白噪声通过线性系统
通信原理复习题-13通信

13通信工程《通信原理》复习题一、填空1.某四进制系统,4秒钟传输4800个四进制符号,则此系统的传码率R B4=,传信率R b=。
2.模拟调制系统的抗噪声性能主要用来衡量;数字调制系统的抗噪声性能主要用来衡量。
3.AM 调制的可靠性用衡量;DPSK 的可靠性用衡量。
4.某通信系统采用四进制数字序列传输方式,每传输一个码元需T=250×10-6s 时间,其传信率为,码元速率为,若传输了5s ,检测到50个码元误码,其误码率为。
5.八进制数字通信系统的误码率为10-5,系统的传输速率为600b/s ,则接收端在_______h 内能接收到144个错误码元。
6.已知能量信号f(t)的傅氏变换为F(w),则根据帕塞瓦尔定理可得其能量为E==。
7.设一数字传输系统传送16进制码元,码元传输速率为2400波特,则此时系统的信息传输速率为;如果系统的误码率为10-4,则1小时内错误的码元个数为;如果系统的误比特率为2.5×10-5,则10分钟内错误的比特个数为。
1.1200B ,2400b/s 2.信噪比,误码率 3.信噪比,误码率4.8000,4000,2.5×10-35.206.,7. 9600b/s , 864 ,21.61.在分析信道时,根据乘性干扰k(t)是否随时间变化,将信道分为_____信道和信道。
2.无失真传输系统的传输函数H 〔w 〕=____ 。
1.恒参,随参 2.3.已知调制信号 ,载波为t π410cos 2,则其DSB信号的表达式为。
4. 将n 路频率X 围为0.3~4KHz 的话音信号用FDM 方法进行传输,若采用AM 调制方式则n 路话音信号的最小传输带宽为,若采用SSB 调制方式则n 路话音信号的最小传输带宽为。
〔不考虑防护频带〕8nKHz ,4nKHz5.已知 ,设调频器灵敏度为 ,试求其已调波功率、载频、最大频偏、已调波带宽、调制信号表达式。
(完整版)随机信号处理考题答案

填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F(+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。
1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。
3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。
4.冲激响应满足分析线性输出,其均值为_____________________。
5.偶函数的希尔伯特变换是奇函数。
6.窄带随机过程的互相关函数公式为P138。
1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。
高斯白噪声平稳过程过线性系统

E
h u
X
t1
u
du
h v X
t 2
v dv
E
v h u h v dvdu
EX
t1
u X
t 2
v h u h v dudv
13
平稳随机过程通过线性系统
RXYt1,t2EXt1Yt2EXt1 Xt2uhudu EXt1Xt2uhudu RXt2t1uhudu RXuhuduRXhRXY
所以,X(t)和Y(t)的互相关函数为:RXYRXh X(t)和Y(t)的互功率谱密度为: PXYPXH
则X1和X2均为期望为0的高斯随机过程
若 1 t与 2 t在 0 ~ T 内正 0 T 交 1 t2 , td t0 即
则X1和X2不相关且独立。
4
平稳随机过程通过线性系统
设:
X(t)为平稳随机过程,线性系统的单位冲激响应为h(t), X(t) 通过线性系统后的输出为Y(t)。
高斯白噪声
高斯白噪声的性质:设n(t)为高斯白噪声
1、自相关函数: Rnn20
可见,n(t)只在 0 时才相关,它在任意两个时刻上的随
机变量都是互不相关的
2、数学期望:E[n(t)]=0
3、对高斯随机过程,不相关和独立等价
1
高斯白噪声
Pn(ω)
n0/2
0
ω
(a)
Rn(τ ) n0/2
0
τ
(b)
理想白噪声的功率谱密度和自相关函数
2
带通白噪声

显然当过程的每一个样本函数通过时不变系 统时,可表示为
y1(t) h ( )x1(t ) d
yn (t) h ( ) xn (t ) d
此时系统的输出可表示为 Y (t) {y1(t),}, yn (t), 即系统的输入与输出可表示为
RY (t,t ) E [Y (t )]
E
h(1)
h(
2
)Байду номын сангаас
X
(t
1)X
(t
2
)
d1d
2
E
h(1)
h(
2
)
X
(t
1)
X
(t
1)d1d
2
) e d j(21)
h(1)
e
j1
d1
h( 2 )
e
d j2 2
RX
()
e
jd
H ()H ()GX () GX ()H ()H ()
GX () H 2
5. 系统的输入输出的互谱密度
通过对(6.15)式求付氏变换,并利用
GY () GX () H() 2,可以得到系统输出的功率 谱密度为
这里假设输入信 号为有界平稳过程
E [Y (t] h( ) E [X (t )] d
h( )M X d M X
h ( ) d
随机信号分析_哈尔滨工程大学中国大学mooc课后章节答案期末考试题库2023年

