2015年杭州市中考数学试卷及答案(版)

合集下载

2015年杭州市中考数学试卷及答案(word版)

2015年杭州市中考数学试卷及答案(word版)

2015年市初中毕业升学文化考试数学一、仔细选一选(本题有10个小题,每小题3分,共30分)1、统计显示,2013年底市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为()A、11.4×104B、1.14×104C、1.14×105D、0.114×1062、下列计算正确的是()A、23+24=27B、23−24=C、23×24=27D、23÷24=213、下列图形是中心对称图形的是()4、下列各式的变形中,正确的是()A、22()()x y x y x y---+=- B、11xxx x--= C、2243(2)1x x x-+=-+ D、21()1x x xx÷+=+5、圆接四边形ABCD中,已知∠A=70°,则∠C=()A、20°B、30°C、70°D、110°6、若k<90<1k+(k是整数),则k=()A、6B、7C、8D、97、某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x公顷旱地改为林地,则可列方程()A、54−x=20%×108B、54−x=20%×(108+x)C、54+x=20%×162D、108−x=20%(54+x)8、如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”),由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112µg/cm2;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关,其中正确的说法是()A、①②③B、①②④C、①③④D、②③④9、如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A、14B、25C、23D、591第1第9题BDACEA C DGF B10、设二次函数112()()y a x x x x =--(a≠0,x 1≠x 2)的图象与一次函数2y dx e =+(d≠0)的图象交于点(x 1,0),若函数21y y y =+的图象与x 轴仅有一个交点,则( )A 、12()a x x d -=B 、21()a x x d -=C 、212()a x x d -=D 、212()a x x d +=二、认真填一填(本题有6个小题,每小题4分,共24分)11、数据1,2,3,5,5的众数是_____________________________,平均数是____________________________ 12、分解因式:34m n mn -=____________________________13、函数221y x x =++,当y=0时,x=_______________;当1<x <2时,y 随x 的增大而_____________(填写“增大”或“减小”) 14、如图,点A ,C ,F ,B 在同一直线上,CD 平分∠ECB ,FG ∥CD ,若∠ECA 为α度,则∠GFB 为_________________________度(用关于α的代数式表示)第16题第14题BDACEAC D GFB15、在平面直角坐标系中,O 为坐标原点,设点P (1,t )在反比例函数2y x=的图象上,过点P 作直线l 与x 轴平行,点Q 在直线l 上,满足QP=OP ,若反比例函数ky x=的图象经过点Q ,则k=____________________________ 16、如图,在四边形纸片ABCD 中,AB=BC ,AD=CD ,∠A=∠C=90°,∠B=150°,将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,则CD=_______________________________三、全面答一答(本题有7个小题,共66分)17、(本小题满分6分)市推行垃圾分类已经多年,但在厨余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾,如图是市某一天收到的厨余垃圾的统计图。

2015年浙江省杭州市中考数学试题及解析

2015年浙江省杭州市中考数学试题及解析

2015年浙江省杭州市中考数学试卷一、仔细选一选(每小题3分,共30分)1.(3分)(2015•杭州)统计显示,2013年底杭州市各类高中在校学生人数大约是11.4万人,将11.4万用科学.﹣x=+17.(3分)(2015•杭州)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使8.(3分)(2015•杭州)如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”).由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112ug/m3;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关.其中正确的是()9.(3分)(2015•杭州)如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为().10.(3分)(2015•杭州)设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的二、认真填一填(每小题4分,共24分)11.(4分)(2015•杭州)数据1,2,3,5,5的众数是,平均数是.12.(4分)(2015•杭州)分解因式:m3n﹣4mn=.13.(4分)(2015•杭州)函数y=x2+2x+1,当y=0时,x=;当1<x<2时,y随x的增大而(填写“增大”或“减小”).14.(4分)(2015•杭州)如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为度(用关于α的代数式表示).15.(4分)(2015•杭州)在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图象经过点Q,则k=.16.(4分)(2015•杭州)如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=.三、全面答一答(共66分)17.(6分)(2015•杭州)杭州市推行垃圾分类已经多年,但在剩余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州某一天收到的厨余垃圾的统计图.(1)试求出m的值;(2)杭州市某天收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数.18.(8分)(2015•杭州)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.19.(8分)(2015•杭州)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.20.(10分)(2015•杭州)设函数y=(x﹣1)[(k﹣1)x+(k﹣3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时的函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到的函数y3的图象,求函数y3的最小值.21.(10分)(2015•杭州)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).22.(12分)(2015•杭州)如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.23.(12分)(2015•杭州)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N 地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示.方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇;….请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?2015年浙江省杭州市中考数学试卷参考答案与试题解析一、仔细选一选(每小题3分,共30分)1.(3分)(2015•杭州)统计显示,2013年底杭州市各类高中在校学生人数大约是11.4万人,将11.4万用科学.4.(3分)(2015•杭州)下列各式的变形中,正确的是()﹣x=+1,错误;,错误;据,<<<题考查了估算无理数的大小,解题关键是估算的取值范围,从而解决问题.7.(3分)(2015•杭州)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使8.(3分)(2015•杭州)如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”).由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112ug/m3;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关.其中正确的是()浓度的中位数是9.(3分)(2015•杭州)如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为().AN=AE=则在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为:.10.(3分)(2015•杭州)设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的=a=a=a二、认真填一填(每小题4分,共24分)11.(4分)(2015•杭州)数据1,2,3,5,5的众数是5,平均数是.平均数是(=故答案为:5;.12.(4分)(2015•杭州)分解因式:m3n﹣4mn=mn(m﹣2)(m+2).13.(4分)(2015•杭州)函数y=x2+2x+1,当y=0时,x=﹣1;当1<x<2时,y随x的增大而增大(填写“增大”或“减小”).14.(4分)(2015•杭州)如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为90﹣度(用关于α的代数式表示).DCF=DCB=﹣15.(4分)(2015•杭州)在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图象经过点Q,则k=2+2或2﹣2.求得y=t==2OP==1+﹣的图象经过点2=2=或22+2.16.(4分)(2015•杭州)如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=2+或4+2.=,AN=2+,AD=DC=4+2AE=y,AD=2+,2+4+2三、全面答一答(共66分)17.(6分)(2015•杭州)杭州市推行垃圾分类已经多年,但在剩余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州某一天收到的厨余垃圾的统计图.(1)试求出m的值;(2)杭州市某天收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数.18.(8分)(2015•杭州)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.,19.(8分)(2015•杭州)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.,=220.(10分)(2015•杭州)设函数y=(x﹣1)[(k﹣1)x+(k﹣3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时的函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到的函数y3的图象,求函数y3的最小值.21.(10分)(2015•杭州)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).22.(12分)(2015•杭州)如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.,,23.(12分)(2015•杭州)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N 地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示.方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇;….请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?(,所以丙出发h 解得:把(解得:解得:解得:或)t=时,,丙距的图象交点的横坐标为所以丙出发h。

