c内存分配

合集下载

使用C语言技术进行内存管理的方法

使用C语言技术进行内存管理的方法

使用C语言技术进行内存管理的方法使用C语言进行内存管理的方法在编程中,内存管理是一个非常重要的问题。

合理地管理内存可以提高程序的性能和效率,避免内存泄漏和内存溢出等问题。

本文将介绍一些使用C语言技术进行内存管理的方法。

1. 动态内存分配动态内存分配是C语言中常用的内存管理技术之一。

通过动态内存分配,我们可以在程序运行时根据需要动态地分配和释放内存。

C语言提供了几个函数来进行动态内存分配,如malloc、calloc和realloc。

其中,malloc函数用于分配指定大小的内存空间,calloc函数用于分配指定数量的相同大小的内存空间,并将其初始化为0,realloc函数用于重新分配已分配内存的大小。

2. 内存释放动态分配的内存在使用完毕后必须及时释放,以免造成内存泄漏。

C语言中使用free函数来释放动态分配的内存。

当不再需要使用某块内存时,应该调用free函数将其释放,以便系统可以重新利用该内存。

3. 内存回收除了手动释放内存外,C语言还提供了一种自动回收内存的机制,即垃圾回收。

垃圾回收是一种自动管理内存的技术,它会自动检测和回收不再使用的内存,避免程序员手动释放内存的繁琐工作。

C语言中并没有内置的垃圾回收机制,但可以使用第三方库或框架来实现自动内存回收。

4. 内存池内存池是一种用于管理内存的数据结构,它可以提高内存分配和释放的效率。

内存池将一块较大的内存空间划分为多个小块,每次分配和释放内存时,只需要在内存池中进行操作,而不需要频繁地向系统申请和释放内存。

内存池可以减少内存碎片和系统调用的次数,提高程序的性能。

5. 内存对齐内存对齐是一种对齐内存访问的规范,可以提高内存访问的效率。

在C语言中,结构体和数组的内存对齐是由编译器自动完成的,但对于动态分配的内存,我们需要手动进行内存对齐。

可以使用C语言的一些特性来实现内存对齐,如使用宏定义来指定对齐方式,使用特定的数据类型来保证内存对齐。

6. 内存检测工具为了帮助程序员检测和调试内存相关的问题,C语言提供了一些内存检测工具,如valgrind和GDB。

C语言技术中的内存管理和垃圾回收技巧

C语言技术中的内存管理和垃圾回收技巧

C语言技术中的内存管理和垃圾回收技巧在计算机编程领域中,内存管理和垃圾回收是至关重要的技术。

C语言作为一种高效的编程语言,对于内存管理和垃圾回收的实现有着独特的方法和技巧。

本文将探讨C语言中的一些内存管理和垃圾回收技巧,以帮助开发人员更好地利用和管理内存资源。

一、静态内存分配和动态内存分配在C语言中,内存可以通过静态内存分配和动态内存分配两种方式进行管理。

静态内存分配是指在编译时确定内存的分配和释放,而动态内存分配则是在程序运行时根据需要进行内存的分配和释放。

静态内存分配适用于那些在程序整个生命周期内都需要存在的变量和数据结构。

这些变量和数据结构在编译时就被分配好了内存空间,并在程序运行期间一直存在。

静态内存分配的好处是速度快,但是缺点是浪费内存资源,因为这些内存空间可能在某些时候并不被使用。

动态内存分配则更加灵活,可以根据实际需要动态地分配和释放内存。

C语言提供了一些内存管理函数,如malloc、calloc和realloc,用于动态分配内存空间。

这些函数可以根据需要分配指定大小的内存,并返回一个指向该内存的指针。

使用完毕后,可以通过调用free函数来释放这些内存空间,以便其他部分可以重新利用。

动态内存分配的好处是节省内存资源,但是需要开发人员自己负责内存的管理,否则容易出现内存泄漏等问题。

二、内存泄漏和内存溢出内存泄漏是指在程序运行时分配了内存空间,但在不再使用时未能及时释放,导致这部分内存无法再次被利用。

内存泄漏会导致程序占用过多的内存资源,从而降低系统的性能和稳定性。

内存溢出则是指程序在申请内存空间时,超出了系统或进程所能提供的最大内存限制。

当程序试图分配超过系统或进程限制的内存时,会导致内存溢出。

内存溢出可能导致程序崩溃或产生未定义的行为。

