九年级数学《一元二次方程》单元复习题
人教版九年级数学上册 第21章 《一元二次方程》 单元复习题

《一元二次方程》单元复习题一.选择题1.一元二次方程x2﹣3x﹣4=0的一次项系数是()A.1 B.﹣3 C.3 D.﹣42.关于x的一元二次方程x2+(k+1)x+k﹣2=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断3.关于一元二次方程x2﹣2x+1﹣a=0无实根,则a的取值范围是()A.a<0 B.a>0 C.a<D.a>4.某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,设平均每次增长的百分数为x,那么x应满足的方程是()A.x=B.100(1+40%)(1+10%)=(1+x)2C.(1+40%)(1+10%)=(1+x)2D.(100+40%)(100+10%)=100(1+x)25.菱形ABCD的一条对角线长为6cm,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD 的周长等于()A.10cm B.12 cm C.16cm D.12cm或16cm 6.若关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,则k的取值范围是()A.k<且k≠﹣2 B.k C.k≤且k≠﹣2 D.k7.用配方法解方程x2﹣4x=0,下列配方正确的是()A.(x+2)2=0 B.(x﹣2)2=0 C.(x+2)2=4 D.(x﹣2)2=48.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6 B.8 C.14 D.169.现代互联网技术的广泛应用,促进快递行业高速发展,据调查,某家快递公司,今年5月份与7月份完成投递的快递总件数分别为8.5万件和10万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.8.5(1+2x)=10B.8.5(1+x)=10C.8.5(1+x)2=10D.8.5+8.5(1+x)+8.5(1+x)2=1010.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.32x+2×20x﹣2x2=570B.32x+2×20x=32×20﹣570C.(32﹣2x)(20﹣x)=32×20﹣570D.(32﹣2x)(20﹣x)=570二.填空题11.关于x的一元二次方程x2﹣4x+m2=0有两个相等的实数根,则m=.12.关于x的一元二次方程x2+(2k+1)x+k2=0有两个不相等的实数根.设方程的两个实数根分别为x1,x2,且(1+x1)(1+x2)=3,则k的值是.13.设m、n是方程x2+x﹣2020=0的两个实数根,则m2+2m+n的值为.14.已知关于x的一元二次方程kx2﹣(k﹣1)x+k=0有两个不相等的实数根,求k的取值范围.15.如图,有一块矩形铁皮,长为100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的无盖方盒的底面积为1400cm2,那么铁皮各角切去的正方形的边长为cm.三.解答题16.(1)解方程:x(x﹣3)=x﹣3;(2)用配方法解方程:x2﹣10x+6=017.某中学课外兴趣活动小组准备围建一个矩形苗圃,其中边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃垂直于墙的一边长为x米.(1)若苗圃的面积为72平方米,求x的值;(2)这个苗圃的面积能否是120平方米?请说明理由.18.已知关于x的方程(x﹣m)2+2(x﹣m)=0.(1)求证:无论m为何值,该方程都有两个不相等的实数根;(2)若该方程的一个根为﹣1,则另一个根为.19.某服装店出售某品牌的棉衣,进价为100元/件,当售价为150元/件时,平均每天可卖30件;为了增加利润和减少库存,商店决定降价销售.经调査,每件每降价1元,则每天可多卖2件.(1)若每件降价20元,则平均每天可卖件.(2)现要想平均每天获利2000元,且让顾客得到实惠,求每件棉衣应降价多少元?20.关于x的一元二次方程x2+2mx+m2+m=0有两个不相等的实数根.(1)求m的取值范围.(2)设出x1、x2是方程的两根,且x12+x22=12,求m的值.21.因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2019至2021年春节长假期间接待游客人次的平均增长率.(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯,2021年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?参考答案一.选择题1.解:一次项是:未知数次数是1的项,故一次项是﹣3x,系数是:﹣3,故选:B.2.解:∵△=(k+1)2﹣4(k﹣2)=(k﹣1)2+8>0,∴关于x的一元二次方程x2+(k+1)x+k﹣2=0一定有两个不相等的实数根.故选:A.3.解:∵一元二次方程x2﹣2x+1﹣a=0无实根,∴△=(﹣2)2﹣4×1×(1﹣a)<0,解得,a<0,故选:A.4.解:设平均每次增长的百分数为x,∵某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,∴商品现在的价格为:100(1+40%)(1+10%),∵某商品原价为100元,经过两次涨价,平均每次增长的百分数为x,∴商品现在的价格为:100(1+x)2,∴100(1+40%)(1+10%)=100(1+x)2,整理得:(1+40%)(1+10%)=(1+x)2,故选:C.5.解:解方程x2﹣7x+12=0得:x=3或4,即AB=3或4,∵四边形ABCD是菱形,∴AB=AD=DC=BC,当AD =DC =3cm ,AC =6cm 时,3+3=6,不符合三角形三边关系定理,此时不行; 当AD =DC =4cm ,AC =6cm 时,符合三角形三边关系定理,即此时菱形ABCD 的周长是4×4=16,故选:C .6.解:∵关于x 的一元二次方程(k +2)x 2﹣3x +1=0有实数根,∴k +2≠0且△=(﹣3)2﹣4(k +2)•1≥0,解得:k且k ≠﹣2, 故选:C .7.解:x 2﹣4x +4=4,(x ﹣2)2=4.故选:D .8.解:∵x 1,x 2是一元二次方程x 2﹣2x ﹣5=0的两根,∴x 1+x 2=2,x 1x 2=﹣5∴原式=(x 1+x 2)2﹣2x 1x 2=4+10=14故选:C .9.解:设该快递公司这两个月投递总件数的月平均增长率为x ,根据题意,得8.5(1+x )2=10,故选:C .10.解:设道路的宽为xm ,则草坪的长为(32﹣2x )m ,宽为(20﹣x )m ,根据题意得:(32﹣2x )(20﹣x )=570.故选:D .二.填空题(共5小题)11.解:∵关于x 的一元二次方程x 2﹣4x +m 2=0有两个相等的实数根,∴△=(﹣4)2﹣4×1×m 2=0,解得:m =±2.故答案为:±2.12.解:由题意知x 1+x 2=﹣(2k +1),x 1x 2=k 2,∵(1+x1)(1+x2)=3,∴1+x1+x2+x1x2=3,即1﹣(2k+1)+k2=3,解得k=﹣1或k=3,∵方程x2+(2k+1)x+k2=0有两个不相等的实数根,∴△=(2k+1)2﹣4k2>0,解得:k>﹣,∴k=3,故答案为:3.13.解:∵m、n是方程x2+x﹣20200的两个实数根,∴m+n=﹣1,并且m2+m﹣2020=0,∴m2+m=2020,∴m2+2m+n=m2+m+m+n=2020﹣1=2019.故答案为:201914.解:根据题意知[﹣(k﹣1)]2﹣4k×k>0且k≠0,解得:k<且k≠0.故答案为:k<且k≠0.15.解:设切去的正方形的边长为xcm,则盒底的长为(100﹣2x)cm,宽为(50﹣2x)cm,根据题意得:(100﹣2x)(50﹣2x)=1400,展开得:x2﹣75x+900=0,解得:x1=15,x2=60(不合题意,舍去),则铁皮各角应切去边长为15cm的正方形.故答案是:15.三.解答题(共6小题)16.解:(1)∵x(x﹣3)=x﹣3,∴x(x﹣3)﹣(x﹣3)=0,则(x﹣3)(x﹣1)=0,∴x ﹣3=0或x ﹣1=0,解得x =3或x =1;(2)∵x 2﹣10x +6=0,∴x 2﹣10x =﹣6,则x 2﹣10x +25=﹣6+25,即(x ﹣5)2=19,∴x ﹣5=±, 则x =5.17.解:(1)根据题意得x (30﹣2x )=72,化简得x 2﹣15x +36=0,即(x ﹣12)(x ﹣3)=0∴x ﹣12=0或x ﹣3=0∴x 1=12,x 2=3当x =12时,平行于墙的一边为30﹣2x =6<18,符合题意;当x =3时,平行于墙的一边为30﹣2x =24>18,不符合题意,舍去.故x 的值为12;(2)根据题意得x (30﹣2x )=120,化简得x 2﹣15x +60=0∵△=(﹣15)2﹣4×1×60=﹣15<0,∴方程无实数根故这个苗圃的面积不能是120平方米.18.(1)证明:原方程可化为(x ﹣m )(x ﹣m +2)=0,x ﹣m =0或x ﹣m +2=0.解得x 1=m ,x 2=m ﹣2,∵m >m ﹣2,∴无论m 为何值,该方程都有两个不相等的实数根;(2)当m =﹣1时,另一个根为m ﹣2=﹣1﹣2=﹣3;当m ﹣2=﹣1时,解得m =1,另一个根为m =1,即方程的另一个根为1或﹣3.19.解:(1)30+20×2=70件,故答案为:70;(2)设每件棉衣降价x 元,则日销售量是(30+2x )件依题意可得:(150﹣100﹣x )(30+2x )=2000解得x 1=10,x 2=25为了使顾客得到实惠,舍去x 1=10答:每件棉衣降价25元.20.解:(1)根据题意得:△=(2m )2﹣4(m 2+m )>0,解得:m <0.∴m 的取值范围是m <0.(2)根据题意得:x 1+x 2=﹣2m ,x 1x 2=m 2+m ,∵x 12+x 22=12,∴﹣2x 1x 2=12,∴(﹣2m )2﹣2(m 2+m )=12,∴解得:m 1=﹣2,m 2=3(不合题意,舍去),∴m 的值是﹣2.21.解:(1)设年平均增长率为x ,由题意得:20(1+x )2=28.8,解得:x 1=20%,x 2=﹣2.2(舍去).答:东部华侨城景区2019至2021年春节长假期间接待游客人次的平均增长率为20%.(2)设每杯售价定为a 元,由题意得:(a ﹣6)[300+30(25﹣a )]=6300,解得:a 1=21,a 2=20.∴为了能让顾客获得最大优惠,故a 取20.答:每杯售价定为20元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额.。
苏科版九年级数学上册第一章一元二次方程 单元综合复习检测【含答案】

在Rt△ABE中,a2+b2=c2,
∵DE=BE=a,
∴∠EBD=∠EDB,
∵∠EBD+∠EBC=90°,∠EDB+∠C=90°,
∴∠EBC=∠C,
∴CE=BE=a,
∴AC=AE+CE=c+a,
∵AD+AC=c﹣a+c+a=2c,AD×AC=(c﹣a)(c+a)=c2﹣a2=b2,
将 代入方程 的左边得: ,
则 不是方程 的解, 是方程 的解;
(2)将 代入方程 的左边得: ,代入右边得: ,即左边等于右边,
则 是方程 的解;
将 代入方程 的左边得: ,代入右边得: ,即左边不等于右边,
则 不是方程 的解.