2015年杭州市数学中考题及答案

2015年杭州市数学中考题及答案

2015杭州中考数学选择题(本题有10个小题,每小题3分,共30分)统计显示,2013年底杭州市各类高中在校学生人数约是114万人,将114万用科学记数法表示应为(若k<< k+ 1(k是整数),则k=()某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%, 设把x公顷旱地改为林地,则可列方程()A.54- x=20%X 108B.54- x= 20%X(108+x)C. 54+x=20%X 162D.10&x=20%(54+x)如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”),由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM25浓度的中位数是112妙cmf;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM25浓度有关,其中正确的说法是()A. B. C. D.设二次函数y1= a(x- X1)(x- x2)(a^0,为旳Q)的图象与一次函数y2= dx+ e(d丸)的图象交于点(*, 0),若函数y= y2+屮的图象与x轴仅有一个交点,则()2 2A.a(X1- x)= dB.a(x2- X1)= dC. a(X1- x) =dD.a(X1+x) = d填空题(本题有6个小题,每小题4分,共24分)数据1, 2, 3, 5, 5的众数是________________ 平均数是_______________________________ 3分解因式:m n- 4mn= _______________________函数y= x2+ 2x+ 1,当y= 0时,x= _____ _ _ x<2时,y随x的增大而__________ (“增大”或“减小”)1.2.3.4.5.6.7.8.9.10._ 、11.12.13.14.4A. 114X10下列计算正确的是(3 4 7A.2 +2 = 24B.1.14X10)3 4B.2 - 2 =下列图形是中心对称图形的是()e⑨A. B.下列各式的变形中,正确的是()2 2A. (- x- y)( - x+ y)= x - yB.- x=圆内接四边形ABCD中,已知/ A= 70°,则/ C=(5C. 1.14X10C. 23X24= 27 C.2 2C. x2- 4x+3=( x- 2)2+ 1)C. 70°D.0.114X1063 4 1D.2 -2 = 22D.x—( + x)=+ 1D.110°A.6B.7C. 8D.9D.如图,已知点A, B, C, D, E, F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()如图,点A,C,F ,B在同一直线上,CD平分Z ECB, FG//CD,若Z ECA为a度,则/GFB为.度(用关于a 的代数式表示)A * t FB ・*E •・CD第9题15. 在平面直角坐标系中,0为坐标原点,设点P (1, t )在反比例函数y=的图象上,过点P 作直线I 与x 轴平行,点Q 在直线I 上,满足QP=OP ,若反比例函数y=的图象经过点Q ,则k= _____________________________ 16. 如图,在四边形纸片ABCD 中,AB=BC , AD=CD , Z A= / C=90° Z B=150°,将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平 行四边形,贝y CD = _____________________________ 三、简答题(本题有7个小题,共66分)17. (6分)杭州市推行垃圾分类已经多年,但在厨余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾,如图是杭州市某一天收到的厨余垃圾的统计图 1) 试求出m 的值2)杭州市那天共收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数18. (8分)如图,在厶ABC 中,已知AB=AC , AD 平分Z BAC ,点M 、N 分别在AB 、AC 边上,AM=2MB , AN=2NC ,求证:DM = DN19. (8分)如图1,。

2015年浙江省杭州市中考数学试卷(word解析版)

2015年浙江省杭州市中考数学试卷(word解析版)

