集合运算练习题
集合运算练习题

集合运算练习题集合运算练习题集合是数学中的一个基本概念,它是由一些确定的元素构成的整体。
集合运算是对集合进行操作和组合的过程,包括并集、交集、差集和补集等。
通过练习集合运算题目,可以帮助我们更好地理解和掌握集合运算的规律和方法。
1. 并集运算并集是指将两个或多个集合中的所有元素合并成一个新的集合。
假设有两个集合A和B,A={1, 2, 3},B={3, 4, 5},求A和B的并集。
解答:将A和B的元素合并,得到并集C={1, 2, 3, 4, 5}。
并集运算可以用符号∪表示,即C=A∪B。
2. 交集运算交集是指两个或多个集合中共有的元素构成的新集合。
继续以上述的集合A和B为例,求A和B的交集。
解答:A和B的交集为{3},即C=A∩B。
3. 差集运算差集是指从一个集合中减去另一个集合中共有的元素所得到的新集合。
以集合A和B为例,求A减去B的差集。
解答:从A中减去与B中共有的元素3,得到差集C={1, 2}。
差集运算可以用符号-表示,即C=A-B。
4. 补集运算补集是指在全集中减去一个集合所得到的差集。
假设全集为U={1, 2, 3, 4, 5},求集合A的补集。
解答:在全集U中减去A的元素{1, 2, 3},得到补集C={4, 5}。
补集运算可以用符号'表示,即C=A'。
通过以上的练习题,我们可以看到集合运算的基本方法和规律。
并集运算是将两个集合中的元素合并,交集运算是找出两个集合中共有的元素,差集运算是从一个集合中减去另一个集合中共有的元素,补集运算是在全集中减去一个集合。
掌握了这些基本运算,我们可以更好地处理集合相关的问题。
除了基本的集合运算,我们还可以进行集合的扩展运算。
例如,对于三个集合A、B和C,我们可以求它们的并集、交集和差集。
在实际问题中,我们常常需要将多个集合进行组合和运算,以得出更全面和准确的结论。
集合运算不仅在数学中有重要的应用,也广泛应用于其他领域,如计算机科学、统计学、经济学等。
二年级数学集合运算练习题

二年级数学集合运算练习题题一:请根据题目所给的集合和关系,找出对应的集合运算。
1. 小明有一只盒子装有10个红苹果和8个绿苹果,那么小明的盒子里一共有多少个苹果?集合A:红苹果集合,元素个数为10集合B:绿苹果集合,元素个数为8集合运算:求两个集合的并集解答:集合A和集合B合并,一共有10+8=18个苹果。
2. 有一群小动物,其中有6只猫和4只狗,那么这群小动物一共有多少只?集合A:猫集合,元素个数为6集合B:狗集合,元素个数为4集合运算:求两个集合的并集解答:集合A和集合B合并,一共有6+4=10只小动物。
题二:请根据题目所给的集合和关系,找出对应的集合运算。
1. 甲、乙、丙三个人去参加联欢会,甲带了2个苹果,乙带了3个苹果,丙带了4个苹果,那么他们带来的苹果总数是多少?集合A:甲带来的苹果集合,元素个数为2集合B:乙带来的苹果集合,元素个数为3集合C:丙带来的苹果集合,元素个数为4集合运算:求三个集合的并集解答:集合A、集合B和集合C合并,一共有2+3+4=9个苹果。
2. 在一个班级里,有17个男生和15个女生,请问这个班级总共有多少学生?集合A:男生集合,元素个数为17集合B:女生集合,元素个数为15集合运算:求两个集合的并集解答:集合A和集合B合并,一共有17+15=32个学生。
题三:请根据题目所给的集合和关系,找出对应的集合运算。
1. 一家超市最近进行了促销活动,大米的原价是12元/斤,现在打8折,小明买了5斤大米,请问他一共花了多少钱?集合A:打折前大米的价格,元素个数为12集合B:打折后大米的价格,元素个数为12*0.8=9.6集合C:小明买的大米集合,元素个数为5集合运算:求集合B和集合C的乘积解答:集合B的元素乘以集合C的元素,一共花了9.6*5=48元。
2. 小华有一些糖果,他给了小明4颗,给了小红5颗,小丽6颗,剩下的糖果还有3颗,请问小华开始有多少颗糖果?集合A:小华给出的糖果集合,元素个数为4+5+6=15集合B:剩下的糖果集合,元素个数为3集合C:小华开始的糖果集合,元素个数为15+3=18集合运算:求集合C的元素个数解答:集合C的元素个数为18,小华开始有18颗糖果。
集合的练习题及答案

集合的练习题及答案集合是数学中的基本概念,它描述了一组具有某种共同属性的元素的全体。
以下是一些集合的练习题及答案,供同学们练习和参考。
练习题1:确定以下集合的元素。