27.(1)10元;(2)20%
解:(1)设该种农产品的原价格是 元/千克,则下降后的价格是 元/千克,
整理得:16+8k﹣32≥0,
解得:k≥2,
∴k的取值范围是:k≥2.
(2)由题意得: ,
由韦达定理可知:x1+x2=4,x1x2=﹣2k+8,
故有:(﹣2k+8)[42﹣2(﹣2k+8)]=24,
整理得:k2﹣4k+3=0,
解得:k1=3,k2=1,
又由(1)中可知k≥2,
∴k的值为3.
25.(1)a≤ ;(2)x=1或x=2.
∴以AD和AC的长为根的一元二次方程可为x2﹣2cx+b2=0.
故选:A.
11.600(1﹣x)2=384.
解:设每次降价的百分率为x,由题意得:
600(1﹣x)2=384,
故600(1﹣x)2=384.
第1章 一元二次方程 苏科版九年级数学上册单元复习(解析版)

【单元复习】第1章一元二次方程知识精讲第1章一元二次方程一、一元二次方程的概念1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
注意:一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.同时还要注意在判断时,需将方程化成一般形式。
2、一元二次方程的一般形式,它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。
二、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如的一元二次方程。
根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根。
2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程的求根公式:4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
三、一元二次方程根的判别式根的判别式:一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即四、一元二次方程根与系数的关系如果方程的两个实数根是,那么,。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
根与系数的关系的应用:①验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两根;②求根及未知数系数:已知方程的一个根,可利用根与系数的关系求出另一个数及未知数系数.③求代数式的值:在不解方程的情况下,可利用根与系数的关系求关于和的代数式的值,如④求作新方程:已知方程的两个根,可利用根与系数的关系求出一元二次方程的一般式. 一元二次方程的应用:方程是解决实际问题的有效模型和工具.利用方程解决。
九年级数学上册 一元二次方程单元复习练习(Word版 含答案)

九年级数学上册一元二次方程单元复习练习(Word版含答案)一、初三数学一元二次方程易错题压轴题(难)1.Rt△ABC中,∠ACB=90°,AC=BC=6,动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动,到达点C停止运动.设运动时间为t秒(1)如图1,过点P作PD⊥AC,交AB于D,若△PBC与△PAD的面积和是△ABC的面积的79,求t的值;(2)点Q在射线PC上,且PQ=2AP,以线段PQ为边向上作正方形PQNM.在运动过程中,若设正方形PQNM与△ABC重叠部分的面积为8,求t的值.【答案】(1)t1=2,t2=4;(2)t 47758.【解析】【分析】(1)先求出△ABC的面积,然后根据题意可得AP=t,CP=6﹣t,然后再△PBC与△PAD的面积和是△ABC的面积的79,列出方程、解方程即可解答;(2)根据不同时间段分三种情况进行解答即可.【详解】(1)∵Rt△ABC中,∠ACB=90°,AC=BC=6,∴S△ABC=12×6×6=18,∵AP=t,CP=6﹣t,∴△PBC与△PAD的面积和=12t2+12×6×(6﹣t),∵△PBC与△PAD的面积和是△ABC的面积的79,∴12t2+12×6×(6﹣t)=18×79,解之,得t1=2,t2=4;(2)∵AP=t,PQ=2AP,∴PQ=2t,①如图1,当0≤t≤2时,S=(2t)2﹣12t2=72t2=8,解得:t1=477,t2=﹣477(不合题意,舍去),②如图2,当2≤t≤3时,S=12×6×6﹣12t2﹣12(6﹣2t)2=12t﹣25t2=8,解得:t1=4(不合题意,舍去),t2=45(不合题意,舍去),③如图3,当3≤t≤6时,S=126×6﹣12t2=8,解得:t1=25,t2=﹣25(不合题意,舍去),综上,t的值为477或25时,重叠面积为8.【点睛】本题考查了三角形和矩形上的动点问题,根据题意列出方程和分情况讨论是解答本题的关键.2.阅读与应用:阅读1:a,b为实数,且a>0,b>0,因为()2≥0,所以a﹣2+b≥0,从而a+b≥2(当a=b时取等号).阅读2:若函数y=x+(m>0,x>0,m为常数),由阅读1结论可知:x+≥2,所以当x=,即x=时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=时,周长的最小值为;问题2:汽车的经济时速是汽车最省油的行驶速度,某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油()L .若该汽车以每小时x 公里的速度匀速行驶,1h 的耗油量为yL .(1)求y 关于x 的函数关系式(写出自变量x 的取值范围); (2)求该汽车的经济时速及经济时速的百公里耗油量. 【答案】问题1:2,8;问题2:(1)y=;(2)10.【解析】 【分析】(1)利用题中的不等式得到x+=4,从而得到x=2时,周长的最小值为8;(2)根据耗油总量=每公里的耗油量×行驶的速度列出函数关系式即可,经济时速就是耗油量最小的形式速度. 【详解】 (1)∵x +≥2=4,∴当x = 时,2(x +)有最小值8. 即x =2时,周长的最小值为8; 故答案是:2;8; 问题2:,当且仅当,即x =90时,“=”成立,所以,当x =90时,函数取得最小值9, 此时,百公里耗油量为,所以,该汽车的经济时速为每小时90公里,经济时速的百公里耗油量为10L . 【点睛】本题考查了配方法及反比例函数的应用,最值问题,解题的关键是读懂题目提供的材料,易错点是了解“耗油总量=每公里的耗油量×行驶的速度”,难度中等偏上.3.如图,直角坐标系xOy 中,一次函数y kx b =+的图象1l 分别与x 轴,y 轴交于A ,B 两点,点A 坐标为()9,0,正比例函数12y x =的图象2l 与1l 交于点(),3C m ,点(),0N n 在x 轴上一个动点,过点N 作x 轴的垂线与直线1l 和2l 分别交于P 、Q 两点.(1)求m 的值及直线1l 所对应的一次函数表达式; (2)当03PQ <时,求n 的取值范围; (3)求出当n 为何值时,PQC ∆面积为12?【答案】(1)6m =;9y x =-+;(2)46n <或68n <;(3)2n =或10. 【解析】 【分析】(1)直接将点C 代入正比例函数,可求得m 的值,然后将点C 和点A 代入一次函数,可求得一次函数解析式;(2)用含n 的式子表示出PQ 的长,然后解不等式即可;(3)用含有n 的式子表示出△PQC 的底边长和高的长,然后求解算式即可得. 【详解】(1)将点C(m ,3)代入正比例函数12y x =得: 3=1m 2,解得:m=6 则点C(6,3) ∵A(9,0)将点A ,C 代入一次函数y kx b =+得:0936k bk b =+⎧⎨=+⎩解得:k=-1,b=9∴一次函数解析式为:y=-x+9 (2)∵N(n ,0) ∴P(n ,9-n),Q(n ,12n ) ∴PQ=192n n --∵要使03PQ < ∴0<1932n n --≤ 解得:46n <或68n <(3)在△PQC 中,以PQ 的长为底,则点C 到PQ 的距离为高,设为h 第(2)已知:PQ=139922n n n --=- 由图形可知,h=6n - ∵△PQC 的面积为12 ∴12=136922nn -- 情况一:当n <6是,则原式化简为:12=()136922n n ⎛⎫--⎪⎝⎭ 解得:n=2或n=10(舍)情况二:当n ≥6时,则原式化简为:12=()136922n n ⎛⎫-- ⎪⎝⎭解得:n=2(舍)或n=10 综上得:n=2或n=10. 【点睛】本题考查一次函数的综合,用到了解一元二次方程,求三角形面积等知识点,解题关键是用含n 的算式表示出PQ 的长度,注意需要添加绝对值符号.4.