2015年浙江省杭州市中考数学试卷解析(本试卷满分120分,考试时间100分钟)江苏泰州鸣午数学工作室 编辑 一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1、(2015年浙江杭州3分)【 】【版权所有:21教育】A. 11.4×104B. 1.14×104C. 1.14×105D. 0.114×106【答案】C.【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0). 因此,【出处:21教育名师】∵=114 000一共6位,∴=114 000=1.14×105.故选C.2、(2015年浙江杭州3分)下列计算正确的是【 】A. 347222+=B. 341222--=C. 347222⨯=D. 341222÷=【答案】C.【考点】有理数的计算.【分析】根据有理数的运算法则逐一计算作出判断:A. 34722816242+=+=≠,选项错误;B. 34122162482--=-=-≠,选项错误;C. 343472222+⨯==,选项正确;D. 34341122222--÷==≠,选项错误.故选C.3、(2015年浙江杭州3分)下列图形是中心对称图形的是【 】A.B. C. D.【答案】A .【考点】中心对称图形.【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A 、∵该图形旋转180°后能与原图形重合,∴该图形是中心对称图形;B 、∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形;C 、∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形;D 、∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形.故选A .4、(2015年浙江杭州3分)下列各式的变形中,正确的是【 】A. 22()()x y x y x y ---+=-B.11x x x x--= C. 22(4321)x x x -+=-+ D. ()211x x x x ÷+=+ 【答案】A .【考点】代数式的变形.【分析】根据代数式的运算法则逐一计算作出判断:A. 22()()()()x y x y x y x y x y ---+=+-=-,选项正确;B. 2111x x x x x x---=≠,选项错误; C. 222243441(2)1(2)1x x x x x x -+=-+-=--≠-+,选项错误;D. ()221111x x x x x x x x÷+==≠+++,选项错误. 故选A .5、(2015年浙江杭州3分)圆内接四边形ABCD 中,已知∠A =70°,则∠C =【 】A. 20°B. 30°C. 70°D. 110°【答案】D .【考点】圆内接四边形的性质.【分析】∵圆内接四边形ABCD 中,已知∠A =70°,∴根据圆内接四边形互补的性质,得∠C =110°.故选D .6、(2015年浙江杭州3分)若1k k <+ (k 是整数),则k =【 】A. 6B. 7C.8D. 9【答案】D .【考点】估计无理数的大小.【分析】∵81<90<10081<90<1009<90<10⇒⇒,∴k =9.故选D .7、(2015年浙江杭州3分)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x 公顷旱地改为林地,则可列方程【 】A. 5420%108x -=⨯B. ()5420%108x x -=⨯+C. 5420%162x +=⨯D. ()10820%54x x -=+【答案】B.【考点】由实际问题列方程.【分析】根据题意,旱地改为林地后,旱地面积为54x -公顷,林地面积为108x +公顷,等量关系为“旱地占林地面积的20%”,即()5420%108x x -=⨯+. 故选B.21世纪教育网版权所有8、(2015年浙江杭州3分)如图是某地2月18日到23日PMAQI 的统计图(当AQI 不大于100时称空气质量为“优良”),由图可得下列说法:①18日的PM 2.5浓度最低;②这六天中PMµg /cm 2;③这六天中有4天空气质量为“优良”;④空气质量指数AQI 与PM 2.5浓度有关,其中正确的说法是【 】2·1·c·n·j·yA. ①②③B. ①②④C. ①③④D. ②③④【来源:21cnj*y.co*m 】【答案】C.【考点】折线统计图;中位数.【分析】根据两个折线统计图给出的图形对各说法作出判断:①18日的PM ,原说法正确;②这六天中PM 按从小到大排列为:25,66,67,92,144,158,中位数是第3,4个数的平均数,为679279.52+=µg /cm 2,原说法错误; ③这六天中有4天空气质量为“优良”,原说法正确;④空气质量指数AQI 与PM ,原说法正确.∴正确的说法是①③④.故选C.9、(2015年浙江杭州3分)如图,已知点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为3的线段的概率为【 】A. 14B. 25C. 23D. 59【答案】B.【考点】概率;正六边形的性质.【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,如答图,∵正六边形的顶点,连接任意两点可得15条线段,其中6条的连长度为3:AC 、AE 、BD 、BF 、CE 、DF ,∴所求概率为62155=. 故选B.10、(2015年浙江杭州3分)设二次函数11212())0(()y a x x x x a x x =--≠≠,的图象与一次函数()20y dx e d =+≠的图象交于点1(0)x ,,若函数21y y y =+的图象与x 轴仅有一个交点,则【 】 A. 12 ()a x x d -= B. 21()a x x d -= C. 212()a x x d -= D.()212a x x d +=【答案】B.【考点】一次函数与二次函数综合问题;曲线上点的坐标与方程的关系.【分析】∵一次函数()20y dx e d =+≠的图象经过点1(0)x ,,∴110dx e e dx =+⇒=-.∴()211y dx dx d x x =-=-.∴()()[]2112112()()()y y y a x x x x d x x x x a x x d =+=--+-=--+.又∵二次函数11212()()(0)y a x x x x a x x =--≠≠,的图象与一次函数()20y dx e d =+≠的图象交于点1(0)x ,,函数21y y y =+的图象与x 轴仅有一个交点,∴函数21y y y =+是二次函数,且它的顶点在x 轴上,即()2211y y y a x x =+=-.∴()[]()()212121()()x x a x x d a x x a x x d a x x --+=-⇒-+=-..令1x x =,得()1211()a x x d a x x -+=-,即1221()0()0a x x d a x x d -+=⇒--=.故选B.二、认真填一填(本题有6个小题,每小题4分,共24分)11、(2015年浙江杭州4分)数据1,2,3,5,5的众数是 ▲ ,平均数是 ▲【答案】5;3.2.【考点】众数;平均数【分析】众数是在一组数据中,出现次数最多的数据,这组数据中5出现三次,出现的次数最多,故这组数据的众数为5. 21*cnjy*com 平均数是指在一组数据中所有数据之和再除以数据的个数,故这组数据的平均数是12355 3.25=++++. 12. (2015年浙江杭州4分)分解因式:34m n mn -= ▲【答案】()()22mn m m +-.【考点】提公因式法和应用公式法因式分解.【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式. 