概率论与数理统计1.5.1全概率公式
概率论与数理统计公式大全

概率论与数理统计公式大全一、概率基本公式1.事件的概率:对于事件A,在随机试验中发生的次数记为n(A),则事件A的概率为P(A)=n(A)/n,其中n为试验总次数。
2.互斥事件的概率:对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。
3.事件的余事件概率:设事件A为必然事件,全集的概率为P(S)=1,事件A的余事件为A',则有P(A')=1-P(A)。
4.条件概率:对于两个事件A和B,假设事件B已经发生,事件A发生的概率记为P(A,B),则P(A,B)=P(A∩B)/P(B)。
二、随机变量及其概率分布1.离散型随机变量:设X是一个离散型随机变量,其概率函数为P(X=k),其中k为X的取值,概率函数满足P(X=k)≥0,且∑P(X=k)=12. 连续型随机变量:设X是一个连续型随机变量,其概率密度函数为f(x),概率密度函数满足f(x)≥0,且∫f(x)dx = 13. 随机变量的数学期望:对于离散型随机变量X,其数学期望为E(X) = ∑k*P(X=k);对于连续型随机变量X,其数学期望为E(X)=∫xf(x)dx。
4. 随机变量的方差:对于离散型随机变量X,其方差为Var(X) =E(X^2) - [E(X)]^2;对于连续型随机变量X,其方差为Var(X) = E(X^2) - [E(X)]^2三、常见的概率分布1.伯努利分布:表示一次实验成败的概率分布,概率函数为P(X=k)=p^k(1-p)^(1-k),其中0≤p≤12.二项分布:表示n次独立重复的伯努利试验中成功次数的概率分布,概率函数为P(X=k)=C(n,k)*p^k(1-p)^(n-k),其中C(n,k)为组合数。
3. 泊松分布:表示单位时间或单位面积内发生事件次数的概率分布,概率函数为P(X=k) = (lambda^k)/(k!)*e^(-lambda),其中lambda为平均发生率。
4.均匀分布:表示在一个区间内取值相等的概率分布,概率密度函数为f(x)=1/(b-a),其中[a,b]为区间。
概率论与数理统计公式整理

概率论与数理统计公式整理在现代数学中,概率论与数理统计是两个重要的分支。
其中概率论是研究随机事件发生的可能性或概率的科学。
而数理统计则是利用概率论的方法,对已经发生的随机事件进行统计分析和推断。
本文将整理概率论与数理统计中常用的公式。
一、基本概率公式1.概率:$P(A)=\frac{n(A)}{n(S)}$其中,$P(A)$表示事件$A$发生的概率,$n(A)$表示事件$A$所包含的基本事件的个数,$n(S)$表示所有基本事件的个数。
2.加法原理:$P(A\cup B)=P(A)+P(B)-P(A\cap B)$其中,$A$和$B$是两个事件,$A\cup B$表示事件$A$和事件$B$中至少有一个发生的概率,$A\cap B$表示两个事件同时发生的概率。
3.条件概率:$P(B|A)=\frac{P(A\cap B)}{P(A)}$其中,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
4.乘法定理:$P(A\cap B)=P(A)P(B|A)$其中,$P(A\cap B)$表示两个事件同时发生的概率,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
二、概率分布1.离散随机变量的概率分布律:$\sum\limits_{i=1}^{+\infty}{p(x_i)}=1$其中,$p(x_i)$表示离散随机变量取值为$x_i$的概率。
2.连续随机变量的概率密度函数:$\int_{-\infty}^{+\infty}{f(x)}\mathrm{d}x=1$其中,$f(x)$表示连续随机变量在$x$处的概率密度。
3.数学期望:$E(x)=\sum\limits_{i=1}^{+\infty}{x_ip(x_i)}$或$E(x)=\int_{-\infty}^{+\infty}{xf(x)}\mathrm{d}x$其中,$E(x)$表示随机变量$x$的数学期望,$p(x_i)$表示$x_i$这一离散随机变量取到的带权概率。
概率论与数理统计全概率公式

对某种疾病的治愈率为0.8,现有10名患 者同事服用此药,求至少有6人治愈的概 率p.
• 例4 设某人射靶,命中率为0.001,现独立 地重复射击5000次,试求至少命中2次的概 率.