为了避免内存泄漏和内存溢出的问题,开发人员需要注意以下几点:1. 动态内存分配后,必须在使用完毕后及时调用free函数释放内存。

2. 在循环中进行动态内存分配时,需要确保每次循环都释放之前分配的内存,以避免内存泄漏。

c语言malloc函数

c语言malloc函数

c语言malloc函数
malloc函数:
【介绍】
malloc函数是一种C语言标准库函数,全称为memory allocation,即内存分配,是一种不改变内存中已有存储数据、即在程序执行期间申请内存空间的方法。

它为程序提供动态临时存储。

【原型】
void *malloc(size_t size);
【参数】
size:指定申请空间的大小(单位:字节byte)
【返回值】
若申请成功,则返回新分配的指针;否则,返回空指针NULL。

【应用】
1、实现动态内存的分配:malloc用于动态申请内存空间,尤其适用在现在或将来未知的变量空间大小;
2、实现复杂的结构体的存储:如果内存大小有变化的话,malloc可以根据需要重新分配内存来实现复杂的结构体的存储;
3、实现对位对大小的空间的分配:malloc函数可以连续分配满足申请
需求的内存块,可以根据实际需求实现对大小的设置;
4、实现指向函数指针的存储:malloc能够为指向函数的指针申请空间,从而更好地支持C中的函数指针技术;
5、实现对不明确大小的数组存储:malloc函数还可以应用于不明确元
素个数的数组存储,动态调整存储空间大小,可以实现动态数组;
6、实现多维数组的存储:malloc函数可以实现多维数组的存储,函数
会将一块指定大小的空间进行切分,以便实现多维数组的存储。

【说明】
malloc函数将一块连续地址的内存空间分配给程序使用,因此,在使
用malloc函数申请内存的时候,申请的空间的大小受到操作系统当前
的内存剩余量的影响。

C语言中多维数组的内存分配和释放(malloc与free)

C语言中多维数组的内存分配和释放(malloc与free)

C语言中多维数组的内存分配和释放(malloc与free)的方法
写代码的时候会碰到多维数组的内存分配和释放问题,在分配和释放过程中很容易出现错误。

下面贴上一些示例代码,以供参考。

如果要给二维数组(m*n)分配空间,代码可以写成下面:
(注意红色部分)
释放应该是:
如果为三维数组(m*n*p)分配空间呢,应该是:
释放代码为逆过程,具体代码为:
三维以上的多维数组的分配和释放,原理与上面的一样。

C中如何为第二维长度固定的二维数组分配内存
在所写的代码中,有时需要为一个二维数组分配内存,该二维数组的第一维长度不定,而第二维是固定(类似arr[n][3]的数组)。

我们可以想到的是用双指针代替数组,当然可以;也可以直接对n赋值后,直接定义arr[n][3] (C99标准支持),但这里要说的是另一种方法。

这里以将点云数据读入二维数组为例,由于点云点数n不定,可以确定的是,点是三维点,可以用以下方式定义并分配内存:
double (*arr)[3] = malloc (n*3*sizeof(double));
但在VC编译环境下,将会报错——无法从“void *”转换为“double (*)*3+” ,此时应该在malloc函数之前进行类型转换,应该如何转换呢?怎样转换才能成double (*)[3]类型呢,可以进行如下转换:
double (*arr)[3] = (double ((*)[3]))malloc (n*3*sizeof(double));。

c++内存分配机制

c++内存分配机制

C++的内存分配机制可以分为四个区域:堆区、栈区、全局/静态存储区和常量存储区。

1. 堆区:动态内存分配区,程序在运行时可以向该区域申请一定大小的内存,用malloc或new来申请,用free或delete来释放。

2. 栈区:存放函数的参数值和局部变量,由编译器自动分配和释放,其操作方式类似于数据结构中的栈。

3. 全局/静态存储区:全局变量和静态变量被存放在此区域中,包括初始化的全局变量和静态变量(空白初始化的全局变量和静态变量也会被存放在此区域),全局变量和静态变量在程序整个运行期间一直被保留。