因此,先提取公因式mn 后继续应用平方差公式分解即可:()()()324422m n mn mn m mn m m -=-=+-.13、(2015年浙江杭州4分)函数221y x x =++,当y =0时,x = ▲ ;当12x <<时,y 随x 的增大而 ▲ (填写“增大”或“减小”)【答案】1-;增大.【考点】二次函数的性质.【分析】函数221y x x =++,当y =0时,即2210x x ++=,解得1x =-.∵()22211y x x x =++=+,∴二次函数开口上,对称轴是1x =-,在对称轴右侧y 随x 的增大而增大.∴当12x <<时,y 随x 的增大而增大.14、(2015年浙江杭州4分)如图,点A ,C ,F ,B 在同一直线上,CD 平分∠ECB ,FG ∥CD ,若∠ECA 为α度,则∠GFB 为 ▲ _度(用关于α的代数式表示)【答案】902α-.【考点】平角定义;平行的性质.【分析】∵ECA α∠=度,∴180ECB α∠=-度.∵CD 平分∠ECB ,∴1809022DCB αα-∠==-度. ∵FG ∥CD ,∴902GFB DCB α∠=∠=-度.15、(2015年浙江杭州4分)在平面直角坐标系中,O 为坐标原点,设点P (1,t )在反比例函数2y x =的图象上,过点P 作直线l 与x 轴平行,点Q 在直线l 上,满足QP =OP ,若反比例函数k y x =的图象经过点Q ,则k = ▲【答案】225+或225-【考点】反比例函数的性质;曲线上点的坐标与方程的关系;勾股定理;分类思想的应用.【分析】∵点P (1,t )在反比例函数2y x =的图象上,∴221t ==.∴P (1,2). ∴OP 5.∵过点P 作直线l 与x 轴平行,点Q 在直线l 上,满足QP =OP ,∴Q ()15,2+ 或Q ()15,2- .∵反比例函数k y x =的图象经过点Q , ∴当Q ()15,2+ 时,()152225k =+⋅=+;Q ()15,2- 时,()152225k =-⋅=-.16、(2015年浙江杭州4分)如图,在四边形纸片ABCD 中,AB =BC ,AD =CD ,∠A =∠C =90°,∠B =150°,将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,则CD = ▲ 21·cn·jy·com【答案】23+或423+.【考点】剪纸问题;多边形内角和定理;轴对称的性质;菱形、矩形的判定和性质;含30度角直角三角形的性质;相似三角形的判定和性质;分类思想和方程思想的应用.【分析】∵四边形纸片ABCD 中,∠A =∠C =90°,∠B =150°,∴∠C=30°.如答图,根据题意对折、裁剪、铺平后可有两种情况得到平行四边形:如答图1,剪痕BM 、BN ,过点N 作NH ⊥BM 于点H ,易证四边形BMDN 是菱形,且∠MBN =∠C =30°.设BN =DN =x ,则NH =12x .根据题意,得1222x x x ⋅=⇒=,∴BN =DN =2, NH =1.易证四边形BHNC 是矩形,∴BC =NH =1. ∴在Rt BCN ∆中,CN =3.∴CD =23+.如答图2,剪痕AE 、CE ,过点B 作BH ⊥CE 于点H ,易证四边形BAEC 是菱形,且∠BCH =30°.设BC =CE =x ,则BH =12x .根据题意,得1222x x x ⋅=⇒=,∴BC =CE =2, BH =1.在Rt BCH ∆中,CHEH=2.易证BCD EHB ∆∆∽,∴CD BC HB EH =,即1CD =∴224CD ==+综上所述,CD =2+或4+三、全面答一答(本题有7个小题,共66分) 解答应写出文字说明,证明过程或推演步骤.17、(2015年浙江杭州6分)杭州市推行垃圾分类已经多年,但在厨余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾,如图是杭州市某一天收到的厨余垃圾的统计图.(1)试求出m 的值;(2)杭州市那天共收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数.厨余类m %金属类0.15%其他类7.55%玻璃类0.9%橡塑类22.39%【答案】解:(1)()10022.390.97.550.1569.01m =-+++=.(2)∵2000.9% 1.8⨯=,∴其中混杂着的玻璃类垃圾吨.【考点】扇形统计图;用样本估计总体.【分析】(1)由扇形统计图中的数据,根据频率之和等于1计算即可.(2)根据用样本估计总体的观点,用2000.9%⨯计算即可.18、(2015年浙江杭州8分)如图,在△ABC 中,已知AB =AC ,AD 平分∠BAC ,点M 、N 分别在AB 、AC 边上,AM =2MB ,AN =2NC ,求证:DM =DN .CD B N MA【答案】证明:∵AM =2MB ,AN =2NC ,∴2233AM AB AN AC ==,. 又∵AB =AC ,∴AM AN =.∵AD 平分∠BAC ,∴MAD NAD ∠=∠.又∵AD =AD ,∴()AMD AND SAS ∆∆≌.∴DM =DN .【考点】全等三角形的判定和性质.【分析】要证DM =DN 只要AMD AND ∆∆≌即可,两三角形已有一条公共边,由AD 平分∠BAC ,可得MAD NAD ∠=∠,只要再有一角对应相等或AM AN =即可,而AM AN =易由AB =AC ,AM =2MB ,AN =2NC 证得.21教育网19、(2015年浙江杭州8分)如图1,⊙O 的半径为r (r >0),若点P ′在射线OP 上,满足OP ′•OP =r 2,则称点P ′是点P 关于⊙O 的“反演点”,如图2,⊙O 的半径为4,点B 在⊙O 上,∠BOA =60°,OA =8,若点A ′、B ′分别是点A ,B 关于⊙O 的反演点,求A ′B ′的长.图2图1A BO P 'PO【答案】解:∵⊙O 的半径为4,点A ′、B ′分别是点A ,B 关于⊙O 的反演点,点B 在⊙O 上, OA =8,∴224,4OA OA OB OB '⋅='⋅= ,即2284,44OA OB '⋅='⋅= .∴2,4OA OB '='= .∴点B 的反演点B ′与点B 重合.如答图,设OA 交⊙O 于点M ,连接B ′M ,∵OM=O B′,∠BOA =60°,∴△O B′M 是等边三角形.∵2OA A M '='=,∴B′M ⊥OM .∴在' Rt OB M ∆中,由勾股定理得22224223A B OB OA ''='-=-=.【考点】新定义;等边三角形的判定和性质;勾股定理.【分析】先根据定义求出2,4OA OB '='= ,再作辅助线:连接点B ′与OA 和⊙O 的交点M ,由已知∠BOA =60°判定△O B′M 是等边三角形,从而在' Rt OB M ∆中,由勾股定理求得A ′B ′的长.【来源:21·世纪·教育·网】20、(2015年浙江杭州10分)设函数()[()1()]13y x k x k =--+- (k 是常数)(1)当k 取1和2时的函数y 1和y 2的图象如图所示,请你在同一直角坐标系中画出当k 取0时函数的图象;2-1-c-n-j-y(2)根据图象,写出你发现的一条结论;](3)将函数y 2的图象向左平移4个单位,再向下平移2个单位,得到函数y 3的图象,求函数y 3的最小值.xy【答案】解:(1)作图如答图:(2)函数(1)[(1)(3)]y x k x k =--+- (k 是常数)的图象都经过点(1,0).(答案不唯一)(3)∵22(1)y x =-,∴将函数y 2的图象向左平移4个单位,再向下平移2个单位,得到函数y 3为22(3)2y x =+-.∴当3x =-时,函数y 3的最小值为2-.【考点】开放型;二次函数的图象和性质;平移的性质.【分析】(1)当0k =时,函数为()()(1)3(1)3y x x x x =---=--+,据此作图.(2)答案不唯一,如:函数(1)[(1)(3)]y x k x k =--+- (k 是常数)的图象都经过点;函数(1)[(1)(3)]y x k x k =--+- (k 是常数)的图象总与x 轴交于(1,0);当k 取0和2时的函数时得到的两图象关于(0,2)成中心对称;等等.(3)根据平移的性质,左右平移时,左减右加。