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠. 【解析】 【分析】(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可; (2)分别求出两种方式的增长率,然后比较即可. 【详解】(1)设平均每次下调x%,则7000(1﹣x )2=5670,解得:x 1=10%,x 2=190%(不合题意,舍去); 答:平均每次下调的百分率为10%.(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x)2=(1﹣10%)2=81%.∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.5.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨52m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了920m元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了152m%,求出m的值.【答案】(1)120;(2)20.【解析】试题分析:(1)本题介绍两种解法:解法一:设标价为x元,列不等式为0.8x•80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评”网上的购买实际消费总额:120a(1﹣25%)(1+52m%),在“美团”网上的购买实际消费总额:a[120(1﹣25%)﹣920m](1+15m%);根据“在两个网站的实际消费总额比原计划的预算总额增加了152m%”列方程解出即可.试题解析:(1)解:解法一:设标价为x元,列不等式为0.8x•80≤7680,x≤120;解法二:7680÷80÷0.8=96÷0.8=120(元).答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得:120×0.8a(1﹣25%)(1+52m%)+a[120×0.8(1﹣25%)﹣920m](1+15m%)=120×0.8a(1﹣25%)×2(1+ 152m%),即72a(1+52m%)+a(72﹣920m)(1+15m%)=144a(1+152m%),整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0(舍),m2=20.答:m的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际消费总额是解题关键.6.如图,在平面直角坐标系中,O为原点,点A(0,8),点B(m,0),且m>0.把△AOB绕点A逆时针旋转90°,得△ACD,点O,B旋转后的对应点为C,D,(1)点C的坐标为;(2)①设△BCD的面积为S,用含m的式子表示S,并写出m的取值范围;②当S=6时,求点B的坐标(直接写出结果即可).【答案】(1)C(8,8);(2)①S=0.5m2﹣4m(m>8),或S=﹣0.5m2+4m(0<m<8);②点B的坐标为(7,0)或(2,0)或(6,0).【解析】【分析】(1)由旋转的性质得出AC=AO=8,∠OAC=90°,得出C(8,8)即可;(2)①由旋转的性质得出DC=OB=m,∠ACD=∠AOB=90°,∠OAC=90°,得出∠ACE=90°,证出四边形OACE是矩形,得出DE⊥x轴,OE=AC=8,分三种情况:a、当点B在线段OE的延长线上时,得出BE=OB−OE=m−8,由三角形的面积公式得出S =0.5m2−4m(m>8)即可;b、当点B在线段OE上(点B不与O,E重合)时,BE=OE−OB=8−m,由三角形的面积公式得出S=−0.5m2+4m(0<m<8)即可;c、当点B与E重合时,即m=8,△BCD不存在;②当S=6,m>8时,得出0.5m2−4m=6,解方程求出m即可;当S=6,0<m<8时,得出−0.5m2+4m=6,解方程求出m即可.【详解】(1)∵点A(0,8),∴AO=8,∵△AOB绕点A逆时针旋转90°得△ACD,∴AC=AO=8,∠OAC=90°,∴C(8,8),故答案为(8,8);(2)①延长DC交x轴于点E,∵点B(m,0),∴OB=m,∵△AOB绕点A逆时针旋转90°得△ACD,∴DC=OB=m,∠ACD=∠AOB=90°,∠OAC=90°,∴∠ACE=90°,∴四边形OACE是矩形,∴DE⊥x轴,OE=AC=8,分三种情况:a、当点B在线段OE的延长线上时,如图1所示:则BE=OB﹣OE=m﹣8,∴S=0.5DC•BE=0.5m(m﹣8),即S=0.5m2﹣4m(m>8);b、当点B在线段OE上(点B不与O,E重合)时,如图2所示:则BE=OE﹣OB=8﹣m,∴S=0.5DC•BE=0.5m(8﹣m),即S=﹣0.5m2+4m(0<m<8);c、当点B与E重合时,即m=8,△BCD不存在;综上所述,S=0.5m2﹣4m(m>8),或S=﹣0.5m2+4m(0<m<8);②当S=6,m>8时,0.5m2﹣4m=6,解得:m=4±27(负值舍去),∴m=4+27;当S=6,0<m<8时,﹣0.5m2+4m=6,解得:m=2或m=6,∴点B的坐标为(4+27,0)或(2,0)或(6,0).【点睛】本题是三角形综合题目,考查了坐标与图形性质、旋转的性质、矩形的判定与性质、三角形面积公式、一元二次方程的解法等知识;本题综合性强,有一定难度.7.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭.据某市交通部门统计,2008年底该市汽车拥有量为75万辆,而截止到2010年底,该市的汽车拥有量已达108万辆.(1)求2008年底至2010年底该市汽车拥有量的年平均增长率;(2)为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2012年底全市汽车拥有量不超过125.48万辆;另据统计,从2011年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%假设每年新增汽车数量相同,请你估算出该市从2011年初起每年新增汽车数量最多不超过多少万辆.【答案】解:(1)2008年底至2010年底该市汽车拥有量的年平均增长率是20%(2)从2011年初起每年新增汽车数量最多不超过20万辆【解析】【分析】(1)设年平均增长率x,根据等量关系“2008年底汽车拥有量×(1+年平均增长率)×(1+年平均增长率)”列出一元二次方程求得.(2)设从2011年初起每年新增汽车的数量y,根据已知得出2011年报废的车辆是2010年底拥有量×10%,推出2011年底汽车拥有量是2010年底拥有量-2011年报废的车辆=2010年拥有量×(1-10%),得出等量关系是: 2010年拥有量×(1-10%)+新增汽车数量]×(1-10%)+新增汽车数量”,列出一元一次不等式求得.【详解】解:(1)设该市汽车拥有量的年平均增长率为x . 根据题意,得75(1+x )2=108,则1+x=±1.2 解得x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去). 答:该市汽车拥有量的年平均增长率为20%.(2)设全市每年新增汽车数量为y 万辆,则2010年底全市的汽车拥有量为(108×90%+y )万辆,2011年底全市的汽车拥有量为[(108×90%+y )×90%+y]万辆. 根据题意得(108×90%+y )×90%+y≤125.48, 解得y≤20.答:该市每年新增汽车数量最多不能超过20万辆.8.问题提出:(1)如图1,在四边形ABCD 中,已知:AD BC ∥,90D ∠=︒,4BC =,ABC 的面积为8,求BC 边上的高. 问题探究(2)如图2在(1)的条件下,点E 是CD 边上一点,且2CE =,EAB CBA =∠∠,连接BE ,求ABE △的面积 问题解决(3)如图3,在(1)的条件下,点E 是CD 边上任意一点,连接AE 、BE ,若EAB CBA =∠∠,ABE △的面积是否存在最小值;若存在,求出最小值;若不存在;请说明理由.【答案】(1)4;(2)203;(3)存在,最小值为16216 【解析】 【分析】(1)作BC 边上的高AM ,利用三角形面积公式即可求解;(2)延长DA ,过B 点作BF ⊥DA 于点F ,作BH ⊥AE 于点H ,易得四边形BCDF 为矩形,在(1)的条件下BC=CD=4,则BCDF 为正方形,由EAB CBA =∠∠,结合∠FAB=∠CBA 可得∠FAB=∠EAB ,从而推出BF=BH=4,易证Rt △BCE ≌Rt △BHE ,所以EH=CE=2,设AD =a ,则AF=AH=4-a ,在Rt △ADE 中利用勾股定理建立方程可求出a ,最后根据S △ABE =1AE BH 2即可求解; (3)辅助线同(2),设AD=a ,CE=m ,则DE=4-m ,同(2)可得出m 与a 的关系式,设△ABE 的面积为y ,由y=1AE BH 2得到m 与y 的关系式,再求y 的最小值即可. 