空间向量的基本定理
空间向量的基本定理

是不共面的三个向量,请问向量
AC' 与它们是什么关系?
A
AC' AB AD AA'
B
问题2:
D’ C’
D C
如果向量 AB AD AA' 分别和向量a、b、c共线,
能否用向量a、b、. c表示向量 AC' ?
AC'=xa+yb+zc
一、空间向量基本定理
如果三个向量a、b、c不共面,那么对于空间任一
OB
B’
故实数x、y、z是唯一的.
A
A’
P’
二、几个基本概念:
空间任一向量均可以由空间不共面的三个向量 生成,我们把{a、b、c}叫做空间的一个基底, a、b、c都叫做基向量.
说明:
①空间任意三个不共面的向量都可以构成空间的 一个基底.
②三个向量不共面就隐含着它们都不是零向量. (零向量与任意非零向量共线,与任意两个非零 向量共面)
OB OC
1 2
OA
OG
1
OA
1 OB
1
A
OC.
633
O
G C N
B
三、课堂练习:
1、以知向量a,b,c是空间的一个基底,从a,b,c中 选一个向量,一定可以与向量p=a+b,q=a-b构成空 间的另一基底? c
2、设空间四边形OABC,点M,N分别是边OA,BC,的中点,
开封市第二实验高中:孙义章
一、复习引入
1、平面向量基本定理:
同一平面内两个不共线的非零向量a、b, 对平面内任意向量p,有且只有一对实数x,
y,使:
p= xa+yb .(a、b称基底)
空间向量的基本定理

a, =b, =c,p是CA '的中点,M是CD'的中 AD AA' 点,N是C' D'的中点,点Q在CA'上,且
A 1 1)AP (a b c) ; 2 B 2)AM 1 a b 1 c P 2 2 1 A 3)AN a b c 2
1 1 4 a b c 4) AQ 5 5 5 B
空间向量基本定理
复习:
共线向量定理:
对空间任意两个向量a、 b 0), b的 ( b a// 充要条件是存在实数λ,使a =λ 。 b
共面向量定理:
如果两个向量a,b不共线,则向量p与向量a,b 共面的充要条件是存在 实数对x,y,使 p a b。 =x +y
平面向量基本定理:
如果e1, 是同一平面内的两个不共线向量, e2 那么对于这一平面内的任一向量a,有且只有 一对实数λ,λ ,使a =λ e1+λ e2。 1 2 1 2 (e1、2叫做表示这一平面内所有向量的一组基底) e
OP OP P P OA OB P P xOA yOB zOC xa y b zc
A'
P'
可以证明此表达式是唯一的
例题:
已知空间四边形OABC,其对角线为OB, AC,M、N分别是对边OA,BC的中点,点G 在线段MN上,且使MG=2GN,用基向量OA, OB,OC表示向量OG。
CQ:QA'=4 : 1,用基底{ ,c a b, }表示以下向量:
D C
Q
M
N
D C
空间向量基本定理:
如果三个向量a、b、c不共面,那么对空 间任一向量p,存在一个唯一的有序实数 组x,y,z,使p=xa +yb+zc 。 空间所有向量的集合可表示为
向量基本定理证明

向量基本定理证明一、向量基本定理内容1. 平面向量基本定理- 如果e_1,e_2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ_1,λ_2,使a = λ_1e_1+λ_2e_2。
其中{e_1,e_2}叫做表示这一平面内所有向量的一个基底。
2. 空间向量基本定理- 如果三个向量a,b,c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p = xa+yb + zc。
{a,b,c}叫做空间的一个基底。
二、平面向量基本定理的证明1. 存在性证明- 设e_1,e_2是同一平面内的两个不共线向量,a是这一平面内的任一向量。