(完整word)2015年浙江省杭州市中考数学试卷

(完整word)2015年浙江省杭州市中考数学试卷

2015年浙江省杭州市中考数学试卷一、仔细选一选(每小题3分,共30分)1.(3分)统计显示,2013年底杭州市各类高中在校学生人数大约是11。

4万人,将11。

4万用科学记数法表示应为( )A.11.4×102B.1。

14×103C.1.14×104D.1.14×1052.(3分)下列计算正确的是()A.23+26=29B.23﹣24=2﹣1C.23×23=29D.24÷22=223.(3分)下列图形是中心对称图形的是()A.B.C.D.4.(3分)下列各式的变形中,正确的是( )A.(﹣x﹣y)(﹣x+y)=x2﹣y2B.﹣x=C.x2﹣4x+3=(x﹣2)2+1 D.x÷(x2+x)=+15.(3分)圆内接四边形ABCD中,已知∠A=70°,则∠C=( )A.20°B.30°C.70°D.110°6.(3分)若k<<k+1(k是整数),则k=()A.6 B.7 C.8 D.97.(3分)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A.54﹣x=20%×108 B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)8.(3分)如图是某地2月18日到23日PM2。

5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良").由图可得下列说法:①18日的PM2。

5浓度最低;②这六天中PM2.5浓度的中位数是112μg/m3;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关.其中正确的是()A.①②③B.①②④C.①③④D.②③④9.(3分)如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为( )A.B.C.D.10.(3分)设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A.a(x1﹣x2)=d B.a(x2﹣x1)=d C.a(x1﹣x2)2=d D.a(x1+x2)2=d二、认真填一填(每小题4分,共24分)11.(4分)数据1,2,3,5,5的众数是,平均数是.12.(4分)分解因式:m3n﹣4mn= .13.(4分)函数y=x2+2x+1,当y=0时,x= ;当1<x<2时,y随x的增大而(填写“增大”或“减小”).14.(4分)如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB 为度(用关于α的代数式表示).15.(4分)在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图象经过点Q,则k= .16.(4分)如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD= .三、全面答一答(共66分)17.(6分)杭州市推行垃圾分类已经多年,但在剩余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州某一天收到的厨余垃圾的统计图.(1)试求出m的值;(2)杭州市某天收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数.18.(8分)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.19.(8分)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.20.(10分)设函数y=(x﹣1)[(k﹣1)x+(k﹣3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时的函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到的函数y3的图象,求函数y3的最小值.21.(10分)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).22.(12分)如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.23.(12分)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N 地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示.方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇.请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?2015年浙江省杭州市中考数学试卷参考答案与试题解析一、仔细选一选(每小题3分,共30分)1.(3分)统计显示,2013年底杭州市各类高中在校学生人数大约是11。

2015年浙江省杭州市中考数学试卷(含解析版)

2015年浙江省杭州市中考数学试卷(含解析版)

2015年浙江省杭州市中考数学试卷一、仔细选一选(每小题3分,共30分)1.(3分)(2015•杭州)统计显示,2013年底杭州市各类高中在校学生人数大约是11.4万人,将11.4万用科学记数法表示应为( )2.(3分)(2015•杭州)下列计算正确的是( )3.(3分)(2015•杭州)下列图形是中心对称图形的是( ) ..4.(3分)(2015•杭州)下列各式的变形中,正确的是( )﹣x=+15.(3分)(2015•杭州)圆内接四边形ABCD 中,已知∠A=70°,则∠C=( )6.(3分)(2015•杭州)若k <<k+1(k 是整数),则k=( )7.(3分)(2015•杭州)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x 公顷旱地改为林地,则可列方程( )8.(3分)(2015•杭州)如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI 的统计图(当AQI 不大于100时称空气质量为“优良”).由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112ug/m 3;③这六天中有4天空气质量为“优良”;④空气质量指数AQI 与PM2.5浓度有关.其中正确的是( )9.(3分)(2015•杭州)如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()..10.(3分)(2015•杭州)设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()二、认真填一填(每小题4分,共24分)11.(4分)(2015•杭州)数据1,2,3,5,5的众数是,平均数是.12.(4分)(2015•杭州)分解因式:m3n﹣4mn=.13.(4分)(2015•杭州)函数y=x2+2x+1,当y=0时,x=;当1<x<2时,y 随x的增大而(填写“增大”或“减小”).14.(4分)(2015•杭州)如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为度(用关于α的代数式表示).15.(4分)(2015•杭州)在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图象经过点Q,则k=.16.(4分)(2015•杭州)如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=.三、全面答一答(共66分)17.(6分)(2015•杭州)杭州市推行垃圾分类已经多年,但在剩余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州某一天收到的厨余垃圾的统计图.(1)试求出m的值;(2)杭州市某天收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数.18.(8分)(2015•杭州)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.19.(8分)(2015•杭州)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B 关于⊙O的反演点,求A′B′的长.20.(10分)(2015•杭州)设函数y=(x﹣1)[(k﹣1)x+(k﹣3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时的函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到的函数y3的图象,求函数y3的最小值.21.(10分)(2015•杭州)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).22.(12分)(2015•杭州)如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.23.(12分)(2015•杭州)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t 的函数关系如图1所示.方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇;….请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?2015年浙江省杭州市中考数学试卷参考答案与试题解析一、仔细选一选(每小题3分,共30分)1.(3分)(2015•杭州)统计显示,2013年底杭州市各类高中在校学生人数大约是11.4万人,将11.4万用科学记数法表示应为()2.(3分)(2015•杭州)下列计算正确的是()3.(3分)(2015•杭州)下列图形是中心对称图形的是()..4.(3分)(2015•杭州)下列各式的变形中,正确的是()﹣x=+1、,错误;,错误;5.(3分)(2015•杭州)圆内接四边形ABCD中,已知∠A=70°,则∠C=()6.(3分)(2015•杭州)若k<<k+1(k是整数),则k=()=9=10<<题考查了估算无理数的大小,解题关键是估算7.(3分)(2015•杭州)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()8.(3分)(2015•杭州)如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”).由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112ug/m3;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关.其中正确的是()浓度的中位数是=79.5ug/m9.(3分)(2015•杭州)如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()..AN=,同理可得:AC=的线段的概率为:10.(3分)(2015•杭州)设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()=a=a=a二、认真填一填(每小题4分,共24分)11.(4分)(2015•杭州)数据1,2,3,5,5的众数是5,平均数是.平均数是(.;12.(4分)(2015•杭州)分解因式:m3n﹣4mn=mn(m﹣2)(m+2).13.(4分)(2015•杭州)函数y=x2+2x+1,当y=0时,x=﹣1;当1<x<2时,y随x 的增大而增大(填写“增大”或“减小”).14.(4分)(2015•杭州)如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为90﹣度(用关于α的代数式表示).(DCB=(.15.(4分)(2015•杭州)在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图象经过点Q,则k=2+2或2﹣2.y=的图象上,t==2OP==,,,y=k=2+2或216.(4分)(2015•杭州)如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=2+或4+2.=AN=2+AD=DC=4+2;AE=AD=2+2+4+2或4+2三、全面答一答(共66分)17.(6分)(2015•杭州)杭州市推行垃圾分类已经多年,但在剩余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州某一天收到的厨余垃圾的统计图.(1)试求出m的值;(2)杭州市某天收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数.18.(8分)(2015•杭州)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.19.(8分)(2015•杭州)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B 关于⊙O的反演点,求A′B′的长.=,.20.(10分)(2015•杭州)设函数y=(x﹣1)[(k﹣1)x+(k﹣3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k 取0时的函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到的函数y3的图象,求函数y3的最小值.21.(10分)(2015•杭州)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).22.(12分)(2015•杭州)如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.23.(12分)(2015•杭州)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t 的函数关系如图1所示.方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇;….请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?)的图象交点的横坐标为,所以丙出发(解得:)解得:,解得:解得:.t=时,的图象交点的横坐标为所以丙出发h。

2015年杭州市中考数学试题及答案(解析精校版)

2015年杭州市中考数学试题及答案(解析精校版)

2015年浙江省杭州市中考数学试卷解析(本试卷满分120分,考试时间100分钟)一、仔细选一选(10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的. 1、统计显示,2013年底杭州市各类高中在校学生人数约是11.4万人,将11。

4万用科学记数法表示应为【 】A 。

11。

4×104B 。

1.14×104C 。

1.14×105 D. 0.114×106 【答案】C.【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。