【详解】(1)如图所示,作BC 边上的高AM ,∵S △ABC =1BC AM=82 ∴82AM==44⨯ 即BC 边上的高为4;(2)如图所示,延长DA ,过B 点作BF ⊥DA 于点F ,作BH ⊥AE 于点H ,∵AD BC ∥,90D ∠=︒ ∴∠BCD=∠D=90°=∠F ∴四边形BCDF 为矩形, 又∵BC=CD=4∴四边形BCDF 为正方形, ∴DF=BF=BC=4, 又∵AD ∥BC ∴∠FAB=∠CBA 又∵∠EAB=∠CBA ∴∠FAB=∠EAB ∵BF ⊥AF ,BH ⊥AE ∴BH=BF=4,在Rt △BCE 和Rt △BHE 中, ∵BE=BE ,BH=BC=4 ∴Rt △BCE ≌Rt △BHE (HL ) ∴EH=CE=2同理可证Rt △BAF ≌Rt △BAH (HL )∴AF=AH 设AD=a ,则AF=AH=4-a在Rt △ADE 中,AD=a ,DE=2,AE=AH+EH=4-a+2=6-a由勾股定理得AD 2+DE 2=AE 2,即()22226+=-a a 解得8=3a ∴AE=6-a=103 S △ABE =111020AE BH=4=2233⨯⨯ (3)存在,如图所示,延长DA ,过B 点作BF ⊥DA 于点F ,作BH ⊥AE 于点H ,同(2)可得CE=EH ,AF=AH ,设AD=a ,CE=EH=m ,则DE=4-m ,AF=AH=4-a在Rt △ADE 中,AD 2+DE 2=AE 2,即()()22244+-=-+a m a m整理得8=4+m a m ∴AE=AH+HE=2816444+-+=++m m m m m 设△ABE 的面积为y ,则y=()222161116AE BH=42244++=++m m m m ∴()()24216+=+y m m 整理得:223240++-=m ym y∵方程必有实数根∴()2=423240∆-⨯⨯-≥y y 整理得2322560+-≥y y∴()()16216162160⎡⎤⎡⎤---≥⎣⎦⎣⎦y y (注:利用求根公式进行因式分解)又∵面积y ≥0∴16216≥-y即△ABE 的面积最小值为16216-.【点睛】本题考查四边形综合问题,正确作出辅助线,得出AB 平分∠FAC ,利用角平分线的性质定理得到BF=BH ,结合勾股定理求出AE 是解决(2)题的关键,(3)题中利用一元二次方程的判别式求最值是解题的关键.9.已知关于x 的一元二次方程(x ﹣3)(x ﹣4)﹣m 2=0.(1)求证:对任意实数m ,方程总有2个不相等的实数根;(2)若方程的一个根是2,求m 的值及方程的另一个根.【答案】(1)证明见解析;(2)m 的值为±2,方程的另一个根是5.【解析】【分析】(1)先把方程化为一般式,利用根的判别式△=b 2-4ac 证明判断即可;(2)根据方程的根,利用代入法即可求解m 的值,然后还原方程求出另一个解即可.【详解】(1)证明:∵(x ﹣3)(x ﹣4)﹣m 2=0,∴x 2﹣7x+12﹣m 2=0,∴△=(﹣7)2﹣4(12﹣m 2)=1+4m 2,∵m 2≥0,∴△>0,∴对任意实数m ,方程总有2个不相等的实数根;(2)解:∵方程的一个根是2,∴4﹣14+12﹣m 2=0,解得m=±, ∴原方程为x 2﹣7x+10=0,解得x=2或x=5, 即m 的值为±,方程的另一个根是5.【点睛】此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.当△=b 2-4ac >0时,方程有两个不相等的实数根;当△=b 2-4ac=0时,方程有两个相等的实数根;当△=b 2-4ac <0时,方程没有实数根.10.如图1,已知△ABC 中,AB=10cm,AC=8cm,BC=6 cm ,如果点P 由B 出发沿BA 方向向点A 匀速运动,同时点Q 由A 出发沿AC 方向向点C 匀速运动,它们的速度均为2cm /s ,连接PQ ,设运动的时间为t (单位:s )(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.【答案】(1)当BF PC⊥s时,PQ∥BC.(2)不存在某时刻t,使线段PQ恰好把△ABC 的面积平分.(3)存在时刻t,使四边形AQPQ′为菱形,此时菱形的面积为137-cm2.【解析】(1)证△APQ∽△ABC,推出APAB=AQAC,代入得出10210t-=28t,求出方程的解即可;(2)假设存在某时刻t,使线段PQ恰好把△ABC的面积平分,得出方程-5 6t2+6t=12×12×8×6,求出此方程无解,即可得出答案.(3)首先根据菱形的性质及相似三角形比例线段关系,求得PQ、OD、和PD的长度;然后在Rt△PQD中,根据勾股定理列出方程(8-185t)2-(6-65t)2=(2t)2,求得时间t的值;最后根据菱形的面积等于△AQP的面积的2倍,进行计算即可.解:(1)BP=2t,则AP=10﹣2t.∵PQ∥BC,∴△APQ∽△ABC,∴APAB=AQAC,即10210t-=28t,解得:t=20 9,∴当t=209时,PQ∥BC.(2)如答图1所示,过P点作PD⊥AC于点D.∴PD∥BC,∴F ,即B ,解得6PD 6-5t =. 216625S PD AQ t t =⨯=-, 假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则有S △AQP = C S △ABC ,而S △ABC =12AC•BC=24,∴此时S △AQP =12. 而S △AQP 2665t t =-, ∴266125t t -=,化简得:t 2﹣5t+10=0, ∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程无解,∴不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.(3)假设存在时刻t ,使四边形AQPQ′为菱形,则有AQ=PQ=BP=2t .如答图2所示,过P 点作PD⊥AC 于点D ,则有PD∥BC ,∴D ,即COD ∆,解得:OC ,h ,∴QD=AD﹣AQ=t .在Rt△PQD 中,由勾股定理得:QD 2+PD 2=PQ 2,即h ,化简得:13t 2﹣90t+125=0,解得:t 1=5,t 2=t ,∵t=5s 时,AQ=10cm >AC ,不符合题意,舍去,∴t=52. 由(2)可知,S △AQP =54∴S 菱形AQPQ′=2S △AQP =2×258=32+cm 2.所以存在时刻t ,使四边形cm 2. “点睛”本题考查了三角形的面积,勾股定理的逆定理,相似三角形的性质和判定的应用,主要考查学生综合运用进行推理和计算的能力.解决问题的关键是作辅助线构造相似三角形以及直角三角形,根据相似三角形的对应边成比例以及勾股定理进行列式求解.。
九年级上册数学《一元二次方程》单元测试题(附答案)

12.用配方法解关于x的方程x2+ px + q = 0时,此方程可变形为
A.. B.
C. D.
【答案】B
【解析】
解:∵x2+px+q=0,∴x2+px=﹣q,∴x2+px+ =﹣q+ ,∴(x+ )2= .故选B.
13.使分式 的值等于0的x的值是( )
A. 2B. -2C. ±2D. ±4
17.竖直上抛物体的高度h和时间t符合关系式h=v0t- gt2,其中重力加速度g以10米/秒2计算.爆竹点燃后以初速度v0=20米/秒上升,问经过多少时间爆竹离地15米?
【答案】经过1秒或3秒时,爆竹离地15米.
【解析】
【分析】
根据题意,可以将h=15代入题目中的关系式h=v0t- gt2,从而可以求得t的值.
故答案可以 :-7或-5或7等.
故答案是:7(答案不唯一).
【点睛】考查了根与系数的关系,熟记并运用:x2+(p+q)x+pq=(x+p)(x+q)是解题的关键.
二、选择题
9.下列方程中,关于x的一元二次方程是()
A. 3(x+1)2=2(x+1)B. + -2=0
C.ax2+bx+c=0D.x2+2x=x2-1
3.方程x2-16=0 根是___________;方程(x+1)(x-2)=0的根是___________.
4.一元二次方程 的求根公式为____________________.
5.如果关于x 方程x2+kx+3=0有一个根是-1,那么k=________,另一根为______.
6.若两数和为-7,积为12,则这两个数是___________.