- A = {x | x 是小于10的正整数}- B = {y | y 是大于0且小于5的有理数}答案1:- A = {1, 2, 3, 4, 5, 6, 7, 8, 9}- B = {所有大于0且小于5的分数和整数,例如1/2, 3/4, 1, 2, 3, 4}练习题2:判断以下两个集合是否相等。
- A = {x | x 是偶数}- B = {2n | n 是自然数}答案2:- A 和 B 是相等的,因为每一个偶数都可以表示为2n(n为自然数)的形式。
练习题3:求集合A和B的并集、交集和差集。
- A = {1, 2, 3, 4, 5}- B = {4, 5, 6, 7, 8}答案3:- 并集A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8}- 交集A ∩ B = {4, 5}- 差集 A - B = {1, 2, 3}练习题4:集合C包含所有A和B的元素,但不包含A和B的交集元素,求集合C。
- A = {1, 3, 5, 7}- B = {2, 4, 6, 8}答案4:- C = A ∪ B - (A ∩ B) = {1, 2, 3, 4, 5, 6, 7, 8}练习题5:如果集合D是A和B的子集,且D包含A和B的交集元素,求D的可能形式。
- A = {1, 2, 3}- B = {2, 3, 4}答案5:- D 可以是任何包含2和3的子集,例如:D = {2, 3} 或 D = {2}或 D = {3}练习题6:用描述法表示集合E,它包含所有A和B的元素,但不包含A和B的交集元素。
- A = {x | x 是小于10的正整数}- B = {y | y 是大于5的正整数}答案6:- E = {x | x ∈ A ∪ B 且 x ∉ (A ∩ B)} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}练习题7:如果集合F是A的幂集,求F的元素个数。
集合的基本运算练习题含答案

集合的基本运算练习题(2)1. 已知集合A={x|2x2−7x+3<0},B={x∈Z|lg x<1},则阴影部分表示的集合的元素个数为()A.1B.2C.3D.42. 已知集合A={x|x2−4<0},B={x|x2−4x+3<0},则A∪B=()A.{x|−2<x<1}B.{x|1<x<2}C.{x|−2<x<3}D.{x|−2<x<2}3. 已知集合A={x∈Z|y=log2(3−x)},B={y|y=√x+1},则A∩B=()A.(0, 3)B.[1, 3)C.{1, 2}D.{1, 2, 3}4. 若集合A={x∈N||x−1|≤1},B={x|y=√1−x2},则A∩B的真子集的个数为()A.3B.4C.7D.85. 设集合A={x|1<x<2},B={x|x<a}满足A⫋B,则实数a的取值范围是( )A.{a|a≥1}B.{a|a≤1}C.{a|a≥2}D.{a|a≤2}6. 已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.7. 设集合A={2,4}, B={2,6,8},则A∪B=________.8. 设集合A={5,a+1},集合B={a,b}.若A∩B={2},则A∪B=________.9. 我们把集合{x|x∈A且x∉B}叫做集合A与B的差集,记作A−B.据此回答下列问题:(1)若A={1, 2, 3, 4},B={2, 3, 4, 5},求A−B;(2)在下列各图中用阴影部分表示集合A−B;(3)若A={x|0<x≤a},B={x|−1≤x≤2},且A−B=⌀,求a的取值范围.10. 已知集合A={−1,0},B={−1,3},则A∪B=________.11. 已知全集U=R,集合A={x|0<x<1},B={x|3≤9x≤27},C={x|a−2<x< 2a−4}.(1)求(∁U A)∩B;(2)若A∩C=C,求a的取值范围.12. 已知A={x|a≤x≤2a+3},B={x|x>1或x<−6}.(1)若A∩B=(1,3],求a的值;(2)若A∪B=B,求a的取值范围.参考答案与试题解析集合的基本运算练习题(2)一、选择题(本题共计 5 小题,每题 5 分,共计25分)1.