因此,∵11.4万=114 000一共6位,∴11。

4万=114 000=1。

14×105.故选C 。

2、下列计算正确的是【 】A 。

347222+= B. 341222--= C. 347222⨯= D 。

341222÷= 【答案】C 。

【考点】有理数的计算.【分析】根据有理数的运算法则逐一计算作出判断:A. 34722816242+=+=≠,选项错误;B. 34122162482--=-=-≠,选项错误;C. 343472222+⨯==,选项正确; D 。

34341122222--÷==≠,选项错误。

故选C.3、下列图形是中心对称图形的是【 】A. B 。

C 。

D.【答案】A .【考点】中心对称图形.【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A 、∵该图形旋转180°后能与原图形重合,∴该图形是中心对称图形;B 、∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形;C 、∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形;D 、∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形. 故选A .4、下列各式的变形中,正确的是【 】A 。

中考数学试卷2015年杭州卷(有答案)

中考数学试卷2015年杭州卷(有答案)

2015年杭州市各类高中招生文化考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.统计显示,2013年底杭州市各类高中在校学生人数约是 11.4万人,将11.4万用科学记数法表示应为( )A.11.4×104B.1.14×104C.1.14×105D.0.114×1062.下列计算正确的是( )A.23+26=29B.23-26=2-3C.26×23=29D.26÷23=223.下列图形是中心对称图形的是( )4.下列各式的变形中,正确的是( )A.(-x-y)(-x+y)=x2-y2B.1-x=1-C.x2-4x+3=(x-2)2+1D.x÷(x2+x)=1+15.圆内接四边形ABCD中,已知∠A=70°,则∠C=()A.20°B.30°C.70°D.110°6.若k< 0<k+1(k是整数),则k=( )A.6B.7C.8D.97.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%,设把x公顷旱地改为林地,则可列方程( )A.54-x=20%×108B.54-x=20%(108+x)C.54+x=20%×162D.108-x=20%(54+x)8.如图是某地2 月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”),由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112 μg/m3;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关,其中正确的说法是( )A.①②③B.①②④C.①③④D.②③④9.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连结任意两点均可得到一条线段,在连结两点所得的所有线段中任取一条线段,取到长度为3的线段的概率为( )A.14B.25C.23D.510.设二次函数y1=a(x-x1)(x-x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则( )A.a(x1-x2)=dB.a(x2-x1)=dC.a(x1-x2)2=dD.a(x1+x2)2=d第Ⅱ卷(非选择题,共90分)二、认真填一填(本题有6个小题,每小题4分,共24分)11.数据1,2,3,5,5的众数是,平均数是.12.分解因式:m3n-4mn= .13.函数y=x2+2x+1,当y=0时,x= ;当1<x<2时,y随x的增大而(填写“增大”或“减小”).14.如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为度(用关于α的代数式表示).15.在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=2的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP,若反比例函数y=的图象经过点Q,则k= .16.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C= 0°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD= .三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.17.(本小题满分6分)杭州市推行垃圾分类已经多年,但在厨余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州市某一天收到的厨余垃圾的统计图.(1)试求出m的值;(2)杭州市那天共收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数.18.(本小题满分8分)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.19.(本小题满分8分)如图1,☉O的半径为r(r>0),若点P'在射线OP上,满足OP'·OP=r2,则称点P'是点P关于☉O的“反演点”.如图2,☉O的半径为4,点B在☉O上,∠BOA=60°,OA=8,若点A',B'分别是点A,B关于☉O的反演点,求A'B'的长.图1图220.(本小题满分10分)设函数y=(x-1)[(k-1)x+(k-3)](k是常数).(1) 当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值.21.(本小题满分10分)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1) 用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形,请列举出所有满足条件的三角形;(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).22.(本小题满分12分)如图,在△ABC中(BC>AC),∠ACB= 0°,点D在AB边上,DE⊥AC于点E.(1)若=1,AE=2,求EC的长;3(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.23.(本小题满分12分)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示.方成思考后发现了图1的部分正确信息:乙先出发1 h;甲出发0.5小时与乙相遇;…….请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;h与乙相遇.(4)丙骑摩托车与乙同时出发,从N地沿同一条公路匀速前往M地.若丙经过43问丙出发后多少时间与甲相遇?图1图2答案全解全析:一、仔细选一选1.C 11.4万=114 000=1.14×105.故选C.2.C 根据有理数的运算法则逐一计算作出判断. 23+26=8+64=72≠29,所以选项A 错误;23-26=8-64=-56≠2-3,所以选项B 错误;26×23=26+3=29,所以选项C 正确;26÷23=23≠22,所以选项D 错误.故选C.3.A 根据中心对称图形的概念知,中心对称图形绕对称中心旋转180度后能与原图形重合.故选A.4.A (-x-y)(-x+y)=(x+y)(x-y)=x 2-y 2,选项A 正确;1-x=1-2≠1-,选项B 错误;x 2-4x+3=x 2-4x+4-1=(x-2)2-1≠(x -2)2+1,选项C 错误;x÷(x 2+x)=2 x =11≠1+1,选项D错误.故选A.5.D ∵在圆内接四边形ABCD 中,∠A=70°,∴根据圆内接四边形对角互补这一性质,得∠C=110°.故选D. 6.D ∵81< 0<100⇒ 81< 0< 100⇒9< 0<10,∴k= .故选D.7.B 根据题意知,把x 公顷旱地改为林地后,旱地面积变为(54-x)公顷,林地面积变为(108+x)公顷,且旱地面积占林地面积的20%,则可列方程54-x=20%(108+x).故选B.8.C 根据题中两个折线统计图对各说法作出判断:①18日的PM2.5浓度最低,说法正确;②这六天中PM2.5浓度数据按从小到大排列为:25,66,67,92,144,158,中位数是第3,4个数的平均数,为67 22=7 .5 μg/m 3,说法错误;③这六天中有4天空气质量为“优良”,说法正确;④空气质量指数AQI 与PM2.5浓度有关,说法正确.∴正确的说法是①③④.故选C. 9.B如图,∵连结正六边形任意两个顶点可得15条线段,其中6条线段长度为 3,∴所求概率为615=25.故选B.10.B ∵一次函数y 2=dx+e(d≠0)的图象经过点(x 1,0),∴0=dx 1+e ⇒e=-dx 1.