直径的圆周上的轴向力,N;e x----单波轨向变形量,mm; h----波纹管的波高,mm;Dm----波纹管的平均直径,mm; q----波纹管的波距,mm;Dm=D b+h r----波纹管波纹的曲率半径,mm;D b----波纹管直边段内径,mm; a----波纹管波纹的直线段长度,mm;4--波纹管的名义厚度,mm; Sm----波纹管成形后的壁厚,mm;E----波纹管材料的弹性模量,Mpa; m----波纹管厚度为3的层数;Cm----材料强度系数,热处理态波纹管取Cm=l.5 ;成形态波纹管取Cm=3.0;Cwb----波纹管纵向焊缝;Cf、Cp、Cd----形状尺寸系数,由图38、41、42求取。
f i----波纹管单波轴向刚度,N/mm;Kx----膨胀节整体轴向刚度,N/mm;Ky----膨胀节整钵横向(侧向)刚度,N/mm;K —-膨胀节整体弯曲(角向)刚度,K • m/°0;Ku----计算系数Ku=(3L u2-3L b L u)/(3L u2-6L b L u+4L b2)L b----波纹管的波纹段长度,mm;L b=NqN---- 一个波纹管的波数;L u----复式膨胀节中,两波纹管最外端间的距离,mm;2.1刚度计算2.1.1波纹管单波轴向刚度计算波纹管的波高与直径之比较小,如将其展开,可简化为如图37(b)所示的两端受轴向线载荷的曲杆。
轴向的总力为Fex。
在弹性范围内,利用变形能法可以推导出轴向力与轴向变形之间的近似关系式(1)。
Fex=[( n m E S3)/24C]-e x N (1)式中C=0.046r3-0.142hr2+0.285h2+0.083h3mm3(2)Cb) U)IS37 受力闇则波纹管刚度f i为f i' =Fex/x e (3)考虑到力学模型的近似性以及波纹管制成后壁厚减薄等因素,对公式( 1)进行修正并代入(3)式则得:f i' =(1.7DE S m3)/(h3C f) N/mm (4) 式中:3m= SVl b/D m (5) 对于多层结构的波纹管,其刚度按(6)式计算:图38系数C f2.1.2膨胀节整体弹性刚度计算(1) 轴向刚度(a) 单式膨胀节整体刚度K x =f i /N (7) (b) 复式膨胀节整体刚度K x =f i /2N(8)(2) 侧向刚度(a) 单式膨胀节整体刚度K y =(1.5D m 2f i )/[L b N(L b ±<)2](9) (b) 复式膨胀节整体刚度K y =(K u D m 2f i )/[4NL u (L u -L b ±</2)](10)侧向刚度计算中,轴向位移 X 拉伸时取“ +;压缩时取-”(3) 整体弯曲刚度K F ( nD m 2f i ) / (1.44 X 06N )(11)2.2未加强U 形波纹管的应力计算f i =(1.7D m E $m 3m)/(h 3C f )N/mm(1)内压引起的周向薄膜应力C2由图39可知,当受内压P作用时,在一个U形波的纵截面上的内力与作用在半个环壳上的外力平衡。