随机信号分析_哈尔滨工程大学中国大学mooc课后章节答案期末考试题库2023年1.从随机过程的第二种定义出发,可以将随机过程看成()。
参考答案:随机变量族2.从随机过程的第一种定义出发,可以将随机过程看成()。
参考答案:样本函数族3.()是随机试验中的基本事件参考答案:随机试验的每一种可能结果4.若随机过程X(t),它的n维概率密度 (或n维分布函数)皆为正态分布则称之为高斯过程参考答案:正确5.正态随机过程的广义平稳与严平稳等价参考答案:正确6.平稳随机过程的相关时间,描述了平稳随机过程从完全相关到不相关所需要的时间,对吗?参考答案:正确7.两个平稳随机过程的互相关函数是偶函数,对吗?参考答案:错误8.平稳随机过程的自相关函数是一个奇函数,对吗?参考答案:错误9.对于一个遍历的噪声,可以通过均方值计算其总能量参考答案:错误10.偶函数的希尔伯特变换为参考答案:奇函数11.窄带高斯随机过程包络平方的一维概率密度为:参考答案:高斯函数12.白色随机过程中的“白色”,描述的是随机过程的()特征参考答案:频谱13.对于具有零均值的窄带高斯随机过程,以下哪个说法正确?参考答案:相位的一维概率密度为均匀分布_包络的一维概率密度为瑞利分布_包络和相位的一位概率密度是相互独立的14.一个实值函数的希尔伯特变换是将其与【图片】的卷积参考答案:正确15.对一个信号的希尔伯特变换,再做一次希尔伯特变换可以得到原信号本身。
参考答案:错误16.连续型随机变量X的概率密度函数fX(x)的最大取值是1?参考答案:错误17.随机变量数学期望值是随机变量取值的中值。
参考答案:错误18.问题:①客观世界中可以设计出理想带通滤波器,②理想白噪声也是存在的。
以上说参考答案:①②均错误19.具有平稳性和遍历性的双侧随机过程经过连续时不变线性系统后,输出随机过程参考答案:平稳、遍历20.正态随机过程具有以下那些性质?参考答案:若正态过程X(t)是宽平稳的,则它也是严平稳的_正态随机过程经过线性系统后其输出仍为正态随机过程。
北理工随机信号分析实验

实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。
2、实现随机序列的数字特征估计。
二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。
实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(mod ,110N ky y y n n -=N y x n n /=序列{}n x 为产生的(0,1)均匀分布随机数。
下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯; 3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。
定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。
2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列 函数:randn 用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。
研究生学位课程教学大纲-随机过程