∴y 2=dx-dx 1=d(x-x 1).∴y=y 1+y 2=a(x-x 1)·(x -x 2)+d(x-x 1)=(x-x 1)[a(x-x 2)+d].又∵二次函数y 1=a(x-x 1)(x-x 2)(a≠0,x 1≠x 2)的图象与一次函数y 2=dx+e(d≠0)的图象交于点(x 1,0),函数y=y 1+y 2的图象与x 轴仅有一个交点,∴函数y=y 1+y 2是二次函数,且它的顶点在x 轴上,即y=y 1+y 2=a(x-x 1)2.∴(x -x 1)[a(x-x 2)+d]=a(x-x 1)2⇒a(x-x 2)+d=a(x-x 1).整理得a(x 2-x 1)=d.故选B.二、认真填一填11.答案 5;165解析 众数是在一组数据中,出现次数最多的数据.这组数据中5出现两次,出现的次数最多,故这组数据的众数是 5.平均数是指在一组数据中,所有数据之和再除以数据的个数.故这组数据的平均数是1 2 3 5 55=165. 12.答案 mn(m+2)(m-2)解析 m 3n-4mn=mn(m 2-4)=mn(m+2)(m-2). 13.答案 -1;增大解析 函数y=x 2+2x+1,当y=0时,x 2+2x+1=0,解得x=-1.易知二次函数的图象开口向上,对称轴是x=-1,∴在对称轴右侧y 随x 的增大而增大.∴当1<x<2时,y 随x 的增大而增大.14.答案 90-2解析 ∵∠ECA=α度,∴∠ECB=(180-α)度.∵CD 平分∠ECB,∴∠DCB=12∠ECB= 0-2度.∵FG∥CD,∴∠GFB=∠DCB= 0-2 度.15.答案 2+2 2-2解析 ∵点P(1,t)在反比例函数y=2的图象上,∴t=21=2.∴P(1,2).∴OP= 5.∵过点P 作直线l 与x 轴平行,点Q 在直线l 上,满足QP=OP,∴Q 点坐标为(1+ 5,2)或(1- 5,2).∵反比例函数y=的图象经过点Q,∴当Q 点坐标为(1+ 5,2)时,k=(1+ 5)×2=2+2 5;当Q 点坐标为(1- 5,2)时,k=(1- 5)×2=2-2 5.16.答案 2 3+4或2+ 3解析 ∵四边形纸片ABCD 中,∠A=∠C= 0°,∠B=150°,∴∠D=30°.根据题意对折、裁剪、铺平后有两种情况得到平行四边形:如图1,剪痕BM 、BN,过点N 作NH⊥BM 于点H,易证四边形BMDN 为菱形,且∠MBN=∠D=30.设BN=DN=x,则NH=12x.根据题意,得x·12x=2⇒x=2(负值舍去),∴BN=DN=2,NH=1.易证四边形BHNC 是矩形,∴BC=NH=1.∴在Rt△BCN 中,CN= 3.∴CD=2+ 3.图1如图2,剪痕AE 、CE,过点B 作BH⊥CE 于点H,易证四边形BAEC 是菱形,且∠BCH=30°.设BC=CE=x,则BH=12x.根据题意,得x·12x=2⇒x=2(负值舍去),∴BC=CE=2,BH=1.∴在Rt△BCH 中,CH= 3,∴EH=2- 3.易证△BCD∽△EHB,∴ =,即1=2-3.∴CD=23)(2-3)(2 3)=4+2 3.综上所述,CD=2+ 4+2图2评析 本题主要考查剪纸问题,多边形内角和定理,轴对称的性质,菱形、矩形的判定和性质,含30度角的直角三角形的性质,相似三角形的判定和性质,分类思想和方程思想的应用.三、全面答一答17.解析 (1)m=100-(22.39+0.9+7.55+0.15)=69.01.(2)其中混杂着的玻璃类垃圾的吨数约等于200×0. %=1.8(吨).18.证明 因为AM=2MB,所以AM=23AB,同理AN=23AC,又因为AB=AC,所以AM=AN.因为AD 平分∠BAC,所以∠MAD=∠NAD.在△AMD 和△AND 中, ,∠∠ , ,所以△AMD≌△AND,所以DM=DN.19.解析 因为OA'·OA=16,且OA=8,所以OA'=2.同理可知,OB'=4,即B 点的反演点B'与B 重合,设OA 交☉O 于点M,连结B'M,因为∠BOA=60°,OM=OB',所以△OB'M 为正三角形,又因为点A'为OM 的中点,所以A'B'⊥OM,根据勾股定理,得OB'2=OA'2+A'B'2,即16=4+A'B'2,解得A'B'=2 3.20.解析 (1)当k=0时,y=-(x-1)(x+3),所画函数图象如图.(2)①图象都经过点(1,0)和点(-1,4); ②图象总交x 轴于点(1,0);③k 取0和2时的函数图象关于点(0,2)中心对称;④函数y=(x-1)[(k-1)x+(k-3)]的图象都经过点(1,0)和(-1,4);等等.(其他正确结论也行)(3)平移后的函数y 3的表达式为y 3=(x+3)2-2,所以当x=-3时,函数y 3的最小值等于-2. 21.解析 (1)共九种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4). (2)只有a=2,b=3,c=4的一个三角形.如图的△ABC 即为满足条件的三角形.22.解析 (1)因为∠ACB= 0°,DE⊥AC,所以DE∥BC,所以 = .因为 =13,AE=2,所以2 =13,解得EC=6.(2)①若∠CFG 1=∠ECD.此时线段CP 1为Rt△CFG 1的FG 1边上的中线. 证明:因为∠CFG 1=∠ECD, 所以∠CFG 1=∠FCP 1,又因为∠CFG 1+∠CG 1F= 0°,∠FCP 1+∠P 1CG 1= 0°, 所以∠CG 1F=∠P 1CG 1.所以CP 1=G 1P 1.又因为∠CFG 1=∠FCP 1, 所以CP 1=FP 1,所以CP 1=FP 1=G 1P 1,所以线段CP 1为Rt△CFG 1的FG 1边上的中线. ②若∠CFG 2=∠EDC.此时线段CP 2为Rt△CFG 2的FG 2边上的高线. 证明:因为DE⊥AC, 所以∠DEC= 0°,所以∠EDC+∠ECD= 0°, 因为∠CFG 2=∠EDC,所以∠ECD+∠CFG 2=∠ECD+∠EDC= 0°, 所以CP 2⊥FG 2,即CP 2为Rt△CFG 2的FG 2边上的高线.③当CD 为∠ACB 的平分线时,CP 既是△CFG 的FG 边上的高线又是中线 .评析 本题主要考查了平行线分线段成比例的性质;直角三角形两锐角的关系;等腰三角形的判定;分类思想的应用,有一定的难度.尤其分类讨论比较容易遗漏. 23.解析 (1)直线BC 的函数表达式为y=40t-60; 直线CD 的函数表达式为y=-20t+80. (2)OA 的函数表达式为y=20t(0≤t≤1), 所以点A 的纵坐标为20. 当20<y<30时,即20<40t-60<30或20<-20t+80<30, 解得2<t<4或52<t<3. (3)S 甲=60t-60 1 73 ;S 乙=20t(0≤t≤4).所画图象如图.(4)当t=43时,S 乙=803.丙距M 地的路程S 丙与时间t 的函数表达式为S 丙=-40t+80(0≤t≤2).S 丙=-40t+80与S 甲=60t-60的图象交点的横坐标为75, 所以丙出发75h 与甲相遇.评析应用待定系数法求线段BC,CD所在直线的函数表达式是函数中比较常见的题目,求出点A的纵坐标,确定适用的函数,解不等式组求解.本题主要体现了函数与方程、函数与不等式和数形结合的重要思想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12 、分解因式: m3n 4mn =____________________________
13 、函数 y
2
x
2x 1 ,当 y=0 时,x=_______________
;当 1< x<2 时,y 随 x 的增大而 _____________ (填写“增大”或“减小”)
14 、如图,点 A ,C , F,B 在同一直线上, CD 平分∠ ECB , FG ∥CD ,若∠ ECA 为 度,则∠ GFB 为_________________________
度(用关于 的代数式表示)
E
D
G
AC
F
B
第 14题
C
D B
A 第16题
15 、在平面直角坐标系中, O 为坐标原点,设点 P(1 ,t)在反比例函数 y 2 的图象上,过点 P 作直线 l 与 x 轴平行,点 Q 在直线 l 上, x
满足 QP=OP ,若反比例函数
y
k 的图象经过点 Q,则 k=_________Байду номын сангаас__________________
厨余类 m%
橡塑类 22.39%
玻璃类 0.9% 其他类 7.55% 金属类 0.15%
18 、(本小题满分 8 分)如图,在△ ABC 中,已知 AB=AC ,AD 平分∠ BAC ,点 M、 N 分别在 AB 、AC 边上, AM=2MB ,AN=2NC , 求证: DM=DN
A
M
N
BDC
19 、(本小题满分 8 分)如图 1,☉ O 的半径为 r(r >0),若点 P′在射线 OP 上,满足 OP′ ?OP=r2,则称点 P′是点 P 关于☉ O 的“反演点”, 如图 2,☉ O 的半径为 4 ,点 B 在☉ O 上,∠ BOA=6°0 ,OA=8 ,若点 A′、B′分别是点 A,B 关于☉ O 的反演点,求 A′B′的长。
2015 年杭州市初中毕业升学文化考试
数学
一 、仔细选一选(本题有 10 个小题,每小题 3 分,共 30 分)
1、统计显示, 2013 年底杭州市各类高中在校学生人数约是 11.4 万人,将 11.4 万用科学记数法表示应为(