【答案】B【考点】Venn图表达集合的关系及运算【解析】根据图所示的阴影部分所表示的集合的元素属于集合A但不属于集合B,即求A∩B,根据交集的定义和补集的定义即可求得【解答】阴影部分所表示的集合为A∩B,A={x|2x2−7x+3<0}=(1, 3),2B={x∈Z|lg x<1}={x∈Z|0<x<10},A∩B={1, 2},那么满足图中阴影部分的集合的元素的个数为2,2.【答案】C【考点】并集及其运算【解析】解不等式得出集合A、B,根据并集的定义写出A∪B.【解答】集合A={x|x2−4<0}={x|−2<x<2},B={x|x2−4x+3<0}={x|1<x<3},则A∪B={x|−2<x<3}.3.【答案】C【考点】交集及其运算【解析】先求出集合A,B,由此能求出A∩B.【解答】∵集合A={x∈Z|y=log(3−x)}={x∈Z|3−x>0}={x∈Z|x<3},2B={y|y=√x+1}={y|y≥1},∴A∩B={x∈Z|1≤x<3}={1, 2}.4.【答案】A【考点】交集及其运算子集与真子集【解析】分别求出集合A和B,从而求出A∩B={0, 1},由此能求出A∩B的真子集的个数.【解答】解:集合A={x∈N||x−1|≤1},B={x|y=√1−x2},∴A={0, 1, 2},B={x|−1≤x≤1},∴A∩B={0, 1},∴A∩B的真子集的个数为22−1=3.故选A.5.【答案】C【考点】集合关系中的参数取值问题【解析】根据真子集的定义、以及A、B两个集合的范围,求出实数a的取值范围.【解答】解:因为集合A={x|1<x<2},B={x|x<a},且满足A⫋B,所以集合A是集合B的真子集,所以a≥2.故选C.二、填空题(本题共计 3 小题,每题 5 分,共计15分)6.【答案】a≤1【考点】集合关系中的参数取值问题并集及其运算【解析】利用数轴,在数轴上画出集合,数形结合求得两集合的并集.【解答】解:∵A={x|x≤1},B={x|x≥a},且A∪B=R,如图所示:故当a≤1时,命题成立.故答案为:a≤1.7.【答案】{2,4,6,8}【考点】并集及其运算【解析】此题暂无解析【解答】解:因为集合A={2,4}, B={2,6,8},所以A∪B={2,4,6,8}.故答案为:{2,4,6,8}.8.【答案】{5,2,1}【考点】交集及其运算并集及其运算【解析】此题暂无解析【解答】解:由题意得a+1=2,解得a=1,则b=2,∴A∪B={5,2,1}.故答案为:{5,2,1}.三、解答题(本题共计 4 小题,每题 5 分,共计20分)9.【答案】解:(1)若A={1, 2, 3, 4},B={2, 3, 4, 5},则A−B={1};(2)在下列各图中用阴影部分表示集合A−B;(3)若A={x|0<x≤a},B={x|−1≤x≤2},且A−B=⌀,则a≤2,∴a的取值范围是(−∞, 2]【考点】Venn图表达集合的关系及运算【解析】(1)根据差集定义即可求A−B;(2)根据差集定义即可阴影部分表示集合A−B;(3)根据A−B=⌀,即可求a的取值范围.【解答】解:(1)若A={1, 2, 3, 4},B={2, 3, 4, 5},则A−B={1};(2)在下列各图中用阴影部分表示集合A−B;(3)若A={x|0<x≤a},B={x|−1≤x≤2},且A−B=⌀,则a≤2,∴a的取值范围是(−∞, 2]10.【答案】{−1,0,3}【考点】并集及其运算【解析】此题暂无解析【解答】解:∵A={−1,0},B={−1,3}∴A∪B={−1,0,3}.故答案为:{−1,0,3}.11.【答案】集合A={x|0<x<1}=(7, 1),所以∁U A=(−∞, 0]∪[7;又B={x|3≤9x≤27}={x|4≤2x≤3}={x|≤x≤,],所以(∁U A)∩B=[1,];若A∩C=C,则C⊆A;因为C={x|a−2<x<2a−4},所以当C=⌀时,a−2≥5a−4;当C≠⌀时,则,解得,即.综上知,a的取值范围是.【考点】交、并、补集的混合运算【解析】此题暂无解析【解答】此题暂无解答12.【答案】解:(1)∵A∩B={x|1<x≤3},可得{2a+3=3−6≤a≤1,∴a=0.(2)由A∪B=B得A⊆B.①当A=⌀时满足题意,此时,a>2a+3,解得a<−3;②当A≠⌀时,有{a≤2a+3a>1或2a+3<−6,解得a>1.综上,a的取值范围为:a<−3或a>1,即(−∞, −3)∪(1, +∞).【考点】集合关系中的参数取值问题【解析】(1)根据A={x|a≤x≤2a+3},B={x|x<−6, 或x>1},再由A∩B={x|1< x≤3}可得{2a+3=3−6≤a≤1,由此求得a的值.(2)由A∪B=B得A⊆B,分A=⌀和A≠⌀两种情况,分别求出a的取值范围,再取并集,即得所求.【解答】解:(1)∵A∩B={x|1<x≤3},可得{2a+3=3−6≤a≤1,∴a=0.(2)由A∪B=B得A⊆B.①当A=⌀时满足题意,此时,a>2a+3,解得a<−3;②当A≠⌀时,有{a≤2a+3a>1或2a+3<−6,解得a>1.综上,a的取值范围为:a<−3或a>1,即(−∞, −3)∪(1, +∞).。
