光学教程第1章-参考答案
《光学教程》[姚启钧]课后习题解答
![《光学教程》[姚启钧]课后习题解答](https://img.taocdn.com/s3/m/2706f077e53a580217fcfe17.png)
《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为的绿光投射在间距为的双缝上,在距离处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:改用两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的距离为,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P点离中央亮纹为问两束光在P点的相位差是多少?⑶求P点的光强度和中央点的强度之比。
解:⑴⑵由光程差公式⑶中央点强度:P点光强为:3、把折射率为的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为解:,设玻璃片的厚度为由玻璃片引起的附加光程差为:4、波长为的单色平行光射在间距为的双缝上、通过其中一个缝的能量为另一个的倍,在离狭缝的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解:由干涉条纹可见度定义:由题意,设,即代入上式得5、波长为的光源与菲涅耳双镜的相交棱之间距离为,棱到光屏间的距离为,若所得干涉条纹中相邻亮条纹的间隔为,求双镜平面之间的夹角、解:由菲涅耳双镜干涉条纹间距公式6、在题1、6图所示的劳埃德镜实验中,光源S到观察屏的距离为,到劳埃德镜面的垂直距离为。
劳埃德镜长,置于光源和屏之间的中央。
⑴若光波波长,问条纹间距是多少?⑵确定屏上能够看见条纹的区域大小,此区域内共有几条条纹?(提示:产生干涉的区域P1P2可由图中的几何关系求得)解:由图示可知:7050050010,40.4, 1.5150nm cm d mm cm r m cm λ-==⨯====①②在观察屏上能够看见条纹的区域为P 1P 2间即,离屏中央上方的范围内可看见条纹、7、试求能产生红光()的二级反射干涉条纹的肥皂膜厚度。
已知肥皂膜折射率为,且平行光与法向成300角入射。
解:由等倾干涉的光程差公式:8、透镜表面通常镀一层如M gF 2()一类的透明物质薄膜,目的是利用干涉来降低玻璃表面的反射。
高等光学教程-第1章参考答案

[Re E (r , t )][Re H (r , t )]
1 1 * j t * j t E 0 e j t E 0 H 0 e j t H 0 e e 2 2 1 Re E 0 H 0 e j 2 t Re E 0 H 0 2
ˆ。 1.6 求(1-201)式中所表示的表象之间的变换矩阵 F
解答:设偏振光表示为
1 E 0 X Y ˆE ˆ E Ep E x y x y 0 1
也可以表示为
~ ~ ~ ˆ ~ ˆ EL 1 ER 1 E p EL L ER R 2 j 2 j
令 则有
z vt , z vt
U U1 U 2 U1 U 2 U1 U 2 z z z z z
2U z2
2U 1 2U 2 2U 1 2U 2 2 2 z 2 2 z
因此
~ ~ Ex 1 1 1 E L ~ ~ 2 j j ER E y
1 1 ˆ 1 F j j 2
1.7 设一个偏振态与下列偏振态正交
cos J ( , ) j sin e
U1
r2
1 U 1 U 2 1 U 2 U 1 1 U 1 2U 1 U 2 1 U 2 2U 2 2 2 r r r r2 r 2 r r 2
2U 2 2
1 2 v2 t 2 (r f ) 之值。 v , t v t
《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅= ⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ=7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ=7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为:21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅=⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-()15n d λ-=()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比.解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅= ⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭012(10.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为的绿光投射在间距为的双缝上,在距离处的光屏500nm d 0.022cm 180cm 上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为的红光投射到此700nm 双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nmλ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nmλ=7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为:21220.328y y y cm∆=∆-∆=2、在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的640nm 0.4mm 距离为,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中50cm 央亮纹为问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强0.1mm 度之比。