A、 11.4 ×10 4
B、1.14 ×10 4
C 、1.14 ×10 5
D 、 x ( x2 x) 1 1 x
5、圆内接四边形 ABCD 中,已知∠ A=70°,则∠ C=(
A、 20°
B 、30°
6、若 k < 90 < k 1 (k 是整数),则 k= ( )
A、 6
B、7
) C、 70°
C、 8
D 、110° D 、9
7、某村原有林地 108 公顷,旱地 54 公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的

A、 a( x1 x2) d
B 、 a (x2 x1 ) d
C、 a(x1 x2 )2 d
D 、 a( x1 x2 )2 d
二、 认真填一填(本题有 6 个小题,每小题 4 分,共 24 分)
11、数据 1,2 ,3,5 ,5 的众数是 _____________________________ ,平均数是 ____________________________
4
2 B、
5
2 C、
3
5 D、
9
A
F
C
B
E
D
G
E
D
B
CD 第 9题
AC
F
B
第1
A 1
10 、设二次函数 y1 a(x x1 )(x x2 ) ( a≠0, x1≠x2)的图象与一次函数 y2 dx e (d≠0)的图象交于点( x1, 0),若函数 y y2 y1 的图
象与 x 轴仅有一个交点,则(
x
16 、如图,在四边形纸片 ABCD 中, AB=BC ,AD=CD ,∠ A= ∠C=90°,∠ B=150°,将纸片先沿直线 BD 对折,再将对折后的图形沿从 一个顶点出 发的直线裁剪,剪开后 的图形打开铺平,若铺 平后的图形 中有一个是面积为 2 的平行 四边形,则
CD=_______________________________
林地,则可列方程(

20% ,设把 x 公顷旱地改为
A、 54-x=20%× 108
B 、54-x=20%× (108+x )
C 、54+x=20%× 162
D、 108 - x=20% (54+x )
8、如图是某地 2 月 18 日到 23 日 PM2.5 浓度和空气质量指数 AQI 的统计图 (当 AQI 不大于 100 时称空气质量为“优良”) ,由图可得下 列说法:① 18 日的 PM2.5 浓度最低;②这六天中 PM2.5 浓度的中位数是 112μg/cm 2;③这六天中有 4 天空气质量为“优良”;④空
气质量指数 AQI 与 PM2.5 浓度有关,其中正确的说法是(

A、①②③
B 、①②④
C、①③④
D 、②③④
9、如图,已知点 A ,B,C ,D ,E,F 是边长为 1 的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任
取一条线段,取到长度为 1 的线段的概率为(

1 A、
三、全面答一答(本题有 7 个小题,共 66 分)
17 、(本小题满分 6 分)杭州市推行垃圾分类已经多年,但在厨余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾,如图是杭州市某一天收 到的厨余垃圾的统计图。
(1)试求出 m 的值; (2)杭州市那天共收到厨余垃圾约 200 吨,请计算其中混杂着的玻璃类垃圾的吨数。
D 、0.114 ×10 6
2、下列计算正确的是( A、 2 3+2 4=27
) B 、23- 24=
C、 23×24=2 7
D、 23÷24=2 1
3、下列图形是中心对称图形的是(

4、下列各式的变形中,正确的是(

A、 ( x y )( x y ) x 2 y 2
B、 1 x 1 x
x
x
C、 x2 4x 3 ( x 2)2 1
O P'
P
图1
B
O
A
图2
20 、(本小题满分 10 分)设函数 y ( x 1) (k 1) x (k 3) ( k 是常数)
(1)当 k 取 1 和 2 时的函数 y1 和 y 2 的图象如图所示,请你在同一直角坐标系中画出当
k 取 0 时函数的图象;
( 2 )根据图象,写出你发现的一条结论;
(3)将函数 y 2 的图象向左平移 4 个单位,再向下平移 2 个单位,得到函数 y 3 的图象,求函数 y 3 的最小值。
相关文档
最新文档