材料力学 (陪浙大 刘鸿文 第五版)14 静不定结构 完整版共66页
合集下载
刘鸿文版材料力学课件全套

0.8m
B C
Fmax
FRCx C FRCy
d
1.9m
例题2.2 悬臂吊车的斜杆AB为直径
d=20mm的钢杆,载荷W=15kN。当W A 移到A点时,求斜杆AB横截面上的
应力。
解:当载荷W移到A点时,斜杆AB
受到拉力最大,设其值为Fmax。
讨论横梁平衡 Mc 0
W
Fmax Fmax sin AC W AC 0
例 1.1 钻床 求:截面m-m上的内力。
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F A
pm
F A
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
1、截面法求内力
F (1)假想沿m-m横截面将
杆切开
(2)留下左半段或右半段
F (3)将弃去部分对留下部分
的作用用内力代替
(4)对留下部分写平衡方程 求出内力即轴力的值
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
x
切应变(角应变)
M点处沿x方向的应变: M点在xy平面内的切应变为:
x
lim
x0
s x
g lim ( LM N)
MN0 2
ML0
类似地,可以定义 y , z ,g 均为无量纲的量。
(精品)材料力学课件:静不定问题分析-1

4 - 24 + 3 = -1
5 - 24 + 3 = 0
6 - 24 + 3 = 1
Page4
平面刚架: 三度内力静不定
断开:内力静定
刚性连接:多了三 个约束
两度内力静不定
六度内力静不定
四度内力静不定
封闭框架三内,加一铰减一,加一刚接杆加三,加一铰支杆加一
Page5
平面曲杆:
三度内力静不定 两度内力静不定 ➢ 例:判断内力静不定度
Page2
➢ 外力静不定
存在多余外部约束
外力静不定(一度)
外力静不定(三度)
外力静不定(六度)
平面静定结构: 3个约束 空间静定结构: 6个约束
Page3
➢ 内力静不定 存在多余内部约束 平面桁架:
内力静不定度 = m - 2n + 3 m: 杆数 n: 节点数
外力静定 内力静不定(一度)
几何可变
M( x3 ) (N P)x3
单位载荷状态:
B
C
1
D
M(
x1 )
1 2
x1
M(
x2
)
1 2
x2
1
A
H
M ( x3 ) x3
m / m
1 EI
(2
N 4
a3 3
(N
P)
a3 3
)
a EA
N
m/m 0
N 5P 9
Page26
B
a
A
B
A
a
a
EI C EI EA
H
EI
P
C
D
➢ 求节点H的垂直位移:
选取单位载荷状态:
材料力学(刘鸿文_第5版)

第十四章 习题
2012年11月5日星期一
常州大学机械学院力学教研室
第五章 习题
第六章 弯曲变形
§6-1、工程中的弯曲变形问题 §6-2、挠曲线的微分方程 §6-3、用积分法求弯曲变形 6.1和连续性条件 6.3(a) Page 196 §6-4、用叠加法求弯曲变形 6.9(a) 6.10(b) Page 200 §6-5、简单超静定梁 Page 208 6.36 §6-6、提高弯曲刚度的一些措施
第十三章 习题
§13-1、概述 §13-2、杆件应变能的计算104 Page §13-3、应变能的普遍表达式 §13-4、互等定理 Page 106 §13-5、卡氏定理 Page 107 §13-6、虚功原理 §13-7、单位载荷法 Page 109 莫尔积分 §13-8、计算莫尔积分的图乘法 Page 109
第一章 绪论
§1-1、材料力学的任务 §1-2、变形固体的基本假设 §1-3、外力及其分类 §1-4、内力、截面法和应力的概念 §1-5、变形与应变 §1-6、杆件变形的基本形式
第一章 绪论习题
Page 11 1.2 Page 11 1.4 1.6
第二章 拉伸、压缩与剪切 第二章 习题
§2-1、轴向拉伸与压缩的概念和实例 §2-2、轴向拉伸与压缩时横截面上的内力和应力 2.2 Page 53 2.1(a)(c) §2-3、直杆轴向拉伸或压缩时斜截面上的应力 Page 54 2.6 §2-4、材料拉伸时的力学性能 §2-5、材料压缩时的力学性能 §2-7、失效、安全因数与强度计算54 2.7 Page 54 2.12 Page §2-8、轴向拉伸或压缩时的变形 58 2.19 Page 61 2.30 Page
附录 I 平面图形的几何性质
材料力学第五版(刘鸿文主编)课后答案之欧阳文创编