硕士研究生学位课程教学大纲随机过程(课程名称)Stochastic Process(Course Title)课程编号:IE11001 课程性质:学位课程学分数: 3 课程总学时:48学时开课学院:信息电子学院授课教师:姚青预备知识:高等数学、概率论、线性代数一、课程学习目的及要求:随机过程是现代概率论的一个重要课题,它主要研究和探讨客观世界中随机演变过程的规律性,并应用于控制﹑通信﹑生物﹑物理﹑雷达通讯﹑地质﹑天文气象﹑社会科学等工程科学技术中。
通过本课程的学习,要求学生掌握随机过程的基本概念、随机过程的统计特征描述、随机信号通过系统分析以及电子系统中常见的窄带、正态随机信号通过系统的分析以及电子系统中常见的窄带、正态随机信号、马尔可夫过程、平稳过程、信号检测与估计等的基本理论方法,为学生在信号与信息处理领域打下扎实的理论基础,为学习后续课程以及将来的发展奠定坚实的基础。
二、主要章节与学时安排:第一章随机变量基础(6学时)教学内容与要求:掌握随机变量的基本概念,随机变量的分布函数与概率密度、数字特征、特征函数和统计特性等。
重点:随机变量的统计特性。
1.1 概率论的基本术语1.2 随机变量的定义1.3 随机变量的分布函数与概率密度1.4 多维随机变量及分布1.5 随机变量的数字特征1.6 随机变量的函数1.7 随机变量的特征函数1.8 多维正态随机变量1.9 复随机变量及其统计特性1.10 MATLAB的统计函数第二章随机过程的基本概念(9学时)教学内容与要求:要求理解和掌握随机过程的概念及定义;掌握和应用随机过程的统计描述;理解和掌握平稳随机过程、各态历经过程的概念和统计特性;掌握和应用随机过程的联合分布和互相关函数;掌握和应用随机过程的功率谱密度;理解和掌握脉冲型随机过程的统计特性分析等。
重点:随机过程的概念和统计特性、随机过程功率谱密度等等。
2.1 随机过程的基本概念及定义2.2 随机过程的统计描述2.3 平稳随机过程2.4 随机过程的联合分布和互相关函数2.5 随机过程的功率谱密度2.6 典型的随机过程2.7 基于MATLAB的随机过程分析方法2.8 信号处理实例第三章随机过程的线性变换(9学时)教学内容与要求:掌握和应用线性系统变换的基本概念和基本定理;理解和掌握随机信号的导数与积分;掌握和应用随机过程线性变换的微分方程法、随机过程线性变换的冲激响应法和频谱法;掌握和应用随机信号通过线性的分析方法;理解和掌握白噪声与等效通能带的概念和特性等。
北大随机信号分析基础课件32白噪声通过线性系统的分析与等效噪声带宽