此例中,n=5000是个很大的数,在实际计 算中,常常用下列近似公式
• 全概公式
设 A1, A2, An 为一完备事件组,且P( 则对任何一事件B,恒有
Ai
)
0(i
1,
2,
n),
P(B) P(A1)P(B | A1) P(A2)P(B | A2) P(An)P(B | An)
此式称为全概率公式,简称全概公式。
例6 有100张票,其中有戏票30张,甲乙两人先 后在其中各抽一张,试证明抽得戏票的概率与 抽票先后次序无关 。
p1 P2(2) P2(1) p
C
2 2
p2
C21 p(1
p). p
p2 2 p2(1 p).
(2) 采用五局三胜制,甲最终获胜,至少需比赛 3 局, 且最后一局必需是甲胜 ,而前面甲需胜二 局.
如:比赛3局,甲的胜局情况是: “甲甲甲”;
比赛4局,甲的胜局情况可能是 : “甲乙甲甲”“, 乙甲甲甲”“, 甲甲乙 在五局三胜制下,甲最终获胜 甲”的;概··率···为· :
(1)每次试验的条件都完全不一样,且可能 的结果为有限个;
(2)各次试验的结果不互相影响,或者说相 互独立。
满足条件(1)(2)的n次重复试验称为n 次独立试验概型。 特别,当每次试验的基本事件只有两个, 即事件A与,则称之为贝努里概型。
概率论与数理统计随机事件与概率全概率公式与贝叶斯公式

概率论与数理统计第1章随机事件与概率第5讲全概率公式与贝叶斯公式全概率公式和贝叶斯公式主要用于计算比较复杂事件的概率, 它们实质上是加法公式,乘法公式以及条件概率的综合运用.全概率公式加法公式P(A+B)=P(A)+P(B)A、B互斥.乘法公式P(AB)= P(A)P(B|A)P(A)>0.设甲、乙、丙三个厂生产同一种产品,其产量Ὅ例1分别占总数的25%,35%,40%,次品率分别为5%,4%,2%,从这批产品中任取一件,求它是次品的概率.解分别表示产品由甲、乙、丙厂生产完备事件组全概率公式两两互斥B 表示产品为次品01 全概率公式02 贝叶斯公式本 讲 内容O F (x )x1)O f (xx称满足上述条件的A1,A2,…,A n为完备事件组.全概率公式设S为随机试验的样本空间,A1,A2,…,A n是两两互斥的事件,且有P(Ai)>0,i =1,2,…,n, 则对任一事件B,有证明两两互不相容,得也两两互不相容;乘法公式B加法公式某一事件B 的发生有各种可能的原因(i =1,2,…,n ),如果B 是由原因A i 所引起,则B 发生的概率是:每一原因都可能导致B 发生,故B 发生的概率是各原因引起B 发生概率的总和,即全概率公式.P (BA i )=Ὅ 全概率公式的关键数学模型完备事件组P (A i )P (B |A i ).设某人有三个不同的电子邮件账户,有70%的邮Ὅ例2件进入账户1,另有20%的邮件进入账户2,其余10%的邮件进入账户3. 根据以往经验,三个账户垃圾邮件的比例分别为1%,2%, 5%,问某天随机收到的一封邮件为垃圾邮件的概率.解分别表示邮件来自账户1、2、3B表示邮件为垃圾邮件全概率公式完备事件组甲、乙、丙三个厂生产同一种产品,其产量分别占总数的25%, 35%, 40%,次品率分别为5%,4%,2%,随机地从中任取一件,发现是次品,问它来自哪个厂的可能性大?Ὅ例3解实际中还有另一类问题:已知结果求原因乙厂生产的可能性最大贝叶斯公式有一批同一型号的产品,已知其中由一厂生产的Ὅ例4占 20%,二厂生产的占 70%,三厂生产的占10%,又知这三个厂的产品次品率分别为2%, 1%, 3%, 问从这批产品中任取一件是次品的概率是多少?