- 过向量a的起点O作平行于e_1,e_2的直线,与e_1,e_2所在的直线分别交于A,B两点。
- 因为e_1≠0,设→OA=λ_1e_1,同理设→OB=λ_2e_2。
- 根据向量加法的平行四边形法则,a=→OA+→OB=λ_1e_1+λ_2e_2。
2. 唯一性证明- 假设a=λ_1e_1+λ_2e_2=μ_1e_1+μ_2e_2,其中λ_1,λ_2,μ_1,μ_2∈ R。
- 则(λ_1 - μ_1)e_1+(λ_2-μ_2)e_2 = 0。
- 因为e_1,e_2不共线,所以λ_1-μ_1 = 0且λ_2-μ_2 = 0,即λ_1=μ_1,λ_2=μ_2。
三、空间向量基本定理的证明1. 存在性证明- 设a,b,c是不共面的三个向量,p是空间任一向量。
- 把向量a,b,c,p的起点都移到同一点O。
- 过点P作直线PP_1平行于c,且与平面OAB交于点P_1。
- 在平面OAB内,过点P_1作直线P_1P_2平行于b,交OA于点P_2。
- 过点P_2作直线P_2P_3平行于a,交OB于点P_3。
- 设→OP_3=x a,→P_3P_2=y b,→P_2P_1=z c。
- 由向量加法的三角形法则可得p=→OP=→OP_3+→P_3P_2+→P_2P_1=xa + yb+zc。
高二数学空间向量基本定理

例题:
如图,在平行六面体 ABCD-A ' B'C ' D '中, AB = a, AD =b, AA' =c,p是CA '的中点,M是CD'的中 点,N是C' D'的中点,点Q在CA'上,且 CQ:QA'=4 : 1,用基底{ a, b, c }表示以下向量: 1)AP ; 2)AM 3)AN 4) AQ
B1
他壹口,非说他是逼迫着她上报假情况,还说啥啊欺君之罪。好,好,你家主子可是壹次侍寝记忆都没有,现在又报不上来月信情况,那咱们现在倒是要走着瞧,看看到底是谁 在欺君!到时候不要怪我陆某人不讲情面,等我把这件事情报到福晋那里,看你月影,还有你家主子,就是壹只,噢不,就是两只没毛の鸭子――就剩嘴硬咯!第壹卷 第444章 验证排字琦盯着陆公公,又看咯看记忆册,根本不敢相信自己の耳朵:“你说月影不给你上报?”“回禀福晋,确实如此。奴才找到怡然居,月影居然还说:有就是有,没有就 是没有,假设奴才非逼着她上报,这就是欺君之罪。”排字琦の头立即大咯好几圈!这到底是啥啊情况?直觉让她立即回想起八月十五那天早上在天仙妹妹の房里见到宿酒未醒 の王爷,还有呆若木鸡の年妹妹,当时她没有多想,光顾着赶快服侍他咯,现在回想起来,才发觉那壹天实在是太过蹊跷。爷甚至连靴子都没有脱,年妹妹再没有服侍爷の经验, 也不至于连靴子都不给爷脱下吧。年妹妹呢?当时没注意看,但她壹直是蜷缩在里侧の床角,见咯她这各福晋姐姐,既没有请安,也没有上前帮助她服侍爷,相反,临走の时候 居然还让她转告:请爷从此不要再踏进半步。当时只当是她被爷教训咯壹顿,被教训傻咯,直说胡话。再有就是前几天の生辰宴,壹直吐到宴席都快要散咯,最后终究是没有回 到席上,直接回咯怡然居。唉,自己怎么这么大意,还以为是胃痛症犯咯呢,不过,天仙妹妹确实是最爱犯胃痛症呢。排字琦之所以如此疏忽大意,完全是因为那两各人简直就 是井水不犯河水,各行各の阳关道,各走各の独木桥,若说这两人有啥啊关系,谁能相信?可是现在の情况又充分说明,这两各人还真就有咯啥啊关系!可是王爷呢?怎么从来 都没有说起来过?而且侍寝记忆上没有任何记载,是另有啥啊考虑和打算,还是?搞不清状况の排字琦不敢贸然行事,虽然她不识字,可是她还是将记忆册页留下咯,待陆公公 退下去之后,她立即吩咐红莲:“赶快去苏培盛那里,让他请太医到怡然居,太医到咯以后告诉我,我要亲自去壹趟。”福晋の亲自坐镇,令张太医惊讶万分!怡然居の这各侧 福晋可是壹各从来不得宠の主子,怎么今天居然将福晋请到咯?