北大随机信号分析基础课件32白噪声通过线性系统的分析与等效噪声带宽3.2 白噪声通过线性系统的分析与等效噪声带宽设线性系统的传输函数为)(ωH ,输入白噪声功率谱密度为2)(0N S X =ω,那么系统输出的功率谱密度为2)()(02N H S Y ωω=上述分析表明,若输入信号是白噪声,则输出随机信号的功率谱主要是由系统的幅频特性)(ωH 决定;系统只允许与其频率特性一致的频率分量通过,具有一定的选择性。
输出自相关函数为:ωωπωωπτωτωτd e H N d e N H R j j Y ⎰⎰∞∞-∞∞-==2002)(42)(21)(输出平均功率为:ωωπd H N R t Y E Y ⎰∞∞-==202)(4)0()]([若在保持平均功率)0(Y R 不变的条件下,把输出功率谱密度等效成一定带宽内为均匀的功率谱密度。
若等效的功率谱密度的高度为2)0(H ,则这个带宽就定义为等效噪声带宽e ω∆。
1.对于低通系统,用等效噪声带宽e ω∆表示的等效功率传输函数为:ee e H H ωωωωω∆>∆≤=)0()(22等效后系统输出的平均功率为:2020)0(2)(221)0(H N d H N R e e Y πωωωπ∆==⎰∞∞- 已知ωωπd H N R Y ⎰∞∞-=2)(4)0(可得ωωωωωππωd H H d H N H N e e ⎰⎰∞∞-∞∞-=∆=∆222020)0()(21)(4)0(2又2)(ωH 是偶函数,有ωωωd H H e ⎰∞=∆022)0()(2.若系统是以0ω为中心频率的带通系统,且功率传输函数单峰的峰值发生在20)(ωH 处。
用等效噪声带宽e ω∆表示的等效功率传输函数为:其它022)()(00202ee e H H ωωωωωωω∆+<<∆-=等效后系统输出的平均功率为:20020)(2)(221)0(ωπωωωπH N d H N R e e Y ∆==⎰∞∞- 已知等效前系统输出的平均功率为:ωωπωωπd H N d H N R Y ⎰⎰∞∞∞-=02020)(2)(4)0(= 则有ωωωωωπωωωπd H H H N d H Ne e ⎰⎰∞∞=∆∆=0202200020)()()(2)(2等效噪声带宽是用来描述系统对信号频率的选择性,并且只与系统参量有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、用于系统辨识( P90, 95) 2、色噪声(平稳过程)的产生
6
•白噪声通过理想低通系统 |H()| K0 -/2 /2
K 0 | H ( ) | 0
/ 2 / 2 other
输出物理谱(频域特征):
N0 K 2 0 / 2 2 0 FY ( ) N0 H ( ) other 0
2 0
4
cos 0
输出功率:
2 N K 2 0 0 Y RY (0) 2
11
0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 -5 -4 -3 -2 -1 0 1 2 3 4 5
相关系数:
相关时间:
2 2 Y ( ) e 4 cos0 2 2 0 e 4 d 0
2 sin N 0 K 0 2 cos RY ( ) 2 0 4 2
相关系数
输出的平均功率
用相关系数的包络(慢变化)定义输出过程的相关时间:
0
0
sin
2 d 1 2f 2
与低通滤波器输出过程的相关时间定义相同
10
•白噪声通过高斯型带通系统
8
• 白噪声通过理想带通系统 带通滤波器的频响函数:
K H ( ) 0 0
自相关函数:
2 sin N 0 K 0 2 cos RY ( ) 2 0 4 2
0
0 2 2 otherwise
H ( )
1 R ( ) 相关函数: Y 2
1 2 G ( ) cos( ) d 0 Y 2 2 sin N 0 K 0 2 4 2
0 FY () cos( )d
7
t) RY(
相关系数:
sin 2 Y ( ) 2
1 2
h( ) * h( )
H ( ) 2
RY ( )
G X ( ) G X ( ) G X ( ) 4mX 1mX 2 ( )
1 2
G
GY ( )
若两个输入任一个零均值
RX ( ) RX ( ) RX ( )
1 2
h( ) * h( )H Nhomakorabea ) 2
N0 2
( ) h( )d
N0 h( ) * h( ) 2
N0 h( ) 2
FY () N0 H ()
输出平均功率
WY
2
色 噪 声
RY ( )
h( )
2 R XY ( ) N0
N0 2 H ( ) d RY (0) 2 0
GY ( ) H ( ) G X ( )
2
2
两个随机过程之和通过线性系统
X (t ) X1(t ) X 2 (t )
R X ( )
Y (t ) Y1(t ) Y2 (t )
RY ( )
G X ( )
GY ( )
若两个输入不相关
RX ( ) RX ( ) RX ( ) 2mX 1mX 2
t
0
2 sin N 0 K 0 2 RY ( ) 4 2
相关时间:
0
0
sin
2 d 2 1 2 2f 2
输出功率:
2 R (0) Y Y 2 N0 K0 4
输出随机过程的相关时间与 系统的带宽成反比
随机信号通过线性系统输入输出相关函数关系
R X (t1 , t 2 )
RXY (t1 , t 2 )
h (t 2 )
h ( t1 )
RY (t1 , t 2 )
R X (t1 , t 2 )
平稳情况
h ( t1 )
RYX (t1 , t 2 )
h (t 2 )
RY (t1 , t 2 )
RX ( )
RY ( ) RY ( ) RY ( ) 1 2
G X ( ) G X ( ) G X ( )
1 2
GY ( ) GY ( ) GY ( ) 1 2
3
第十二讲
主要内容: 白噪声通过线性系统的特性分析 等效噪声带宽
4
为什么研究白噪声通过线性系统
1、由于白噪声在数学上有很好的性质,利用白噪声作 为实际噪声的模型,任何随机信号与白噪声结合都会使 分析简单化。 2、任何一个平稳随机信号都可以看作是白噪声通过某 个线性系统的输出,要研究平稳随机信号的统计特性,
h ( )
R ( ) ) R YX XY (
h ( ) h ( )
RY ( )
R X ( )
h ( )
R (t1 , t 2)) R ( YX XY
RY ( )
1
输出的频域统计特性
G XY ( ) G X ( ) H ( )
GYX ( ) G X ( ) H ( )
可以通过对白噪声通过系统的输出进行分析来实现
3、研究白噪声通过系统的输出来衡量系统性能
5
1、白噪声通过线性系统的特征分析 频域 时域
N0 ( ) 2
R X ( ) N0 ( ) 2
GX
N0 GXY ( ) H ( ) 2
R XY ( )
输出信号的功率谱 2 N0 GY ( ) H ( ) 2
包络: a( )
2
2
2
2
输出信号的功率谱
2 K N 0 0 0 FY ( ) 0 2 2 otherwise 0
计算任一高频带通滤波器的 输出相关函数,先用等效低
频系统代替,在乘上 cos(0 )
9
• 白噪声通过理想带通系统
H ( )
K0
( 0 ) 2 | H ( ) | K 0 exp 2 2
0
0
2
2 ( ) 2 0 输出功率谱: FY ( ) N 0 H ( ) N 0 K 0 exp 2 2 2
相关函数:
N0 K RY ( ) e 2