人教版九年级上册数学第21章《一元二次方程》 单元测试(含答案)

试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。
一元二次方程 单元测试(北师大版)(解析版)—2025学年九年级数学上册考点题型过关训练(北师大版)
一元二次方程 单元测试总分:120分考生姓名:注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第二章(一元二次方程)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题:本题共10小题,每小题3分,共30分。
1.一元二次方程220x x --=的解是( )A .11x =,22x =B .11x =,22x =-C .11x =-,22x =-D .11x =-,22x =2.关于的一元二次方程2310x kx +-=A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .只有一个实数根【答案】A【分析】本题考查了一元二次方程的根的判别式.熟练掌握利用一元二次方程根的判别式判断方程解是解题的关键.先根据已知方程,求出根的判别式,然后根据判别式的正负,判断方程根的情况即可.【详解】解:在关于x 的一元二次方程22310x kx +-=中,2a =,3b k =,1c =-,22Δ498b ac k =-=+,因为20k >,所以22Δ4980b ac k =-=+>,所以关于x 的一元二次方程22310x kx +-=根的情况是有两个不相等的实数根.故选A .3.为了美化环境,2022年某市的绿化投资额为20万元,2024年该市计划绿化投资额达到45万元,设这两年该市绿化投资额的年平均增长率为x ,根据题意可列方程( )A .()245120x -=B .()220145x -=C .()245120x +=D .()220145x +=【答案】D【分析】本题主要考查了一元二次方程的应用,根据题意列出形如2(1+)m x n =的方程即可.【详解】根据题意,得220(1)45x +=.故选:D .4.关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为( )A .1B .1-C .1或1-D .040x x +-=2021m m ++A .2021B .2023C .2025D .2029【答案】C【分析】本题考查一元二次方程的解(使方程左右两边相等的未知数的值),根据题意可得240m m +-=,从而可得24m m +=,然后代入式子中进行计算即可.掌握方程解的定义是解题的关键.也考查了求代数式的值.【详解】解:∵x m =是方程240x x +-=的根,∴240m m +-=,∴24m m +=,∴22021420212025m m ++=+=.故选:C .6.已知关于x 的方程()2120x m x +--=的两实数根为1x ,2x ,若12122x x x x --=,则m 的值为( )A .1B .5-C .3D .50x bx c ++=是( )x1 1.1 1.2 1.3x ²+bx +c -2-0.590.84 2.29A .1 1.1x <<B .1.1 1.2x <<C .1.2 1.3x <<D . 1.3x > 【答案】B 【分析】本题考查了估算一元二次方程的近似解:用列举法估算一元二次方程的近似解,具体方法是:给出一些未知数的值,计算方程两边结果,当两边结果愈接近时,说明未知数的值愈接近方程的根.利用 1.1x =时,20ax bx c ++<,而 1.2x =时,20ax bx c ++>可判断当1.1 1.2x <<时,其中有一个x 的值满足20ax bx c ++=,即可得答案.【详解】解:∵ 1.1x =时, 20.590ax bx c ++=-<,1.2x =时,20.840ax bx c ++=>,∴当1.1 1.2x <<时,其中有一个x 的值满足20ax bx c ++=,即一元二次方程20ax bx c ++=其中一个解的取值范围是1.1 1.2x <<.故选:B .8.如图,在长为32m ,宽为20m 的矩形地面上修筑同样宽的小路(图中阴影部分),余下部分种植草坪,要使小路的面积为2100m ,设小路的宽为m x ,则下面所列方程正确的是( )A .32203220100x x ´--=B .23220100x x x +=+C .()()23220100x x x --+=D .()()3220100x x --=9.用换元法解方程()223121x x x x --=-时,设21x y x =-,则原方程化为y 的整式方程为( )A .23610y y -+=B .2230y y --=C .22310y y -+=D .2320y y --=【答案】B 【分析】本题主要考查了换元法解分式方程.用换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技位置,连接C B¢,若2C B¢=,则AC的长为( )A.4B C-D由题意得:60BAB ¢Ð=∴ABB ¢V 为等边三角形,∴60ABB AB ¢Ð=°=,在ABC ¢△与B BC ¢¢V 中,AB B B AC B C =ìï=¢¢¢¢第Ⅱ卷二、填空题:本题共8小题,每小题3分,共24分.11.方程23251x x x -=-的一次项是 .【答案】7x-【分析】本题考查了一元二次方程的概念,以及一元二次方程的一般形式,掌握一元二次方程的一般形式是解题的关键.将23251x x x -=-化为一般形式即可求得出其一次项.【详解】解:23251x x x -=-,移项并合并同类项得:23710x x -+=,\方程的一次项为7x -,故答案为:7x -.12.用公式法解方程2420x x --=,其中24b ac -的值是 .【答案】24【分析】本题考查判别式的计算,由一般式得到a b c 、、的值,代入24b ac -计算即可得到答案,熟记公式法解一元二次方程是解决问题的关键.【详解】解:Q 2420x x --=,\()()224441216824b ac =--´-=+=-´,故答案为:24.13.若一元二次方程220ax x c ++=的两个不相等的实数根分别为12,x x ,且1212x x x x +=,则a 的取值范围是 .14.定义运算:21m n mn mn =--☆.例如:242424217=´-´-=☆,则方程的根的情况为 【答案】没有实数根【分析】本题主要考查了新定义和一元二次方程根的判别式,先根据新定义,把方程左边化成一般形式,然后求出判别式24b ac -的值,再进行判断即可.【详解】解:∵21m n mn mn =--☆,且()10x -=☆∴()2110x x ---×-=∴210x x -+-=∵1,1,1a b c =-==-∴()()22414111430b ac -=-´-´-=-=-<,∴方程没有实数根,故答案为:没有实数根.15.如图,将边长为21x +的正方形沿两边剪去宽相同的矩形,剩下的部分是一个边长为4的正方形,已知剪去部分的面积为9,则x = .中有8个“●”和1个“★”,第2个图形中有16个“●”和4个“★”,第3个图形中有24个“●”和9个“★”,LL ,则第 个图形中“★”的个数是“●”的个数的2倍.【答案】16【分析】本题考查了规律型——图形的变化类,解一元二次方程,根据图形的变化寻找规律即可,解题的关键是根据图形的变化寻找规律,总结规律及掌握解一元二次方程.【详解】解:由第1个图形中有8个“●”和1个“★”,第2个图形中有16个“●”和4个“★”,第3个图形中有24个“●”和9个“★”,L ,∴第n 个图形中有8n 个“●”和2n 个“★”,∵图形中“★”的个数是“●”的个数的2倍,∴228n n =´,解得:116n =,20n =(舍去),故答案为:16.17.如果m n 、是两个不相等的实数,23m m -=,23n n -=,那么代数式2222021n mn m -++ .故答案为:2032.18.如图,在矩形ABCD 中,10cm AB =,8cm AD =,点P 从点A 出发沿AB 以2cm /s 的速度向点B 运动,同时点Q 从点B 出发沿BC 以1cm /s 的速度向点C 运动,点P 到达终点后,P ,Q 两点同时停止运动,当t = 秒时,P ,D 两点之间的距离是P ,Q 两点之间距离的2倍.【答案】3【分析】本题考查了矩形的性质,勾股定理,一元二次方程的应用,设s t 时,P ,D 两点之间的距离是P ,Q 两点之间距离的2倍,根据矩形的性质和勾股定理得到224PD PQ =,进而列出一元二次方程求解,即可解题.【详解】解:设s t 时,P ,D 两点之间的距离是P ,Q 两点之间距离的2倍,即2PD PQ =,又Q 四边形ABCD 是矩形,故90A B Ð=Ð=°,故222222PD AP AD PQ BP BQì=+í=+î,Q 2PD PQ =,\224PD PQ =,\22228(2)4(102)t t t éù+=-+ëû,解得13t =,27t =,当7t =时,1020t -<,故舍去,\3t =.故t 为3s 时,P ,D 两点之间的距离是P ,Q 两点之间的距离的2倍.故答案为:3.三、解答题:本题共8小题,共66分.19.解下列方程:(1)()()()1222x x x -+=+(2)23108x x +=20.已知:0是关于x 的方程()2223280m x x m m -+++-=的解,求代数式22121m m m --+的值.21.已知关于x 的一元二次方程.(1)求证:无论k 取何值时,方程总有两个不相等的实数根;(2)若方程的两根1x 、2x 是斜边长为5的直角三角形两直角边长,求k 的值.22.今年秋冬季是支原体肺炎的感染高发期,如果外出时能够戴上口罩、做好防护,可以有效遏制支原体肺炎病毒的传染,现在,有一个人患了支原体肺炎,经过两轮传染后共有49人患了支原体肺炎(假设每个人每轮传染的人数同样多),求每轮传染巾平均一个人传染了几个人?【答案】6【分析】本题主要考查一元二次方程,解题的关键是找到等量关系,列方程计算.【详解】解:设每轮传染巾平均一个人传染了x 个人,列方程得:()2149x +=,解得:16x =,28x =-(舍去),答:每轮传染巾平均一个人传染了6个人.23.某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场每件衬衫降价4元,则商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?110x \=应舍去,20x \=,答:若商场平均每天要盈利1200元,每件衬衫应降价20元.24.“20a ³”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:()222817816141x x x x x -+=-++=-+,∵()240x -³,∴()2411x -+³,∴28171x x -+³,试利用“配方法”解决下列问题:(1)如果222461461461a a b c b b c a c c a b ì++=+ï++=+íï++=+î,那么a b c ++的值为 .(2)已知2282170x x y y ++++=,求x y +的值;方程为“差积方程”.例如:()1102x x æö--=ç÷èø是差积方程.(1)下列方程是“差积方程”的是 ;①26510x x -+=②23840x x ++=③240x x -=(2)若方程()2220x m x m -++=是“差积方程”,直接写出m 的值;(3)当方程()200ax bx c a ++=¹为“差积方程”时,写出a 、b 、c 满足的数量关系并证明.(1)求B 点的坐标;(2)如图2,点C 是x 轴正半轴上一点,横坐标为t ,ABC V 的面积为S ,试求S 与t 的函数关系式;(3)如图3,D 是EBC Ð的角平分线BM 上一点,BD 与CE 交于点F ,当BDC ECB FBC Ð=Ð-Ð时,2BE OC =,BD =,求点F 的坐标.,。
第21章一元二次方程(压轴必刷30题7种题型专项训练)(原卷版)-2024-2025学年九年级数学上