而且苏总管也在院外候着,这是啥啊新情况?难道这各主子开始受宠咯?隔着屏风、隔着绢帕,随着脉像越来越 清晰,张太医也就渐渐地明白咯:怪不得呢,如此兴师动众,果然是这各主子开始受宠咯,原来是喜脉!送走咯张太医,排字琦意味深长地望向天仙妹妹,她真是越来越看不明 白这各迷壹般の天仙妹妹。以前受咯天大の委屈、挨咯最严厉の家法,也不见她像现在这样,整各人痴痴地、木木地,没有咯壹点儿灵气与鲜活。能够被爷宠幸,那是好些诸人 梦寐以求、求之不得の事情!得咯爷の恩宠,那可是壹辈子都享不完の荣华富贵。再说王府の子嗣壹直极为单薄,好不容易有壹各怀咯身孕の主子,这可是天大の喜事,要成为 王府の头号功臣被供奉起来。哪各院子の诸人怀咯身孕不是欣喜异常,喜不自禁,怎么就这各年妹妹,竟然是壹副心如死水の样子?第壹卷 第445章 报喜望着面色依然冷冷の 年妹妹,排字琦开口说道:“妹妹,刚刚张太医の话你可是都听到咯没有?你怎么壹点儿也不高兴呢?”“多谢姐姐,能为爷延续血脉、开枝散叶是妹妹の本分。”望着这各规 矩回话の妹妹,排字琦不由得在脑海中闪现出妹妹刚刚嫁到府里来の那段日子,那各半倚在藤萝架下の贵妃榻上,悠然自得翻书读诗の小姑娘,是何等の快乐惬意、怡然自得。 不过是才三四年の光景,那各鲜灵活泼、无忧无虑の小姑娘,却是变成咯眼前这副死气沉沉の模样,让排字琦不由得感慨万千。以前,无论王府里哪各姐姐妹妹有咯身孕,都是 刺向排字琦心头の壹根刺,会让她不主自主地想起她那早殇の小小格――晖儿。眼看着壹各壹各の小小格小格格们降生,可是他们の额娘却都不是她这各嫡福晋,幽怨、悲伤、 心痛,不壹而足。可是唯有这壹次,对于年妹妹,她壹反常态地不再是心生悲痛,心生妒忌,反而却是心生怜悯。这些年走过来,王爷和天仙妹妹之间の恩恩怨怨,她早就咯如 指掌。但是在子嗣这么重大の事情上,年妹妹仍然与王爷针锋相对、寸步不让,这让排字琦对水清又心生壹丝不满。两各人之间再有多大の矛盾和不满,作为爷の诸人,安分守 己、生儿育女,是每各女眷最大の本分。年妹妹在安分守己这方面自然是格外出挑,但是在生儿育女方面,做得实在是太不对咯。不管年妹妹の心中是如何の心不甘情不愿,事 实已经摆在咯这里,子嗣问题可是王府天大の事情,排字琦必须第壹时间禀报给王爷,于是她人还在怡然居里呢,就当着水清の面吩咐红莲:赶快给朗吟阁传话,爷回来后她需 要立即求见。今天王爷回来得不算晚,没壹会儿排字琦就得到咯秦顺儿传来の回信儿,于是她片刻未敢耽搁,带上记忆册页就和红莲两人直奔朗吟阁。“给爷请安。”“起来吧, 今天有啥啊事情这么着急?”“回爷,今天,今天陆公公来找妾身。”“哪各陆公公?”“就是,负责侍寝记忆の陆公公。”“怎么,他能有啥啊事情?”排字琦见王爷壹脸错 愕の样子,只好硬着头皮将小陆子禀报の情况又原封不动地跟他说咯壹遍。说完之后,排字琦难以置信地发现,王爷居然更是壹脸错愕の表
空间向量的定义和基本定理

空间向量的定义和基本定理一、空间向量的定义和基本定理1、空间向量与平面向量一样,在空间中,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模。
2、空间向量基本定理(1)共线向量定理定理:对空间任意两个向量$\boldsymbol a$,$\boldsymbol b$($\boldsymbolb$≠0),$\boldsymbol a∥\boldsymbol b$的充要条件是存在实数$\lambda$,使$\boldsymbol a$=$λ\boldsymbol b$。
推论:如果$l$为经过已知点$A$且平行于已知非零向量$\boldsymbol a$的直线,那么对空间任一点$O$,点$P$在直线$l$上的充要条件是存在实数$t$,使$\overrightarrow{O P}=\overrightarrow{O A}+t\boldsymbol \alpha$①。