解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯=⑵由光程差公式210sin yr r d dr δθ=-==0224y dr πππϕδλλ∆==⋅=⑶中央点强度:204I A=P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭01(10.8542I I =+=3、把折射率为的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹1.5所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m-⨯ 解:,设玻璃片的厚度为1.5n =d由玻璃片引起的附加光程差为:()1n dδ'=- ()15n d λ-=()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为的单色平行光射在间距为的双缝上。
通过其中一个缝的能500nm 0.2mm 量为另一个的倍,在离狭缝的光屏上形成干涉图样,求干涉条纹间距和条纹250cm 的可见度。
《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A = P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d 由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解:7050500100.1250.02r y cm d λ-∆==⨯⨯= 由干涉条纹可见度定义: 由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
《光学教程》(姚启钧)课后习题解答

创作编号:GB8878185555334563BT9125XW创作者: 凤呜大王*《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅= ⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(10.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离0r 为180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为700nm 的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离。
解:相邻两个亮条纹之间的距离为m dry y y i i 29220110409.01050010022.010180----+⨯≈⨯⨯⨯⨯==+=∆λ若改用700nm 的红光照射时,相邻两个亮条纹之间的距离为m dry y y i i 29220110573.01070010022.010180----+⨯≈⨯⨯⨯⨯==+=∆λ这两种光第2级亮条纹位置的距离为m drj y y y nm nm 3922120500270021027.3]10)500700[(10022.0101802)(----==⨯≈⨯-⨯⨯⨯⨯=-=-=∆λλλλ1.2 在杨氏实验装置中,光源波长为640nm ,两狭缝间距d 为0.4mm ,光屏离狭缝的距离0r 为50cm.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若P 点离中央亮条纹0.1mm ,问两束光在P 点的相位差是多少?(3)求P 点的光强度和中央点的强度之比。
解:(1)因为λdr jy 0=(j=0,1)。
所以第1亮条纹和中央亮条纹之间的距离为m d r y y y 4932001100.810640104.01050)01(----⨯=⨯⨯⨯⨯=-=+=∆λ (2)因为021r ydr r -≈-,若P 点离中央亮纹为0.1mm ,则这两束光在P 点的相位差为41050104.0101.01064022)(22339021ππλπλπϕ=⨯⨯⨯⨯⨯⨯-=-≈-=∆----r yd r r(3)由双缝干涉中光强)](cos 1)[(A 2I(p)21p p ϕ∆+=,得P 点的光强为]22)[(A ]221)[(A 2)](cos 1)[(A 2I(p)212121+=+=∆+=p p p p ϕ,中央亮纹的光强为)(A 4I 210p =。
所以854.04]22[I(p)0≈+=I 。
1.3 把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为600nm 。
1.3把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为600nm 。
解:在未放入玻璃片时,P 点为第5级条纹中心位置,对应的光程差 λδ512=-=r r (1)在加入玻璃片后,P 点对应的光程差 λδ0)]([0102=-+-=d r nd r (2) 由(2)式可得0)1(120=-+--r r d n所以m 100.615.1100.6515670--⨯=-⨯⨯=-=n d λ1.4 波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度。
解:相邻两个亮条纹之间的距离为m dry y y i i 29320110125.010500102.01050----+⨯≈⨯⨯⨯⨯==+=∆λ因为I=A 2,由题意可的212I I =,所以212A A =由可见度的定义22121min max min max )(12A A A A I I I I V +=+-=得943.02322122)(12222121≈=+⨯=+=A A A A V1.5 波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm,求双镜平面之间的夹角θ。
解:因为λθsin 2r lr y +=∆, 所以0035.010700101202)20180(2sin 93=⨯⨯⨯⨯⨯+=∆+=--λθy r l r 故两平面镜之间的夹角'122.0)0035.0(sin 1=≈=-o θ。