集合间基本关系及运算(习题及答案)

≠ 1. 已知 A = {a + 2,(a +1)2,a 2 + 3a + 3} ,1∈ A ,则a 的所有可能取值构成的集合为() A .{ -1,0}B .{ - 2,-1,0}集合间基本关系及运算(习题)C .{0}D .{ - 2,0}2. 已知集合M = {2,a + 2,a 2 - 4} ,N = {a + 3,a 2 + 2,a 2 - 4a + 6},且M N = {2},则实数 a 的值是 .3. 已知集合 A ={2,3},B ={x |mx -6=0},若 B ⊆A ,则实数 m 的值是 .4. 集合 A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},若 A ∩B ≠∅ ,A ∩C =∅ ,则实数 a 的值是 .5. 设集合 A = {x | x -1 ≥ 2},B ={x | x < a },且满足 A ⊂ B ,若实 x - 2数 a 的取值范围是{a | a > c } ,则 c = .6. 已知集合 A ={x ∈ R || x + 2 |< 3} ,集合B ={x ∈ R | (x - m )(x - 2) < 0},且 A ∩B ={x ∈ R | -1 < x < n }, 则 m =,n = .7. 集合M = {x | x = kπ+π,k ∈Z} ,N ={x | x =kπ+π,k ∈Z},2 4 4 2则()A.M=N B.M ⊇NC.M ⊆N D.M N=∅8. 集合P ={x | x = 2k ,k∈Z},M = {x | x = 2k +1,k ∈Z},S ={x | x = 4k +1,k ∈Z},a∈P,b∈M,设c=a+b,则有()A.c∈P B.c∈MC.c∈S D.以上都不对9. 已知集合A ={x | x =k +1,k ∈Z},4B = {y | y =k-1,k ∈Z},则A B.2 410. 设集合U={(x,y) | y=3x-1},A={(x,y) | y - 2=3},则x -1U A= .11. 已知集合A = {x | a(x -1) +4 + 2 3= 2 3} ,若集合A 有且仅x +1有两个子集,求实数 a 的值以及 A 的两个子集.12. 已知集合A={x||x-a|=4},集合B={1,2,b}.(1)是否存在实数a,使得对于任意实数b 都有A ⊆B?若存在,求出相应的a 值;若不存在,请说明理由.(2)若A ⊆B 成立,求出相应的实数对(a,b).13. 已知集合A = {(x ,y) | x2 -y 2 -y = 4} ,B = {(x ,y) | x 2 -xy - 2 y 2 = 0} ,C ={(x ,y) | x - 2 y = 0},D ={(x ,y) | x +y = 0}.(1)判断B,C,D 之间的关系;(2)求A B .14. 若A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},求证:A=B.15. 已知集合P = {x | x =m 2 -n 2 ,m∈Z ,n∈Z} ,A ={x | x = 4k - 2 ,k ∈Z},求证:A P =∅., , 【参考答案】1. C2. -1 或 23. 0,2,34. -25. 36. -1,17. C8. B9. ⊂≠10. {(1,2)}11. a =0 时,子集为{2 3},∅ ; 3a =1 时,子集为{ 3},∅ ; 3 a =3 时,子集为{ } ,∅ ; 312. (1)不存在;(2)(-3,-7),(-2,-6),(5,9),(6,10)13. (1)B=C ∪D(2){(-2,-1),(4,- 4) (8 4)} 3 314. 略15. 略。
关于集合的练习题及答案解析