4. 常量存储区:常量被存放在此区域中,不允许修改。

C++内存分配机制遵循二八定律,即80%的内存空间被80%的程序所使用,而剩下的20%的内存空间则被浪费。

因此,在编写C++程序时,应该尽可能地利用好内存空间,避免内存空间的浪费。

c语言动态分配的用法

c语言动态分配的用法

c语言动态分配的用法C语言中,动态内存分配是通过使用malloc、calloc和realloc等函数来实现的。

动态分配内存可以根据程序运行时的需要来动态分配和释放内存空间,提高程序的灵活性和效率。

1. malloc函数:用于在堆(heap)中分配指定大小的内存空间。

其函数原型为void* malloc(size_t size),其中size为要分配的内存空间的大小(以字节为单位)。

例如,以下代码动态分配了一个包含5个整数的整型数组的内存空间,并将其地址赋给指针变量p:```cint* p = (int*)malloc(5 * sizeof(int));```2. calloc函数:用于在堆中分配指定数量和大小的连续内存空间,并将其初始化为零值。

其函数原型为void* calloc(size_t num,size_t size),其中num为要分配的元素个数,size为每个元素的大小。

例如,以下代码动态分配了一个包含5个整数的整型数组的内存空间,并将其地址赋给指针变量p:```cint* p = (int*)calloc(5, sizeof(int));```3. realloc函数:用于重新分配已分配内存空间的大小。

其函数原型为void* realloc(void* ptr, size_t size),其中ptr为指向已分配内存空间的指针,size为重新分配的内存空间的大小。

例如,以下代码将已分配内存空间的大小重新设置为10个整数,并将其地址赋给指针变量p:```cint* p = (int*)malloc(5 * sizeof(int));int* q = (int*)realloc(p, 10 * sizeof(int));if (q != NULL) {p = q;}```4. free函数:用于释放由malloc、calloc和realloc函数分配的内存空间。

其函数原型为void free(void* ptr),其中ptr为指向要释放的内存空间的指针。

c malloc函数

c malloc函数

c malloc函数C语言中的malloc函数是一种动态内存分配函数,它的作用是在程序运行时动态地申请一块内存空间,并返回该内存空间的指针。

malloc函数可以用于分配任意大小的内存空间,而且该空间在程序结束后会自动释放,这样就可以避免内存泄漏的问题。

malloc函数的使用方法很简单,只需要在程序中包含stdlib.h 头文件,然后调用malloc函数即可。

malloc函数的原型如下:void *malloc(size_t size);其中,size_t是一种无符号整数类型,用于表示要分配的内存空间的大小。

malloc函数返回一个指向分配内存空间的指针,如果分配失败,则返回NULL。

使用malloc函数分配内存空间的代码如下:#include <stdio.h>#include <stdlib.h>int main(){int *p;p = (int *)malloc(sizeof(int));if (p == NULL) {printf('Memory allocation failed.');exit(1);}*p = 10;printf('The value of p is %d.', *p);free(p);return 0;}在上面的代码中,首先定义了一个指向整型变量的指针p,然后调用malloc函数分配了一个整型变量的内存空间。

如果分配成功,则将该内存空间的地址赋给指针p,否则输出一条错误信息并退出程序。

接着,将整型变量的值赋为10,并输出该变量的值。

最后,调用free函数释放内存空间,防止内存泄漏。

malloc函数还可以用于分配多个连续的内存空间,其使用方法如下:#include <stdio.h>#include <stdlib.h>int main(){int *p;int n, i, sum = 0;printf('Enter the number of integers you want to allocate: ');scanf('%d', &n);p = (int *)malloc(n * sizeof(int));if (p == NULL) {printf('Memory allocation failed.');exit(1);}for (i = 0; i < n; i++) {printf('Enter an integer:');scanf('%d', &p[i]);sum += p[i];}printf('The sum of the integers is %d.', sum);free(p);return 0;}在上面的代码中,首先提示用户输入要分配的整型变量的个数,然后调用malloc函数分配n个整型变量的内存空间。