解对于这个问题,大家都有一个直观的认识,容易求出这一概率为若记A表示“产品为次品”,B1,B2,B3表示“产品分别来自一、二、三厂”,则上式可以表示为:其中B1,B2,B3正是样本空间的一个划分.01全概率公式02 贝叶斯公式本 讲 内容该公式于1763年由贝叶斯(Bayes)给出. 它是在观察到事件B 已发生的条件下,寻找导致B 发生的每个原因的概率.设A 1,A 2,…,A n 是完备事件组,则对任一事件B ,有贝叶斯公式贝叶斯公式在实际中有很多应用,它可以帮助人们确定某结果发生的最可能原因.——后验概率在B 已经发生的前提下,再对导致 B 发生的原因的可能性大小重新加以修正.P ( A i ) ——先验概率它是由以往的经验得到的,是事件 B 的原因.(医学模型——稀有病症的诊断率问题)甲胎蛋Ὅ例5白(AFP)免疫检测法被普遍用于肝病的早期诊断和普查. 已知肝病患者经AFP检测呈阳性的概率为95%,而非肝病患者经AFP检测呈阳性(误诊)的概率为2%. 设人群中肝病的发病率为0.04%,现有一人经AFP检测呈阳性,求此人确实患肝病的概率.解记A={肝病患者},{经"AFP" 检测呈阳性} ,B=由贝叶斯公式经AFP检测显阳性的人,真患有肝病的人不到2%. 可见,对于稀有病症,一次检测的结果不必过于担心.对以往数据分析结果表明, 当机器调整良好时, 产品的合格率为98%, 而当机器发生某种故障时, 其合格率为55%.每天早上机器开动时, 机器调整良好的概率为95%.已知某日早上第一件产品是合格品时,试求机器调整良好的概率.Ὅ例6解A1=B=显然A1∪A2=“机器未调整良好”,“机器调整良好”,A2=“产品是合格品”,S,由题意,A1A2=∅由贝叶斯公式,有即机器调整良好的概率为97%.某机器由A、B、C三类元件构成,其所占比例分Ὅ例7别为0.1,0.4,0.5,且其发生故障的概率分别为0.7,0.1,0.2. 现机器发生了故障,问应从哪类元件开始检查?解设D表示“机器发生故障”,A表示“元件是A类”,B表示“元件是B类”,C表示“元件是C类”,由全概率公式由贝叶斯公式同理故应从C元件开始检查.第5讲 全概率公式与贝叶斯公式这一讲我们学习了两个重要的公式——全概率公式与贝叶斯公式.家需要牢记,并会熟练运用.在概率的计算中,经常用到这两个公式,大 知识点解读——全概率公式与贝叶斯公式学海无涯,祝你成功!概率论与数理统计。
概率论与数理统计1-5

例5 甲盒装有 1 个白球 2 个黑球 ,乙盒装有 3 个白
球 2 个黑球 ,丙盒装有 4 个白球 1 个黑球 . 采取掷一骰
子决定选盒 ,出现 1、 或 3 点选甲盒 , 4 、点选乙盒 , 2 5
6 点选丙盒 ,在选出的盒里随机摸出一个球 ,经过秘
密选盒摸球后 ,宣布摸得一个白球 ,求此球来自乙
B3
B1
A B4
B5
B6 B8
诸Bi是原因 A是结果
B2
B7
1.5.2 贝叶斯公式 再看一个例子: 某人从任一箱中任意摸 出一球,发现是红球,求该球 1红4白 是取自1号箱的概率. 或者问: 1 该球取自哪号箱的可能性 最大?
2
3
这一类问题是“已知结果求原因”. 在实际中 更为常见,它所求的是条件概率,是已知某结果 发生条件下,探求各原因发生可能性大小.
(i=1,2,...,n), 则
P( Bi | A) P( A | Bi ) P( Bi )
n
, i 1, 2,.n. (1 12)
j
P( A | B ) P( B )
j j 1
(1-12)式称为贝叶斯(Bayes)公式. 该公式于1763年由贝叶斯给出. 它是在观察到 事件A已发生的条件下,寻找导致A发生的每个原因 的概率.Fra bibliotek一个发生.