关于集合的练习题及答案解析1.若集合M={a,b,c}中元素是△ABC的三边长,则△ABC 一定不是A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰三角形2.定义集合运算:A*B={ z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B 的所有元素之和为 A.0 B. C. D.63.已知集合A={2,3,4},B={2,4,6,8},C={| x∈A,y∈B,且logxy∈N+},则C中元素的个数是A.9B.8C. D.44.满足{-1,0} M?{-1,0,1,2,3}的集合M的个数是A.4个 B.个 C.7个D.8个5.已知集合A={-1,1},B{x|ax+1=0},若B?A,则实数a的所有可能取值的集合为A.{-1} B.{1} C.{-1,1}D.{-1,0,1}6.已知全集U={1,2,3,4,5,6},集合A={1,2,5},?UB ={4,5,6},则集合A∩B=A.{1,2} B.{5} C.{1,2,3} D.{3,4,6}7.设全集U={1,3,5,6,8},A={1,6},B={5,6,8},则∩B=A.{6}B.{5,8}C.{6,8} D.{3,5,6,8}2-x8.若A={x∈Z|2≤1},则A∩的元素个数为A.0 B.1 C.2D.319.设U=R, M={x|x2-x≤0},函数f的定义域为N,则M∩ x-1A.[0,1)B. C.[0,1] D.{1}10.设U=R,集合A={y|y=x-1,x≥1},B={x∈Z|x2-4≤0},则下列结论正确的是A.A∩B={-2,-1} B.∪B=C.A∪B=[0,+∞)D.∩B={-2,-1}11.非空集合G关于运算?满足:①对于任意a、b∈G,都有a?b∈G;②存在e∈G,使得对一切a∈G,都有a?e=e?a=a,则称G关于运算?为融洽集,现有下列集合运算: G={非负整数},?为整数的加法;G={偶数},?为整数的乘法;G={平面向量},?为平面向量的加法;G={二次三项式},?为多项式的加法;其中G关于运算?的融洽集有________.12.设集合A={1,2,a},B={1,a2-a},若A?B,则实数a的值为________.13.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.214.已知集合A={ x|x-5x+6=0},B={ x|mx+1=0},且A∪B=A,求实数m的值组成的集合.x-a15.记关于x的不等式若a=3,求P;若Q?P,求正数a的取值范围.116.已知由实数组成的集合A满足:若x∈AA. 1-x 设A中含有3个元素,且2∈A,求A;A能否是仅含一个元素的单元素集,试说明理由.1.解析:根据集合中元素的互异性知a≠b≠c,故选D.2.解析:依题意得A*B={ z|z=xy,x∈A,y∈B}={0,2,4},因此集合A*B 的所有元素之和为6,故选D. 3.解析:C={| x∈A,y∈B,且logxy∈N+}={,,,},故选D.4.解析:依题意知集合M除含有元素-1,0之外,必须还含有1,2,3中的一个,或多个.因3而问题转化为求含有3个元素的集合所含的非空子集的个数问题,故有2-1=7个.故选C.5.D.A7.解析:由于U={1,3,5,6,8},A={1,6} ∴?UA={3,5,8},∴∩B={5,8}.答案:B12-x8.解析:A={x∈Z|2≤1}={x|x>2或0 ∴ A∩={0,1},其中的元素个数为2,选C.9.C10.D11.12.解析:∵A?B,∴a2-a=2或a2-a=a.若a2-a=2,得a=2或a=-1,根据集合A中元素的互异性,知:a≠2,∴a=-1.若a2-a=a,得a=0或a=2,经检验知,只有a=0符合要求.综上所述,a=-1或a=0.答案:-1或013.解析:∵3∈B,∴a+2=3,∴a=1.答案:1214.解析:∵A={ x|x-5x+6=0}={2,3},A∪B =A,∴B?A.①m=0时,B=?,B?A;1②m≠0时,由mx+1=0,得x. m111∵B?A,∴-A,∴-2=3, mmm11?11?得m=-或-.所以符合题意的m的集合为?0,-23.3??x-315.解析:由Q={x||x-1|≤1 }={x|0≤x≤}.由a>0,得P={x|-12,即a的取值范围是.116.解析:∵2∈A,∴A,即-1∈A, 1-2 1?11?