其中向量$\boldsymbol a$叫做直线$l$的方向向量。
在$l$上取$\overrightarrow{A B}=\boldsymbol a$,则①式可化为$\overrightarrow{O P}=\overrightarrow{O A}+t\overrightarrow{A B}$或$\overrightarrow{O P}=(1-t)\overrightarrow{O A}+t\o verrightarrow{O B}$②。
当$t=\frac{1}{2}$时,点$P$是线段$AB$的中点,则$\overrightarrow{OP}=\frac{1}{2}(\overrightarrow{O A}+\overrightarrow{O B})$③。
①②式都叫做空间直线的向量表示,③式是线段$AB$的中点公式。
(2)共面向量定理定理:如果两个向量$\boldsymbol a$,$\boldsymbol b$不共线,那么向量$\boldsymbol p$与向量$\boldsymbol a$,$\boldsymbol b$共面的充要条件是存在唯一的有序实数对($x$,$y$),使$\boldsymbol p$=$x\boldsymbol a$+$y\boldsymbol b$。
空间向量的基本定理空间向量的基本定理

空间向量的基本定理空间向量的基本定理一、引言空间向量是三维空间中的一个有向线段,是研究几何、物理等学科中经常使用的基本概念。
在研究空间向量的性质和应用时,需要掌握空间向量的基本定理。
二、定义1. 空间向量的表示在三维空间中,一个向量可以用它的起点和终点表示。
设点A(x1,y1,z1)和点B(x2,y2,z2)是三维空间中的两个点,则以A为起点,B为终点的有向线段AB就是一个向量,记作AB。
2. 空间向量的加法设有两个非零向量a和b,在它们各自平移后所在直线上任取一点P 和Q,并以它们为对角线作平行四边形,则以P为起点,Q为终点所得到的有向线段就是a+b。
3. 空间向量的数乘设k为实数,k与非零向量a相乘所得到的新向量记作ka。
当k>0时,ka与a同方向;当k<0时,ka与a反方向;当k=0时,ka=0。
4. 两个非零向量共线如果两个非零向量a和b共线,则存在实数k使得b=ka。
5. 两个非零向量垂直如果两个非零向量a和b垂直,则它们的数量积为0,即a·b=0。
三、基本定理1. 平面向量的基本定理对于任意两个非零向量a和b,有以下三个结论:(1)a+b=b+a(交换律)(2)(a+b)+c=a+(b+c)(结合律)(3)k(a+b)=ka+kb(分配律)这些结论称为平面向量的基本定理。
2. 空间向量的基本定理对于任意三个非零向量a、b和c,有以下六个结论:(1)a+b=b+a(交换律)(2)(a+b)+c=a+(b+c)(结合律)(3)k(a+b)=ka+kb(分配律)这些结论与平面向量的基本定理相同。
(4)a+(–a)=0对于任意一个非零向量a,存在唯一一个与之相反的向量–a,使得它们相加等于零向量0。
(5)(–1)a=–a对于任意一个非零向量a,存在唯一一个与之相反的向量–a,使得它们相加等于零向量0。
而且当k=-1时,ka=-a。
这些结论称为空间向量的基本定理。
四、证明1. 平面向量的基本定理的证明(1)a+b=b+a由向量加法的定义可知,a+b和b+a的起点和终点相同,因此它们相等。
空间向量基本定理

O
(3)是线段AB的中点公式
二、共面向量
(1).已知平面α与向量 a,如果 向量a 所在的直线OA平行于
a
O
A
平面α或向量 a在平面α内,那 么我们就说向量 平a 行于平面
a
α,记作 //aα.
α
(2)共面向量:平行于同一平面的向量 思考: 空间任意两个向量是否一定共面? B 空间任意三个向量哪?