幻灯片89
幻灯片90
幻灯片91
幻灯片92
幻灯片93
幻灯片94
幻灯片95
幻灯片96
幻灯片97
幻灯片98
幻灯片99
幻灯片100
幻灯片101
幻灯片102
幻灯片103
幻灯片104
幻灯片105
幻灯片106
幻灯片107
幻灯片108
幻灯片109
幻灯片110
幻灯片111
幻灯片112
幻灯片113
幻灯片114
幻灯片115
幻灯片491
幻灯片492
幻灯片493
幻灯片494
幻灯片495
幻灯片496
幻灯片497
幻灯片498
幻灯片499
幻灯片500
幻灯片501
幻灯片502
幻灯片503
幻灯片504
幻灯片505
幻灯片506
幻灯片507
幻灯片508
幻灯片509
幻灯片510
时间:2021.03.12
创作:欧阳文
幻灯片1
时间:2021.03.12
创作:欧阳文
幻灯片2
幻灯片3
幻灯片4
幻灯片5
幻灯片6
幻灯片7
幻灯片8
幻灯片9
幻灯片10
幻灯片11
幻灯片12
幻灯片13
幻灯片14
幻灯片15
幻灯片16
幻灯片17
幻灯片18
幻灯片19
幻灯片20
幻灯片21
幻灯片22
幻灯片23
幻灯片24
幻灯片25
幻灯片26
幻灯片27
幻灯片28
幻灯片341
幻灯片342
幻灯片343
幻灯片90
幻灯片91
幻灯片92
幻灯片93
幻灯片94
幻灯片95
幻灯片96
幻灯片97
幻灯片98
幻灯片99
幻灯片100
幻灯片101
幻灯片102
幻灯片103
幻灯片104
幻灯片105
幻灯片106
幻灯片107
幻灯片108
幻灯片109
幻灯片110
幻灯片111
幻灯片112
幻灯片113
幻灯片114
幻灯片115
幻灯片491
幻灯片492
幻灯片493
幻灯片494
幻灯片495
幻灯片496
幻灯片497
幻灯片498
幻灯片499
幻灯片500
幻灯片501
幻灯片502
幻灯片503
幻灯片504
幻灯片505
幻灯片506
幻灯片507
幻灯片508
幻灯片509
幻灯片510
时间:2021.03.12
创作:欧阳文
幻灯片1
时间:2021.03.12
创作:欧阳文
幻灯片2
幻灯片3
幻灯片4
幻灯片5
幻灯片6
幻灯片7
幻灯片8
幻灯片9
幻灯片10
幻灯片11
幻灯片12
幻灯片13
幻灯片14
幻灯片15
幻灯片16
幻灯片17
幻灯片18
幻灯片19
幻灯片20
幻灯片21
幻灯片22
幻灯片23
幻灯片24
幻灯片25
幻灯片26
幻灯片27
幻灯片28
幻灯片341
幻灯片342
幻灯片343
材料力学课件--13-a 静不定结构

l
B l/2 C l/2 C l
B
F
D l/2 A l/2
F
D A
X1 解:取固定端处的反力偶为多余约束. 变形协调条件是:A点的转角等于零.
2013-8-8 材料力学课件
(Statically Indeterminate Structure)
l
B l/2 C l/2 C
l
B
F
D l/2 A l/2
q
B A l A
q
B
X1
Δ1F
1 l qx 2 ql 4 0 ( 2 ) xdx 8 EI EI
1 l l3 11 0 x xdx 3 EI EI
代入 Δ1 X1 Δ1F 0
2013-8-8
l3 ql 4 X1 0 解得 3 EI 8 EI 材料力学课件
3 X 1 ql 8
(Statically Indeterminate Structure)
二、力法正则方程 (Generalized equations in the force method)
上例中以多余力为未知量的变形协调方程可改写成下式
11 X 1 Δ1F 0
变形协调方程的标准形式,即所谓的力法正则方程. X1— 多余未知量;
2
(Statically Indeterminate Structure)
q
B A l A
q
B
X1
B x A x
A
B
1
(4) 用莫尔定理求 11
1
M ( x) x
2013-8-8
M ( x) x
1 l l3 11 x xdx 0材料力学课件 3 EI EI
B l/2 C l/2 C l
B
F
D l/2 A l/2
F
D A
X1 解:取固定端处的反力偶为多余约束. 变形协调条件是:A点的转角等于零.
2013-8-8 材料力学课件
(Statically Indeterminate Structure)
l
B l/2 C l/2 C
l
B
F
D l/2 A l/2
q
B A l A
q
B
X1
Δ1F
1 l qx 2 ql 4 0 ( 2 ) xdx 8 EI EI
1 l l3 11 0 x xdx 3 EI EI
代入 Δ1 X1 Δ1F 0
2013-8-8
l3 ql 4 X1 0 解得 3 EI 8 EI 材料力学课件
3 X 1 ql 8
(Statically Indeterminate Structure)
二、力法正则方程 (Generalized equations in the force method)
上例中以多余力为未知量的变形协调方程可改写成下式
11 X 1 Δ1F 0
变形协调方程的标准形式,即所谓的力法正则方程. X1— 多余未知量;
2
(Statically Indeterminate Structure)
q
B A l A
q
B
X1
B x A x
A
B
1
(4) 用莫尔定理求 11
1
M ( x) x
2013-8-8
M ( x) x
1 l l3 11 x xdx 0材料力学课件 3 EI EI
刘鸿文材料力学第五版课件