c语言cpu分配内存的原则

c语言cpu分配内存的原则

c语言cpu分配内存的原则:
以下是一些关于C语言中内存分配的原则:
1.静态存储区:这部分内存是在程序编译时分配的,包括全局变量和静态变量。

这些
变量的生命周期是整个程序的执行期间。

2.栈内存:这部分内存是在程序执行期间动态分配的,主要用来存储函数调用的局部
变量和函数参数。

当函数执行结束时,这部分内存会自动释放。

3.堆内存:这是动态内存分配区域,通过malloc,calloc等函数分配。

当不再需要这部
分内存时,应使用free函数释放。

需要注意的是,如果不正确地使用这些函数(例如,试图释放同一块内存两次或者在释放内存后继续使用它),可能会导致程序崩溃或未定义的行为。

4.代码段:也称为文本段,这是用来存储程序的二进制代码的区域。

这部分内存通常
不可写,因为它是只读的,以防止程序意外地修改其指令。

5.运行时内存分配:C语言标准库提供了一些函数用于在运行时动态分配和释放内存,
如malloc()、calloc()、realloc()和free()。

这些函数允许程序员在运行时分配和释放内存,这在处理大量数据或需要根据程序运行情况动态调整数据结构大小时非常有用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

c/C++内存分配作者:来源:csdn 发布者:admin时间:2009-07-09 12:50:19 点击:3883一、预备知识—程序的内存分配一个由c/C++编译的程序占用的内存分为以下几个部分1、栈区(stack)—由编译器自动分配释放,存放函数的参数值,局部变量的值等。

其操作方式类似于数据结构中的栈。

2、堆区(heap)—一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。

注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。

3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。

- 程序结束后有系统释放4、文字常量区—常量字符串就是放在这里的。

程序结束后由系统释放5、程序代码区—存放函数体的二进制代码。

例子程序这是一个前辈写的,非常详细//main.cppint a = 0; 全局初始化区char *p1; 全局未初始化区main(){int b; 栈char s[] = "abc"; 栈char *p2; 栈char *p3 = "123456"; 123456\0在常量区,p3在栈上。

static int c =0;全局(静态)初始化区p1 = (char *)malloc(10);p2 = (char *)malloc(20); 分配得来得10和20字节的区域就在堆区。

strcpy(p1, "123456"); 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方}二、堆和栈的理论知识2.1申请方式stack:由系统自动分配。

例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间heap:需要程序员自己申请,并指明大小,在c中malloc函数如p1 = (char *)malloc(10);在C++中用new运算符如p2 = (char *)malloc(10);但是注意p1、p2本身是在栈中的。

2.2申请后系统的响应栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。

堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。

另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。

2.3申请大小的限制栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。

这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。

因此,能从栈获得的空间较小。

堆:堆是向高地址扩展的数据结构,是不连续的内存区域。

这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。

堆的大小受限于计算机系统中有效的虚拟内存。

由此可见,堆获得的空间比较灵活,也比较大。

2.4申请效率的比较:栈由系统自动分配,速度较快。

但程序员是无法控制的。

堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。

但是速度快,也最灵活2.5堆和栈中的存储内容栈:在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。

注意静态变量是不入栈的。

当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。

堆:一般是在堆的头部用一个字节存放堆的大小。

堆中的具体内容有程序员安排.2.6存取效率的比较char s1[] = "aaaaaaaaaaaaaaa";char *s2 = "bbbbbbbbbbbbbbbbb";aaaaaaaaaaa是在运行时刻赋值的;而bbbbbbbbbbb是在编译时就确定的;但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。

比如:#includevoid main(){char a = 1;char c[] = "1234567890";char *p ="1234567890";a = c[1];a = p[1];return;}对应的汇编代码10: a = c[1];00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]0040106A 88 4D FC mov byte ptr [ebp-4],cl11: a = p[1];0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]00401070 8A 42 01 mov al,byte ptr [edx+1]00401073 88 45 FC mov byte ptr [ebp-4],al第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据edx读取字符,显然慢了。