第21章一元二次方程(压轴必刷30题7种题型专项训练)一.解一元二次方程-配方法(共1小题)1.(2022秋•仙桃校级月考)小明在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.解:原方程可变形,得:[(x+2)﹣2][(x+2)+2]=6.(x+2)2﹣22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得.x1=﹣2+,x2=﹣2﹣.我们称小明这种解法为“平均数法”.(1)下面是小明用“平均数法”解方程(x+3)(x+7)=5时写的解题过程.解:原方程可变形,得:[(x+a)﹣b][(x+a)+b]=5.(x+a)2﹣b2=5,(x+a)2=5+b2.直接开平方并整理,得.x1=c,x2=d.上述过程中的a、b、c、d表示的数分别为,,,.(2)请用“平均数法”解方程:(x﹣5)(x+3)=6.二.解一元二次方程-因式分解法(共1小题)2.(2021秋•高安市校级月考)阅读下面的例题:解方程:x2﹣|x|﹣2=0解:(1)当x≥0时,原方程化为x2﹣x﹣2=0,解得:x1=2,x2=﹣1(不合题意,舍去).(2)当x<0时,原方程化为x2+x﹣2=0,解得:x1=1(不合题意,舍去),x2=﹣2∴原方程的根是x1=2,x2=﹣2.请参照例题解方程x2﹣|x﹣3|﹣3=0,则此方程的根是.三.换元法解一元二次方程(共1小题)3.(2021秋•高州市月考)先阅读,再解题解方程(x﹣1)2﹣5(x﹣1)+4=0,可以将(x﹣1)看成一个整体,设x﹣1=y,则原方程可化y2﹣5y+4=0,解得y1=1;y2=4,当y=1时,即x﹣1=1,解得x=2,当y=4时,即x﹣1=4,解得x=5,所原方程的解为x1=2,x2=5请利用上述这种方法解方程:(3x﹣5)2﹣4(5﹣3x)+3=0.四.根的判别式(共4小题)4.(2022秋•宝应县校级月考)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.5.(2022春•雷州市月考)已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.6.(2022秋•罗山县校级月考)已知关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.7.(2022秋•仪陇县月考)已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.五.根与系数的关系(共5小题)8.(2021春•拱墅区月考)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有(填序号)①方程x2﹣x﹣2=0是倍根方程;②若(x﹣2)(mx+n)=0是倍根方程:则4m2+5mn+n2=0;③若p,q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;④若方程以ax2+bx+c=0是倍根方程,则必有2b2=9ac.9.(2021秋•冷水滩区校级月考)如果方程x2+px+q=0有两个实数根x1,x2,那么x1+x2=﹣p,x1x2=q,请根据以上结论,解决下列问题:(1)已知a、b是方程x2+15x+5=0的二根,则=(2)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.(3)结合二元一次方程组的相关知识,解决问题:已知和是关于x,y的方程组的两个不相等的实数解.问:是否存在实数k,使得y1y2﹣=2?若存在,求出的k 值,若不存在,请说明理由.10.(2021春•崇川区校级月考)已知关于x的一元二次方程,(1)求证:不论k取何值,方程总有两个不相等的实数根;(2)设x1、x2是方程的两个根,且x12﹣2kx1+2x1x2=5,求k的值.11.(2021秋•顺德区月考)已知方程a(2x+a)=x(1﹣x)的两个实数根为x1,x2,设.(1)当a=﹣2时,求S的值;(2)当a取什么整数时,S的值为1;(3)是否存在负数a,使S2的值不小于25?若存在,请求出a的取值范围;若不存在,请说明理由.12.(2020秋•椒江区校级月考)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,研究发现了此类方程的一般性结论:设其中一根为t,则另一个根为2t,因此ax2+bx+c=a(x﹣t)(x﹣2t)=ax2﹣3atx+2t2a,所以有b2﹣ac=0;我们记“K=b2﹣ac”即K=0时,方程ax2+bx+c=0为倍根方程;下面我们根据此结论来解决问题:(1)方程①x2﹣x﹣2=0;方程②x2﹣6x+8=0这两个方程中,是倍根方程的是(填序号即可);(2)若(x﹣2)(mx+n)=0是倍根方程,求4m2+5mn+n2的值;(3)关于x的一元二次方程x2﹣n=0(m≥0)是倍根方程,且点A(m,n)在一次函数y=3x﹣8的图象上,求此倍根方程的表达式.六.配方法的应用(共1小题)13.(2021秋•建瓯市校级月考)先阅读,再解决问题.阅读:材料一配方法可用来解一元二次方程.例如,对于方程x2+2x﹣1=0可先配方(x+1)2=2,然后再利用直接开平方法求解方程.其实,配方还可以用它来解决很多问题.材料二对于代数式3a2+1,因为3a2≥0,所以3a2+1≥1,即3a2+1有最小值1,且当a=0时,3a2+1取得最小值为1.类似地,对于代数式﹣3a2+1,因为﹣3a2≤0,所以﹣3a2+1≤1,即﹣3a2+1有最大值1,且当a=0时,﹣3a2+1取得最大值为1.解答下列问题:(1)填空:①当x=时,代数式2x2﹣1有最小值为;②当x=时,代数式﹣2(x+1)2+1有最大值为.(2)试求代数式2x2﹣4x+1的最小值,并求出代数式取得最小值时的x的值.(要求写出必要的运算推理过程)七.一元二次方程的应用(共17小题)14.(2022秋•岳阳县校级月考)已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?15.(2022春•宜秀区校级月考)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?16.(2022秋•中原区校级月考)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)填表:(不需化简)时间第一个月第二个月清仓时单价(元)8040销售量(件)200(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?17.(2022秋•南海区校级月考)在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,两条纵向,一条横向,横向与纵向互相垂直,(如图),把耕地分成大小相等的六块作试验田,要使实验地面积为570m2,问道路应为多宽?18.(2023春•莱芜区期中)如图,在矩形ABCD中,BC=20cm,P、Q、M、N分别从A、B、C、D出发,沿AD、BC、CB、DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止、已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,点P、N重合;(2)当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形.19.(2022春•拱墅区校级月考)如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC 和Rt△BED边长,易知,这时我们把关于x的形如的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”必有实数根;(3)若x=﹣1是“勾系一元二次方程”的一个根,且四边形ACDE的周长是6,求△ABC面积.20.(2021春•崇川区校级月考)某种产品的年产量不超过1 000t,该产品的年产量(t)与费用(万元)之间的函数关系如图(1);该产品的年销售量(t)与每吨销售价(万元)之间的函数关系如图(2).若生产出的产品都能在当年销售完,则年产量为多少吨时,当年可获得7500万元毛利润?(毛利润=销售额﹣费用)21.(2021秋•莲池区校级月考)毕业在即,某商店抓住商机,准备购进一批纪念品,若商店花440元可以购进50本学生纪念品和10本教师纪念品,其中教师纪念品的成本比学生纪念品的成本多8元.(1)请问这两种不同纪念品的成本分别是多少?(2)如果商店购进1200个学生纪念品,第一周以每个10元的价格售出400个,第二周若按每个10元的价格仍可售出400个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出100个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余学生纪念品清仓处理,以每个4元的价格全部售出,如果这批纪念品共获利2500元,问第二周每个纪念品的销售价格为多少元?22.(2022秋•佛山月考)如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点D从点C开始沿CA边运动,速度为1cm/s,与此同时,点E从点B开始沿BC边运动,速度为2cm/s,当点E到达点C时,点D同时停止运动,连接AE,设运动时间为ts,△ADE的面积为S.(1)是否存在某一时刻t,使DE∥AB?若存在,请求出此时刻t的值,若不存在,请说明理由.(2)点D运动至何处时,S=S△ABC?23.(2022秋•胶州市校级月考)如图,在矩形ABCD中,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(2)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?24.(2022秋•沙坪坝区校级月考)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?25.(2022秋•渝水区校级月考)已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.26.(2022秋•宜兴市月考)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s 的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?27.(2022秋•宜阳县月考)如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)花圃的面积为米2(用含a的式子表示);(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽;(3)已知某园林公司修建通道、花圃的造价y1(元)、y2(元)与修建面积x(m2)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价为105920元?28.(2022秋•仙桃校级月考)已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6cm2?(2)在(1)中,△PQB的面积能否等于8cm2?说明理由.29.(2021秋•开州区校级月考)今年奉节脐橙喜获丰收,某村委会将全村农户的脐橙统一装箱出售.经核算,每箱成本为40元,统一零售价定为每箱50元,可以根据买家订货量的多少给出不同的折扣价销售.(1)问最多打几折销售,才能保证每箱脐橙的利润率不低于10%?(2)该村最开始几天每天可卖5000箱,因脐橙的保鲜周期短,需要尽快打开销路,减少积压,村委会决定在原售价基础上每箱降价3m%,这样每天可多销售m%;为了保护农户的收益与种植积极性,政府用“精准扶贫基金”给该村按每箱脐橙m元给予补贴进行奖励,结果该村每天脐橙销售的利润为49000元,求m的值.30.(2022秋•中原区校级月考)如图所示,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,P、Q 分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2cm/s的速度向D移动.点P停止运动时点Q也停止运动.(1)P、Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2?(2)P、Q两点从出发开始到几秒时,点P和点Q的距离第一次是10cm?。
人教版初三数学上册第21章《一元二次方程》单元测试题含答案解析
7.输入一组数据,按下列程序进行计算,输出结果如表:
6
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
x 输出
20.5 -13.75
20.6 -8.04
20.7 -2.31
20.8 3.44
20.9 9.21
分析表格中的数据,估计方程(x+8)2-826=0 的一个正数解 x 的大致范围为(C) A.20.5<x<20.6 B.20.6<x<20.7 C.20.7<x<20.8 D.20.8<x<20.9
17.(本题 8 分)小明用下面的方法求出方程 2 x-3=0 的解,请你仿照他的方法求出下面另 外两个方程的解,并把你的解答过程写在下面的表格中. 方程 换元法得新方程 令 x=t 则 2t-3=0 解新方程 3 2 检验 3 t= >0 2 求原方程的解 3 x= , 2 9 所以 x= . 4
(2)如果该养殖户第 3 年的养殖成本为 7.146 万元,求可变成本平均每年增长的百分率 x.