∴∈AA,∴A=?2,-1,2.??1-?-1?1假设A中仅含一个元素,不妨设为a, 则a∈A,有A,又A中只有一个元素, 1-a1∴a,即a2-a+1=0,但此方程Δ ∴不存在这样的实数a.故A不可能是单元素集合.集合练习题一.选择题1.满足条件{1,2,3}??M??{1,2,3,4,5,6}的集合M的个数是A、8B、C、6D、52.若集合A??x|x2,则下列结论中正确的是 A、A=0B、0?A C、A?? D、??A 3.下列五个写法中①?00,1,2?,②0,③?0,1,21,2,0?,④0??,⑤0??,错误的写法个数是A、1个B、2个C、3个D、4个4.方程组?xy11的解集是?x?y?A ?x?0,y?1? B?0,1?C ?? D?|x?0或y?1?.设A、B是全集U的两个子集,且A?B,则下列式子成立的是 A)CUA?CUB CUA?CUB=U A?CUB=?CUA?B=?6.已知全集Ma|6?5?a?N且a?Z?,则M= A、{2,3} B、{1,2,3,4}C、{1,2,3,6} D、{-1,2,3,4}7.集合M?{xx22xa0,xR},且M ,则实数a的范围是 A、a??1B、a?1C、a??1D、a?18. 设集合P、S满足P?S=P,则必有; P?S;;S=P。
高中数学集合练习题

高中数学集合练习题练习1:集合的定义与运算1. 将下列各组数列分别表示为集合形式:a) 1, 2, 3, 4, 5b) -3, -2, -1, 0, 1c) π, 2π, 3π, 4π, 5π2. 对于集合A={1, 2, 3, 4, 5},B={3, 4, 5, 6, 7},C={1, 2, 6, 8},计算以下集合运算:a) A ∪ Bb) A ∩ Bc) A ∪ Cd) B ∩ C3. 若集合A={a, e, i, o, u},B={a, b, c, d},C={c, d, e, f, g},计算以下集合运算:a) A ∪ Bc) A ∩ Cd) B ∪ C练习2:集合的特殊情况1. 什么是真子集和全集?论述真子集和全集的概念,并给出示例说明。
2. 集合A={1, 2, 3, 4},B={1, 2, 3, 4},C={2, 4},判断以下命题的真假:a) B ⊆ Ab) B ⊂ Ac) C ⊆ Ad) A ⊆ C练习3:集合的运算规律和关系1. 对于集合A={x | x^2 = 4},B={x | x is an even number},C={x | x is a prime number},找出属于以下集合的元素:b) B ∩ Cc) A - Bd) B - A2. 证明以下集合等式:a) (A ∪ B) ∪ C = A ∪ (B ∪ C)b) (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)*请使用集合包含关系和集合运算规律进行证明。
3. 若集合A={1, 2, 3, 4, 5},B={3, 4, 5, 6, 7},C={5, 6, 7, 8, 9},计算以下集合运算:a) (A ∪ B) ∩ Cb) (A - B) ∪ Cc) (B - A) ∩ Cd) A ∪ (B ∩ C)练习4:集合的应用题1. 在某个班级中,40%的学生选择篮球,30%的学生选择足球,20%的学生既选择篮球又选择足球。
高中集合练习题及答案

高中集合练习题及答案集合是数学中一个非常重要的概念,它在高中数学中占有重要地位。
集合论是研究集合的数学分支,它提供了一种描述和处理数学对象的方式。
在高中数学中,学生需要掌握集合的基本概念、运算以及集合在解决数学问题中的应用。
以下是一些高中集合练习题及答案,供同学们练习和参考。
练习题1:设集合A={x|x<5},B={x|x>3},求A∩B。
答案:集合A表示所有小于5的实数的集合,集合B表示所有大于3的实数的集合。
A与B的交集A∩B就是同时满足小于5且大于3的实数的集合,即A∩B={x|3<x<5}。
练习题2:已知集合M={1,2,3},N={2,3,4},求M∪N。
答案:集合M表示元素为1,2,3的集合,集合N表示元素为2,3,4的集合。
M与N的并集M∪N就是包含M和N所有元素的集合,即M∪N={1,2,3,4}。
练习题3:设A={x|-1≤x≤2},B={x|x>1},求A-B。
答案:集合A表示闭区间[-1,2]中的所有实数的集合,集合B表示大于1的所有实数的集合。