2.7小结:堆和栈的区别可以用如下的比喻来看出:使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。

使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。

堆和栈的区别主要分:操作系统方面的堆和栈,如上面说的那些,不多说了。

还有就是数据结构方面的堆和栈,这些都是不同的概念。

这里的堆实际上指的就是(满足堆性质的)优先队列的一种数据结构,第1个元素有最高的优先权;栈实际上就是满足先进后出的性质的数学或数据结构。

虽然堆栈,堆栈的说法是连起来叫,但是他们还是有很大区别的,连着叫只是由于历史的原因。

----------------------------------------------------------------------------------------------------------------- 堆(heap)和栈(stack)是C/C++编程不可避免会碰到的两个基本概念。

首先,这两个概念都可以在讲数据结构的书中找到,他们都是基本的数据结构,虽然栈更为简单一些。

在具体的C/C++编程框架中,这两个概念并不是并行的。

对底层机器代码的研究可以揭示,栈是机器系统提供的数据结构,而堆则是C/C++函数库提供的。

具体地说,现代计算机(串行执行机制),都直接在代码底层支持栈的数据结构。

这体现在,有专门的寄存器指向栈所在的地址,有专门的机器指令完成数据入栈出栈的操作。

这种机制的特点是效率高,支持的数据有限,一般是整数,指针,浮点数等系统直接支持的数据类型,并不直接支持其他的数据结构。

因为栈的这种特点,对栈的使用在程序中是非常频繁的。

对子程序的调用就是直接利用栈完成的。

机器的call指令里隐含了把返回地址推入栈,然后跳转至子程序地址的操作,而子程序中的ret指令则隐含从堆栈中弹出返回地址并跳转之的操作。

C/C++中的自动变量是直接利用栈的例子,这也就是为什么当函数返回时,该函数的自动变量自动失效的原因(因为堆栈恢复了调用前的状态)。

和栈不同,堆的数据结构并不是由系统(无论是机器系统还是操作系统)支持的,而是由函数库提供的。

基本的malloc/realloc/free函数维护了一套内部的堆数据结构。

当程序使用这些函数去获得新的内存空间时,这套函数首先试图从内部堆中寻找可用的内存空间,如果没有可以使用的内存空间,则试图利用系统调用来动态增加程序数据段的内存大小,新分配得到的空间首先被组织进内部堆中去,然后再以适当的形式返回给调用者。

当程序释放分配的内存空间时,这片内存空间被返回内部堆结构中,可能会被适当的处理(比如和其他空闲空间合并成更大的空闲空间),以更适合下一次内存分配申请。

这套复杂的分配机制实际上相当于一个内存分配的缓冲池(Cache),使用这套机制有如下若干原因:1. 系统调用可能不支持任意大小的内存分配。

有些系统的系统调用只支持固定大小及其倍数的内存请求(按页分配);这样的话对于大量的小内存分类来说会造成浪费。

2. 系统调用申请内存可能是代价昂贵的。

系统调用可能涉及用户态和核心态的转换。

3. 没有管理的内存分配在大量复杂内存的分配释放操作下很容易造成内存碎片。

堆和栈的对比从以上知识可知,栈是系统提供的功能,特点是快速高效,缺点是有限制,数据不灵活;而堆是函数库提供的功能,特点是灵活方便,数据适应面广泛,但是效率有一定降低。

栈是系统数据结构,对于进程/线程是唯一的;堆是函数库内部数据结构,不一定唯一。

不同堆分配的内存逻辑上无法互相操作。

栈空间分静态分配和动态分配两种。

静态分配是编译器完成的,比如自动变量(auto)的分配。

动态分配由alloca函数完成。

栈的动态分配无需释放(是自动的),也就没有释放函数。

为可移植的程序起见,栈的动态分配操作是不被鼓励的!堆空间的分配总是动态的,虽然程序结束时所有的数据空间都会被释放回系统,但是精确的申请内存/释放内存匹配是良好程序的基本要素。

相关文档
最新文档