定理1.5.1 设试验E的样本空间为Ω, A为E的事件,
B1,B2,...,Bn为Ω的一个划分, 且P(Bi)>0(i=1,2,...,n),
则
P ( A) P ( A | B1 ) P ( B1 ) P ( A | B2 ) P( B2 ) P ( A | Bn ) P ( Bn ) P( A | B j ) P( B j )
概率论与数理统计计算公式

概率论与数理统计计算公式概率论和数理统计是数学中的两个重要分支,广泛应用于自然科学、社会科学和工程技术等领域。
在实际中,我们经常需要计算各种概率和统计量,因此理解和掌握概率论和数理统计中的计算公式是十分重要的。
接下来,我将给出概率论和数理统计中一些常用的计算公式。
一、概率计算公式:1.加法原理:如果A和B是两个事件,那么它们的和事件(A∪B)的概率可以由如下公式计算:P(A∪B)=P(A)+P(B)-P(A∩B)2.条件概率:如果A和B是两个事件,且P(A)>0,那么事件B在已知事件A发生的条件下发生的概率可以由如下公式计算:P(B,A)=P(A∩B)/P(A)3.全概率公式:如果{B1,B2,...,Bn}是一个对样本空间Ω的一个划分,那么对于任意事件A,我们有:P(A)=ΣP(A,Bi)P(Bi),其中i取1到n。
4.贝叶斯公式:如果{B1,B2,...,Bn}是一个对样本空间Ω的一个划分,那么对于任意事件A和i取1到n,我们有:P(Bi,A)=P(A,Bi)P(Bi)/ΣP(A,Bj)P(Bj),其中j取1到n。
5.乘法定理:如果A和B是两个事件,那么它们的交事件的概率可以由如下公式计算:P(A∩B)=P(A)P(B,A)=P(B)P(A,B)二、统计量计算公式:1.样本均值:对于由n个观测值组成的样本,样本的均值可以由如下公式计算:\(\bar{X} = \frac{1}{n} \sum\limits_{i=1}^n x_i\)2.样本方差:对于由n个观测值组成的样本,样本的方差可以由如下公式计算:\(S^2 = \frac{1}{n-1} \sum\limits_{i=1}^n (x_i - \bar{X})^2\) 3.标准差:样本的标准差是样本方差的平方根\(S = \sqrt{S^2}\)4.相关系数:对于两个随机变量X和Y,它们的相关系数可以由如下公式计算:\(\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}\)5.协方差:样本的协方差可以由如下公式计算:\(Cov(X,Y) = \frac{1}{n-1} \sum\limits_{i=1}^n (X_i-\bar{X})(Y_i-\bar{Y})\)以上只是概率论和数理统计中的一些常用计算公式,实际应用中还有很多其他的公式和方法。
概率论与数理统计 公式

概率论与数理统计公式概率论与数理统计是现代科学与工程领域中应用最广泛的数学分支之一。
概率论与数理统计涉及众多的公式和理论,是数据分析、预测和决策的重要工具。
在此,我们将介绍概率论与数理统计中常用的公式。
1. 概率计算公式概率计算是概率论中的基础。
以下是概率的定义和概率计算公式。
定义:事件A在随机试验中出现的可能性称为概率P(A)。
公式1:若事件A和事件B相互独立,则P(A∩B)=P(A)×P(B)。
公式2:若事件A和事件B不相互独立,则P(A∩B)=P(A)×P(B|A)。
公式3:若事件A和事件B互为对立事件,则P(A)+P(B)=1 。
公式4:全概率公式:P(B)=∑P(Ai)×P(B|Ai) 。
2. 随机变量和概率分布随机变量是概率论中的重要概念。
以下是随机变量和概率分布函数的定义和公式。
定义1:在随机试验中,对每个样本点都有一个对应的实数值,则这个实数值称为随机变量X。
定义2:X的概率分布函数F(x)定义为:F(x)=P(X≤x)。
公式5:二项分布的概率分布函数为:P(X=k)=C(n,k)p^k*q^(n-k) (其中n表示试验次数,k表示事件A 发生的次数,p表示单次事件A发生的概率,q=1-p )。
公式6:泊松分布的概率分布函数为:P(X=k)=(λ^k/k!)×e^-λ (其中λ是一个正实数)。
公式7:正态分布的概率分布函数为:f(x)=(1/√(2π)σ)×e^-(x-μ)²/(2σ²) (其中μ是分布的均值,σ²是分布的方差)。