A-B表示A中所有不属于B的元素组成的集合,即A-B={x|-1≤x≤1}。
练习题4:如果A={x|x<0或x>5},B={x|-3≤x≤4},求A∩B。
答案:集合A表示所有小于0或大于5的实数的集合,集合B表示闭区间[-3,4]中的所有实数的集合。
A与B的交集A∩B就是同时满足小于0或大于5且在闭区间[-3,4]中的实数的集合,即A∩B={x|-3≤x<0}。
练习题5:设A={1,2,3},B={x|x∈A且x≠2},求B。
答案:集合A表示元素为1,2,3的集合。
B是A中所有不等于2的元素组成的集合,即B={1,3}。
练习题6:已知A={x|-2<x<3},B={x|-1<x<4},求A∪B。
答案:集合A表示开区间(-2,3)中的所有实数的集合,集合B表示开区间(-1,4)中的所有实数的集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合的运算练习题
1、下列命题:(1) 真子集;(4)若
空集没有子集; A ,则A (2)任何集合至少有两个子集; (3) ,其中正确的有( 空集是任何集合的 2、集合 A {x|0 N }的真子集的个数为 A. 16 3、设集合A {1,2}, B {1,2,3}, C {2,3,4},则(A B)
A. {1 , 2, 3}
B. {1 , 2, 4} C .{2 , 3, 4} D . {1 , 2, 3, 4} 4、 设集合A {x | x 2k, k N}, B {x| x 3k,k N),则 A B ( ) A. {x | x 5k, k
N}
B
. {x|x 6k, k N} C. {x | x 2k, k N}
D
.
{x|x 3k,k N}
5、
已知M {x R| x 2血
}, a ,有下列四个式子:①
a M :②{a} M :③
a M ;
④{a } M ,其中正确的是( )
A .①②
B .①④
C .
②③
D .①②④
6、 设集合A {x x Z 且10 x
1}, B {x x Z 且x 5},则AU B 中兀素的个数
是 ( )
A. 11
B. 10 C 16
D .15
7、 设 A {x 1 x 2}, B {x x a},若 A B , 则a 的取值范围是( )
A. a 2
B. a 1
C.
a 1 D .a 2
& 集合{2 a, a 2
a }中a 的取值范围是 ( )
A. {a R a 0或a 3} B .{a Ra 0} C. {a R a 0且a 3} D .{a Ra 3} 9、 设集合A {(x, y) y ax 1} , B {(x, y) y x b}且 AI B = {(2,5)},则( )
A. a 3,b 2 B . a 2,b 3 C a 3,b 2 D . a 2,b 3
10 .下列表述中错误的是()
A.若 A B ,则 A B A
B.若A B B ,则 A B C 等于 ) D . ?U (A nB)= (?U A) U (?U B)
C. (A B ) A ( A 11、若集合 A={-2,2,3,4} , B={ B )
xx t 2,t 2
x A },用列举法表示 B= ________________
ax 12、已知集合 A={1,2,3}, 是 ________________ .13、设集合A {x 则(C U A) B ________________ 14、设集合 A {x 3 x 2}, B {x 2k 范围是 B={ Z| 0, a A }, 3} , B {x
则A B B 时a 的值
Z | x 2},全集 U=Z ,
x 2k 1},且A B ,则实数k 的取值
15、已知A={1 , 2, 3, 4, 5}, B={3 , 4, 5, 6, 7}, C={ X X 是小于6 的质数},求A B , BUC , ?A C.
16、已知全集U {xx 2 0 或x 1 0} , A {xx 1 或x 3}, B {x x 1 或x 2}, 求?U A, ?U B,
A A B, A U
B , (?u A) A?U B) , ?U(A U B).
17、设A { 3,4} , B {x x22ax b 0} , B 且B A,求a , b.
18、已知集合A {x 4 x 8} , B {x 2 x 10}, C {x x a}
(1)求AU B, (?R A) AB;
(2)若AI C ,求a的取值范围.。