21.(本题 8 分)一张长为 30 cm,宽 20 cm 的矩形纸片,如图 1 所示,将这张纸片的四个角 各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图 2 所示,如 果折成的长方体纸盒的底面积为 264 cm2,求剪掉的正方形纸片的边长.
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
初三数学上册第 21 章《一元二次方程》单元测试题
(满分:120 分 考试时间:120 分钟)
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分.) 1.下列方程是关于 x 的一元二次方程的是( A.ax2+bx+c=0 1 1 B. 2+ =2 x x ) C.x2+2x=y2-1 ) D.3(x+1)2=2(x+1)
初中数学《一元二次方程》单元测试(含答案)
一元二次方程单元测试一、选择题:(3分×8=24分)1. 在4(1)(2)5x x -+=,221x y +=,25100x -=,2280x x +=0,213x x=+中,是一元二次方程的个数为 ( ) A .3 个 B.4 个 C. 5 个 D. 6 个 ⒉ 方程21242x x -=-化为一般式后,,,a b c 的值依次为( ) A.12,-4,-2 B.12,-4, 2 C. 12,4,-2 D.1, -8, -4 3.2260x -=的解是( )A.3x =±B.x =x =无实根4. 20=2=的解( )A.都是零B.都不相等C.有一个相等的根1x =D.有一个相等的根0x = 5. 方程2410mx x -+=的根是( )A.14B. D.以上都不对6. 方程2230x x --=的解是( )A.3±B.3,1±±C.1,3--D.1,3- 7. 方程)0()(2>=-b b a x 的根是 ( )A b a ±B )(b a +±C b a +±D b a ±±8. 方程:①230x -=, ②291210x x --=, ③2121225xx += ,④22(51)3(51)x x -=-,较简便的解法( ) A .依次为直接开平方法,配方法,公式法和因式分解法 B.①用直接开平方法,②用公式法,③④用因式分解法 C. 依次为因式分解法,公式法,配方法和直接开平方法 D. ①用直接开平方法,②③用公式法,④用因式分解法二、填空题: (2分×10=20分)1.把方程9)2)(2()1(3+-+=-x x x x 化成一般式为_________________________.2.方程212y y =的二次项系数是________,一次项系数是_________,常数项是_________.3.方程0162=-x 的根是______________, 方程2120y y +-=的根是 ;4.已知256y x x =-+,当x=_______时,y=0; 当y=_______时,x=0.5.223____(_____)x x x -+=-; 2226____2(_____)x x x -+=-6.若关于x 的一元二次方程240x x m +-=2,那么m =____________.7. ,则x =____________. 8. 一元二次方程20ax bx c ++=若有两根1和-1,那么a b c ++=________,a b c -+=____9.220b c ++=时,则20ax bx c ++=的解为____________________.10.当_____m =时, 关于x 的方程2(80m m x mx -+=是一元二次方程. 三、按要求解下列方程: ( 5分×4=20分)1. 229()525x -=(直接开平方法) 2. 0362=+-x x (配方法)3. 0672=+-x x (因式分解法) 4. 2230x x +-= (求根公式法)四、用适当的方法解下列各题:( 5分×4=20分)1.(1)(3)12x x -+= 2.224(3)25(2)x x +=-3.2(23)3(23)40x x +-+-= 4.221(1)0x x k x -+--=五、解答下列个题:( 5分×2+6分=16分)(1) 已知方程258(2)4k k k x -+-=是一元二次方程,求k 的值.(2)当,a b 为何值时,关于x 的方程2210ax bx ++=和230ax bx -+=都有一个根2 ?(3)某村计划修一条横断面为等腰梯形的渠道,断面面积为10.52米,上口比底宽3米,比深多2米,求上口应挖多宽? 附加题:一、填空题: ( 3分×4=12分)1、 若代数式(5)(3)x x -+的值为0,则x 的值为____________.2、 已知235x x ++的值为7,则2392x x +-的值为_____________. 3、 若2225120x xy y --=,则xy=________________. 4、 观察下列等式: 73452331210122222222=-=-=-=-、、、,用含自然数n 的等式表示这种规律为_____________________. 二、解答题: ( 4分×2=8分)1、 当k 是什么数时,222(1)5x k x k -+++是完全平方式.2、 解关于x 的方程:2(1)2(3)80m x m x ----=(提示:分1,1m m =≠两种情况讨论)参考答案一.ABCD DAAB二. 1.22350x x --= 2.1,1,02- 3.124;3,4x y y =±==- 4.2或3;6 5. 9393,;,42226. 1- 7.2或128.0;0 9.1210,2x x ==10.三.1.1211,5x x ==- 2.1233x x ==3.121,6x x == 4.1231,2x x ==- 四.1.123,5x x ==- 2.12164,37x x == 3.1212,2x x =-=4.121,1x x k ==+ 五.1.解:2122,35803220k k k k k k k ==⎧-+=⎧⇒⇒=⎨⎨≠-≠⎩⎩2.解:由题意得:4221034230 4.5a b a a b a ++==-⎧⎧⇒⎨⎨-+==-⎩⎩ 3.解:设上口应挖x 米,则:()()13210.52x x x +-⋅-=⎡⎤⎣⎦ ()1235,2x x ∴==-舍 答:上口应挖5米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页 共2页九级数学上期《一元二次方程》单元专题复习资料 Ⅰ一元二次方程的解法及应用部分编写:赵化中学 郑宗平知识点:1、一元二次方程:①.定义;②.一般形式:()2ax bx c 0a 0++=≠,能写出一般形式下的二次项系数 ,一次项系数及常数项;2、一元二次方程的四种解法:①.直接开平方法;②.配方法;③.式法;④.因式分解法;会根据方程特点选用适当方法解一元二次的方程(特别注意用配方法).3、了解:①.换元法解特殊的(具有“倒数”和“平方”等特殊结构形式)的一元二次方程;②.可以化为一元二次方程的分式方程的解法和和步骤;③.绝对值方程的解法.4、会利用方程的根进行整体代入求某些代数式的值;5、一元二次方程的应用:①.列一元二次方程解应用题的六个基本步骤:审→设→列→解→验→答);②.常见类型:增长率、几何面积、数字数位、速度变化及动点,最大利润、方案的合理性问题等.例题解析及追踪练习:例1、k 为何值时,关于x 的方程()()2m 7m 3x 2m x 50-----=是一元二次方程,并指出二次项系数 ,一次项系数及常数项.练习:写出方程()()()22x 112x 2x 1+=-+二次项系数 ,一次项系数及常数项. 例2、用配方法解: 3-6a+1=0 练习:1.①.()22x 6x 4x -+=-+;②.()222m 3m 12m -+=--;2.用配方法解:①.2x 9x 99910--=;②..22a 4a 10--= 例3、解方程:⑴.()()23x 17x 160-+--=;⑵.()()2a 34a 330---+=. 练习:1.()()22a 552a 540---+=; 2.()()222x 46x 450---+=;3.3320x x 1--=+;4.2x 7x 120x 1x 1⎛⎫-+= ⎪++⎝⎭;5.2x 2x 110---=. 