3. 样本描述和参数估计样本描述和参数估计是数理统计中的基础。
以下是样本描述和参数估计的公式。
公式8:样本的均值:X=(x1+x2+…+xn)/n 。
公式9:样本的方差:S²=[(x1-X)²+(x2-X)²+…+(xn-X)²]/(n-1) 。
概率论与数理统计公式

概率论与数理统计公式以下是概率论与数理统计中常见的公式整理:1.基本概率公式:P(A) = n(A) / n(S),其中A 为事件,n(A) 为事件A 发生的基数,n(S) 为样本空间的基数。
2.条件概率公式:P(A|B) = P(A∩B) / P(B),其中A 和B 为两个事件,P(A∩B) 表示事件A 和事件B 同时发生的概率,P(B) 表示事件B 发生的概率。
3.全概率公式:P(A) = ΣP(A|Bi) * P(Bi),其中Bi 为互不相交的事件,P(Bi) 表示事件Bi 发生的概率,P(A|Bi) 表示在事件Bi 发生的条件下,事件A 发生的概率。
4.贝叶斯公式:P(Bi|A) = P(A|Bi) * P(Bi) / ΣP(A|Bj) * P(Bj),其中Bi 为互不相交的事件,P(Bi) 表示事件Bi 发生的概率,P(A|Bi) 表示在事件Bi 发生的条件下,事件A 发生的概率,P(A|Bj) 表示在事件Bj 发生的条件下,事件A 发生的概率。
5.随机变量的期望值:E(X) = Σxi * P(xi),其中X 为随机变量,xi 为随机变量X 取的第i 个值,P(xi) 表示X 取xi 的概率。
6.随机变量的方差:Var(X) = E((X - E(X))^2),其中X 为随机变量,E(X) 表示X 的期望值。
7.正态分布的概率密度函数:f(x) = (1 / (σ* √(2π))) * e^(-((x-μ)^2 / (2σ^2))),其中μ为正态分布的均值,σ为正态分布的标准差。
8.标准正态分布的概率密度函数:f(x) = (1 / √(2π)) * e^(-x^2 / 2),其中x 为标准正态分布的随机变量。
9.两个随机变量的协方差:Cov(X,Y) = E((X - E(X)) * (Y - E(Y))),其中X 和Y 为两个随机变量,E(X) 和E(Y) 分别表示X 和Y 的期望值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全概率公式
目录
CONTENTS
全概率公式
三大公式 引例 全概率公式 例题 小结
河北农业大学理学院
三大公式
三大公式
乘法公式
全概率 公式
贝叶斯 公式
河北农业大学理学院
引例
为了解一只股票未来一定时期内的价格 变化,往往会分析影响股票价格的基本因素, 如利率变化。
利率下调的概率60% 股票价格上涨概率80%
全概率 公式
A1
B
A2
A5
全概率公式的意义在于将一个复
A4 杂事件的概率分解为在不同情况或不
A3 同原因下简单事件的概率之和
n 2, PB P A PB A P A PB A
河北农业大学理学院
例题
例1 股票上涨概率
例2 某电子设备制造厂所使用的元件是由三家元
B 件制造厂提下价格上涨概率30%
求该只股票上涨的概率。
下调
上涨 80%
上涨 30%
不变
河北农业大学理学院
全概率公式
定理 设事件 A1, A2 , , An ,
是样本空间的一个划分,且 P Ai 0, i 1, 2,
则对任意事件B,有
P(B) P( Ai ) P(B | Ai ) i 1
敏感问题调查 1965年Stanley L.Warner发明了 “随机 化应答”方法。
问题一:你的学号尾数是奇数吗? 问题二:你在本次考试中是否舞弊? 1
河北农业大学理学院
小结
注意
事件发生受多个条件影响 找到样本空间的划分
河北农业大学理学院
A 80% 元件制A 造不变厂
1
次品率 0.02
提供原件份额 0.15
2
0.01
0.80
3
0.03
0.05
在仓库中随机取一只元件,求是次品的概率。
Ai i 1, 2,3 表示取到产品是第i家工厂提供
B 表示取到的是一只次品
河北农业大学理学院
例题
中奖率问题 10张奖券,2张有奖,10个人依次抽奖, 问每人的中奖率分别是多少? Ai (i 1, 2, ,10) 表示第 i人中奖