1.6 在题1.6图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
劳埃德镜长40cm ,置于光源和屏之间的中央。
(1)若光波波长λ=500nm ,问条纹间距是多少?(2)确定屏上可以看见条纹的区域大小,此区域内共有几条条纹?(提示:产生干涉的区域P1P2可由图中的几何关系求得。
)解: (1)屏上的条纹间距为m d r y y y i i 4930110875.110500102250.1---+⨯≈⨯⨯⨯⨯==+=∆λ (2)如图所示条)(1219.029.2)(29.216.145.3)(45.355.02)4.055.0()()()(16.195.01.14.055.0255.012212211≈=∆∆=∆=-=-=∆=∴≈⨯+=⋅+=+=≈=+⨯=+⋅==y l N mm p p p p l p p mm A a B C tg B C p p mm C A a B Btg p p θθ即:离屏中央1.16mm 的上方的2.29mm 范围内,可见12条暗纹。
(亮纹之间夹的是暗纹)1.7 试求能产生红光(λ=700nm)的二级反射干涉条纹的肥皂膜厚度。
已知肥皂膜折射率为1.33,且平行光与发向成30°角入射。
解:设肥皂膜的厚度为d ,依题意可知,该干涉为等倾干涉。
2)12(sin 2112λ+=-j i n n d 干涉相长,产生二级条纹,即j=0,1。
所以41070030sin 133.11124sin 129222122122-⨯⨯-+⨯=-+=o i n n j d λ m 10104260-⨯=Or(设肥皂膜的厚度为d ,依题意可知,该干涉为等倾干涉。
222sin 2112λλδji n n d =+-=干涉相长,得2)12(2sin 2112λλ-=-j i n n d产生二级条纹,即j=1,2符合题意 所以41070030sin 133.11124sin 129222122122-⨯⨯--⨯=--=o i n n j d λ m 10104260-⨯=)1.8 透镜表面通常镀一层如Mg 2F (n=1.38)一类的透明物质薄膜,目的是利用干涉来降低玻璃表面的反射.为了使透镜在可见光谱的中心波长(550nm)处产生极小的反射,则镀层必须有多厚?解:因为n 1<n<n 2,反射光无附加光程差,所以上下两表面反射光的光程差2)12(cos 22λδ+==j i dn ,(j=0、1、2…)产生干涉相消,此时透射光最强。
依题意可知,i 2=0,j=0。
由2)12(cos 22λδ+==j i dn 得cm i n j d o5922100cos 38.1410550)102(cos 4)12(--≈⨯⨯⨯+⨯=+=λ Or光程差2)12(2sin 212212λλδ+=-=j i n n d ,(j=0、1、2…)产生干涉相消,此时透射光最强。
依题意可知,i 1=0,j=0。
由2)12(sin 212212λδ+=-=j i n n d 得cm i n n j d 5222912212100sin 138.1410550)102(sin 4)12(--≈-⨯⨯+⨯=-+=λ1.9 在两块玻璃片之间一边放一条厚纸,另一边相互压紧。
玻璃片l 长10cm ,纸厚为0.05mm ,从60°的反射角进行观察,问在玻璃片单位长度内看到的干涉条纹数目是多少?设单色光源波长为500nm 。
解:在薄膜的等厚干涉中,相邻干涉条纹的宽度所对应的空气劈的厚度的变化量为12122121221sin 212]12[sin 212]1)1(2[in n j i n n j d d d j j -+--++=-=∆+λλ 12122sin 12in n -=λ忽略玻璃的厚度,则有n 1=n 2=1,进而有i 1=i 2=60°, 则92229121221055060sin 11210550sin 12--⨯=︒⨯-⨯⨯=-=∆i n n d λ条纹宽度则为m h dl lh d d x 3329101005.010*******sin ----=⨯⨯⨯⨯=∆=∆=∆=∆α, 单位长度内的条纹数为100010113==∆=-x N 条即每厘米长度内由10条条纹。
1.10 在上题装置中,沿垂直于玻璃片表面的方向看去,看到相邻两条暗纹间距为1.4mm 。
已知玻璃片长17.9cm ,纸厚0.036mm ,求光波的波长。
解:由于时正入射,故i 1=0,当出现暗纹时,有221222λλj n j d ==,则出现相邻暗纹对应的空气膜的厚度差为21λ=-=∆+j j d d d 暗纹的间距为lh l h d d x /2/sin λα=∆=∆=∆, 即波长m l h x 723310631.5109.1710036.02104.1/2----⨯=⨯⨯⨯⨯⨯=∆=λ1.11 波长为400-760nm 的可见光正射在一块厚度为1.2×610-m ,折射率为1.5玻璃片上,试问从玻璃片反射的光中哪些波长的光最强。
解:由于是正入射,故i 1=0,依题意可知,该干涉为等倾干涉,上下两表面反射光的光程差为22222λλδj dn =-= (j=0、1、2……)干涉相长(加强) 即2)12(22λ+=j d n ,12102.712102.15.14124662+⨯=+⨯⨯⨯=+=--j j j d n λ 当j=0时,m j dn 1021072000124-⨯=+=λ当j=1时,m j dn 1021024000124-⨯=+=λ当j=2时,1021014400124-⨯=+=j dn λm当j=3时,102107.1285124-⨯=+=j dn λm当j=4时,102108000124-⨯=+=j dn λm当j=5时,m j dn 102105.6545124-⨯=+=λ 当j=6时,m j dn 102105.5538124-⨯=+=λ当j=7时,m j dn 102104800124-⨯=+=λ当j=8时,m j dn 102103.4235124-⨯=+=λ 当j=9时,m j dn 102108.3789124-⨯=+=λ 所以在可见光中,j=5、6、7、8,对应的波长为6545.5、5538.5、4800、4235.5埃。
1.12 迈克耳孙干涉仪的反射镜2M 移动0.25mm 时,看到条纹移过的数目为909个,设光为垂直入射,求所用光源的波长。