§9-2 两端绞支细长压杆的临界压力
l l 2 x x
x Fcr
A
w
Fcr (+)
w
M (x)= Fcrw
B y
(a)
B y
(b)
M(x)=Fcrw
EIw'' M (x) Fcrw 令 Fcr k 2
EI w''k 2w 0 w Asin kx Bcoskx
当x=0时,w=0。
稳 时
B
B
B
挠
D
曲
线 形
C
C
状
A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
C— 挠曲线拐点
临界力Fcr 欧拉公式
Fcr
2EI
l2
Fcr
2EI
(0.7l ) 2
Fc
r
2EI
(0.5l ) 2
Fcr
2EI
(2l ) 2
长度系数μ =1 0.7 =0.5 =2
2EI
Fcr l 2
=1
§9-3 其它支座条件下细长压杆的临界压力
细长压杆临界力的欧拉公式的统一形式
Fcr
2EI ( l ) 2
其中,μ —压杆长度系数 μ l—压杆的相当长度。
两端铰支
=1
两端固定 = 0.5
一端固定,另一端铰支 = 0.7
一端固定,另一端自由 = 2
§9-3 其它支座条件下细长压杆的临界压力
轴向压力较小时,杆件能保持稳定的直线平衡状态;
轴向压力增大到某一特殊值时,直线不再是杆件唯一的 平衡状态 失稳(屈曲):
材料力学(刘鸿文版)全套课件 PPT

850 750 650 550
104
105
106
107
108
N
从图可以得出三点结论:
(1)对于疲劳,决定寿命的 最重要因素是应力幅 。
(2)材料的疲劳寿命N 随应力幅 的增大而减小。
(3)存在这样一个应力幅,低于该应力幅,疲劳破坏不会发生,该应力幅
称为疲劳极限,记为 -1 。
目录
对于铝合金等有色金属,其S-N曲线没有明显的水平部分,一般规定
Δ
max
m in
O t
目录
通常用以下参数描述循环应力的特征
(1)应力比 r
r min max
r = -1 :对称循环 ; r = 0 :脉动循环 。
r < 0 :拉压循环 ; r > 0 :拉拉循环 或压压循环。
(2)应力幅
max min
(3)平均应力 m
B L
解: ⑴ 弯矩方程
F
A
M (x) M e Fx
Me
⑵ 变形能
V
L
M 2 (x) dx 2EI
L
1 2EI
(M
e
Fx)2 dx
M
2 e
L
M e FL2
F 2 L2
2EI 2EI 6EI
B L
F
⑶ 当F和M0分别作用时
A M0
V 1
MeL 2EI
F 2 L3 V 2 6EI
例:试求图示悬臂梁的应变能,并利用功
能原理求自由端B的挠度。
F
解:
l
x
M (x) F x
V
材料力学全套刘鸿文版

目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F0 FN F
1、截面法求内力
F (1)假想沿m-m横截面将
杆切开
(2)留下左半段或右半段
F (3)将弃去部分对留下部分
的作用用内力代替
(4)对留下部分写平衡方程 求出内力即轴力的值
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
圣 维 南 原 理
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.2
A 1
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
45° B
C
2
FN1
F
y
F N 2 45° B x
Fx 0
FN3F425kN
x 2、绘制轴力图。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
杆件的强度不仅与轴力有关,还与横截面面 积有关。必须用应力来比较和判断杆件的强度。
在拉(压)杆的横截面上,与轴
力FN对应的应力是正应力 。根据连
续性假设,横截面上到处都存在着内 力。于是得静力关系:
x
lim x0
s x
g lim(LMN)
2 MN0
M L0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F0 FN F
1、截面法求内力
F (1)假想沿m-m横截面将
杆切开
(2)留下左半段或右半段
F (3)将弃去部分对留下部分
的作用用内力代替
(4)对留下部分写平衡方程 求出内力即轴力的值
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
圣 维 南 原 理
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.2
A 1
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
45° B
C
2
FN1
F
y
F N 2 45° B x
Fx 0
FN3F425kN
x 2、绘制轴力图。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
杆件的强度不仅与轴力有关,还与横截面面 积有关。必须用应力来比较和判断杆件的强度。
在拉(压)杆的横截面上,与轴
力FN对应的应力是正应力 。根据连
续性假设,横截面上到处都存在着内 力。于是得静力关系:
x
lim x0
s x
g lim(LMN)
2 MN0
M L0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c