A D
C
(3) 共面向量定理:
如果两个向量 a 、b不共线, 则向量 与向p 量 a 、共b
B b
p
P
面的充要条件是存在实数 对x、y,使
M a A A'
p xa yb
O
推论:空间一点P位于平面MAB内的充分必要条件是存在有 序实数对x、y,使
MP = xMA + yMB 或对空间任一定点O,有
MG
1 OA 2
2 3
MN
M
1 OA 2 (ON OM )
A
GC N
2
3
1 OA 1 OB 1 OC
6
3
3
B
练习
1.已知空间四边形OABC,点M、N分别是
边OA、BC的中点,且OA a,OB b ,
OC c,用 a , b , c 表示向量 MN
O M
MN 1 OB 1 OC 1 OA 222
C
OG
1
a b
1
c
2
2
A
B
3 如图,在平行六面体 ABCD ABCD中,E, F,G 分 新疆 王新敞 奎屯
别是 AD, DD, DC 的中点,请选择恰当的基底向量 证明:
(1) EG // AC
3.2 空间向量基本定理(课件)高二数学(沪教版2020选择性必修第一册)

Ԧ
,μ,使
Ԧ = 1 + μ 2 .
若 1 , 2 不共线,我们把{1 , 2 }叫做表示这一平面内所有向量的一个基
底.
例题1.如图3- 2- 2,在长方体ABCD-A1B1C1D1 中,点E是棱AA1 的中点,
点O是面对角线BC1 与B1C的交点,试判断向量
发的三条棱所对应的向量作为基底.
03
空间向量基本定理的应用
1.如图,在正方体ABCDA1B1C1D1中,E,F分别是BB1,D1B1的中点,求
证:EF⊥AB1.
→ =a,AA
→ =b,AD
→ =c,则EF
→ =EB
→ +B→F=1(BB
→ +B→D )
证明:设AB
1
1
1
1
1 1
2
1 → → 1 → → → 1
情况一:a,b,Ԧc共面
情况二:a,b,Ԧc不共面
三个两两垂直的向量
对于任意三个不共面的向量能否表示空间中任意向量,我们先从空间中三个
不共面的向量两两垂直这一特殊情况开始讨论.
P
k
O
i
α
j
Q
能够表示为
Ԧ + Ԧ + 吗?
三个两两垂直的向量
k
i
xi
j yj
P
zk
zk
k
i
xi
3
3
3
3
CE ∙ AD = b
,∴ CE ⊥ AD,即CE⊥ A’D .
1
+ cԦ
2
∙ −Ԧc
1
+ b
2
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量基本定理:
如果三个向量a,b,c不共面,那么对空 间任一向量p,存在一个唯一的有序实数 组x,y,z,使p=xa+yb+zc. 任意不共面的三个向量都可做为空间的一 个基底.
推论:设o,A,B,C是不共面的四点,则对 空间任一点P,都存在唯一的有序实数对x,y, z,使op=x oA+yoB+zoC.
证明
P C O A A' P' B B'
例题 已知空间四边形OABC,其对角线为OB,AC, , M,N,分别是对边OA,BC的中点,点G在 线段MN上,且使MG=2GN,用基向量OA, OB OC OB,OC表示向量OG. OG
O M A
G N B
C
习题:
如图,在平行六面体 ABCD-A B C D 中, = AB
' ' ' '
a, =b, =c,p是CA'的中点,M是CD'的中 AD AA' 点,N是C' D'的中点,点Q在CA'上,且 CQ:QA'=4 : 1,用基底{ ,c a b, }表示以下向量: 1)AP ;
空间向量基本定理
复习:
共线向量定理. 共线向量定理.
对空间任意两个向量a, b ≠ 0),// b的 ( b a 充要条件是存在实数λ,使a=λ b.
共面向量定理. 共面向量定理.
如果两个向量a, b不共线,则向量p与向量a, b 共面的充要条件是存在实数对x,y,使 p=x a+yb.
平面向量基本定理:
B' A'
N Q P
D' C'
M
2)AM 3)AN 4) AQ
B A
D C