例4、已知m 是方程2x 3x 10++=的根,则22m 6m +=;23mm 1=+. 练习:已知:a 是方程2x 6x 10--=的根,则21a 3a 2-= ;221a a+= .例5、某中学在校园内的一块长36米,宽20米的矩形场地ABCD上修建三条同样宽的人行道,使其中两条与AB 平行,另一条与AD 平行,其余部分种草(如图所示)若使每一块草坪的面积都为96平方米;求人行道的宽度是多少?练习:1.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件的商品售价为a 元,则可以卖出()35010a -件,但物价局限定每次商品加价不能超过进价的20%,商店计划要赚400元,需要卖出多少件商品?每件商品售价应定为多少元?2.如图,在菱形ABCD 中,AC BD 、交于点O ,,AC 8m BD 6m ==,点M 从点A 出发沿AC 方向以/2cm s 匀速直线运动到C ,动点N 从点B 出发沿BD 方向以/1cm s 匀速直线运动到点D ;若点M N 、同 时出发,问出发后几秒钟时,MON 的面积为21m 4?课外选练: 一、填空:1.若方程2ax 5x 60--=的一根为1-,则a = ,另一根是 .2.⑴.已知:()22x 3x 4x 3x 3--=--,则x = ; ⑵.已知:()222a b 225+-=,则22a b +=;⑶.分式2x 2x 3x 3---的值为0,则x = .3.用换元法解()222x 42x 80--+=,设2x 4m -=,则原方程变形成m 的方程: .4.方程()()k k 1k 1x 3mx 40--+-=是关于x 的一元二次方程,则 K= .(备注:m 改成K )5.已知m 是方程2x 3x 1+=的根,则26m 2m 2013++= , 221a a += . 二、解下列方程:1.()23x 3480+-=; 2.22x 8x 10--=(用配方法); 3.()3x x 242x -=-; 4.()()2292a 543a 1-=-; 5.()()222x 53x 540----=.三、已知a 是方程2x 2x 220x 1x 1++⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭的根,2a 2a 28a a 1a 2a 4-+⎛⎫÷- ⎪---⎝⎭的值? 四、已知c 为实数,并且2x 3x c 0-+=的一个根的相反数是方程2x 3x c 0+-=的一个根,求2x 3x c 0+-=的根和c 的值?五、在某次数字变换游戏中,我们整数0,1,2,……,200称为旧数,游戏的变换规则是:将旧数先平方再除以100,所得到的数称为“新数”;是否存在这样的旧数,经过上述规则变换后,新数比旧数大75,如果存在,请求出这个旧数:如果不存在,请说明理由.六、如图,△ABC 中,,,AC 50cm CB 40cm C 90==∠=o ,点P 从点A 开始沿AC 边向点C 以2cm /秒的速度移动,同时另一点Q 从点C 开始 以3cm /秒的速度移动沿CB 边移动. 问:几秒后,△PCQ 的面积是△ABC 面积的920? 九年级数学上期《一元二次方程》单元专题复习资料 Ⅱ2a A B O AC第2页 共2页一元二次方程根的判别式及根与系数的关系部分知识点:1、一元二次方程()2ax bx c 0a 0++=≠的根的情况是由△2b 4ac =-判别:⑴.△2b 4ac 0->() ⇔ 一元二次方程方程有两个不相等的实数根; ⑵.△2b 4ac 0-=() ⇔ 一元二次方程方程有两个相等的实数根; ⑶.△2b 4ac 0-<() ⇔ 一元二次方程方程无实数根; ⑷.△2b 4ac 0-≥() ⇔ 一元二次方程方程有两个实数根. 2、一元二次方程的根的判别式的应用常见的:①.判定根的情况;②.进行相关的证明;③.根据根的情况来确定字母的取值范围;④.配方. 3、若二次三项式2ax bx c ++是完全平方式,则△2b 4ac 0-=().4、当一元二次方程()2ax bx c 0a 0++=≠根为12x x 、,则:,1212b cx x x x a a+=-⋅=.5、了解方程()2ax bx c 0a 0++=≠的根与系数关系定理(韦达定理)的应用常见的类型: ①.判定根的情况(注意含字母系数的一元二次方程); ②.已知一根,求另一根和待定字母的值;③.已知两根写出方程设两根为12x x 、,则()21212x x x x x x 0-++⋅=;④.求两根之和与积为结构的代数式的值〔注意各种变形,如:()222121212x x x x 2x x +=+-,()()22121212x x x x 4x x -=+-12x x -〕;⑤.进行相关的证明;⑥、根据两根的某种特殊关系求待定字母的值〔在一元二次方程()2ax bx c 0a 0++=≠〕有根的情况下,若两根互为相反数,则b 0=;两根互为倒数,则a c =〕.例题解析:例1、不解方程判定下列关于x 的方程根的情况:⑴.+=24x 912x ; ⑵.()2x 2mx 4m 10-+-=; ⑶.()()22x a 5x a 20++++=. 例2、已知关于x 的方程2222k x k 42kx x ++=-,求证:此方程无实数根.例3、关于x 的方程()2a 2x 2x 10--+=有两个不相等的实数根,求a 的取值范围? 例4、已知方程24x 8x 10--= 的两根是12x x 、,不解方程,求下列代数式的值:⑴. 2212x x +; ⑵.1211x x + ; ⑶.2112x x x x +; ⑷.()212x x -; ⑸.12x x -例5、k 为何值时,方程28x kx x k 70-++-=.⑴.两根互为相反数;⑵.两根互为倒数.课外选练:1、已知方程22x ax 40--=的两根为12x x 、,且12112x x +=,那么a 的值等于 ( ) A.4 B.4- C.8 D.8- 2、已知关于x 为未知数的方程2x 3x m 0++=有两个相等的实数根,那么m = . 3、关于x 的一元二次方程()()22k 1x 2k 1x 10+-++=有实数根,则k 的取值范围 .4、二次三项式()225x m 2x 1+-+是完全平方式,m = .5、在一元二次方程()2ax bx c 0a 0++=≠,若2b 4ac 0-≥:⑴.有一根为0,则c = ;⑵.有一根为1,则a b c ++ = ;⑶.有一根为-1,则a b c -+= ;⑷.若两根互为相反数,则b = ;⑸.若两根互为倒数,则c = .6、以44+x 一元二次方程方程是: . 7、若,a b 是2220140x x +-=的两个不相等的实数根,则23a a b ++= . 8、已知23x 6x 7++.⑴.证明:无论x 取何值,23x 6x 7++都恒大于0;⑵.求出23x 6x 7++的最小值.9、关于x 的方程22x mx 60--=的一个根是3,则m = ,另一根为 . 10、关于x 的一元二次方程()22x ax 4x 60--+=没有实数根,求a 的最小整数值. 11、关于x 的一元二次方程()222x a 4a x a a 10+++--=的两根互为相反数,求a 的值. 12、已知a b c 、、是△ABC 的三边长,且方程()()+22a 1x 2bx c 1x =--的两根相等,判断此三角形的形状.13、关于x 的一元二次方程()()2mx 2m 1x m 20m 0--+-=>⑴.求证:此方程有两个不相等的实数根;⑵.如果这个方程的两个实数根分别为12x x 、,且()()=12x 3x 35m --,求m 的值. 14、已知关于x 的一元二次方程()22x 3k 1x 2k 2k 0-+++=.⑴.求证:无论k 取何实数值,方程总有实数根;⑵.若等腰△ABC 的一边长a 6=,另两边长b c 、恰好是这个方程的两个根,求此三角形的三边长?15、若两个一元二次方程+2x mx 10-=和+2x x m 20+-=有且只有一个相同的根,求m 的值及方程相异的根.16、已知关于x 的一元二次方程+2x 4x a 0+=11a 4-.17、已知斜边为10的直角三角形的两直角边a b 、为方程2x mx 3m 60-++=. ⑴.求m 的值;⑵.求直角三角形的面积和斜边上的高.。